JPH02304380A - Measuring method for constant of induction motor - Google Patents
Measuring method for constant of induction motorInfo
- Publication number
- JPH02304380A JPH02304380A JP1125218A JP12521889A JPH02304380A JP H02304380 A JPH02304380 A JP H02304380A JP 1125218 A JP1125218 A JP 1125218A JP 12521889 A JP12521889 A JP 12521889A JP H02304380 A JPH02304380 A JP H02304380A
- Authority
- JP
- Japan
- Prior art keywords
- induction motor
- constant
- phase
- primary
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006698 induction Effects 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims description 22
- 238000005259 measurement Methods 0.000 claims abstract description 9
- 238000012546 transfer Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000006978 adaptation Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 16
- 238000013178 mathematical model Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、誘導電動機の定数測定方法に係り、特にイン
バータが接続された誘導電動機の定数自動測定方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the constants of an induction motor, and more particularly to a method for automatically measuring the constants of an induction motor connected to an inverter.
誘導電動機の制御方式として、ベクトル制御方式が開発
され、直流電動機と同等の過渡特性と安定置を達成する
ものとして知られている。このベクトル制御方式を用い
た誘導電動機の制御装置では、制御の対象となる誘導電
動機の定数、例えば一次抵抗、二次抵抗、一次漏れイン
ダクタンス、二次漏れインダクタンス、相互インダクタ
ンス等に基づいて、各種制御定数を設定している。A vector control method has been developed as a control method for induction motors, and is known to achieve transient characteristics and stability equivalent to those of DC motors. An induction motor control device using this vector control method performs various controls based on constants of the induction motor to be controlled, such as primary resistance, secondary resistance, primary leakage inductance, secondary leakage inductance, mutual inductance, etc. A constant is set.
このため、従来は、電動機の設計値、若しくは電気書院
発行の「電気学会、電気規格調査会標準規格J JEC
−37−1979(話導機)第2編に示されるように、
抵抗測定試験、無負荷試験、拘束試験の測定値から必要
な電動機定数を求め、制御定数の設定を行なっている。For this reason, conventionally, the design values of the motor or the "IEEJ, Electrical Standards Committee Standards J JEC" published by Denki Shoin were used.
-37-1979 (Storytelling Machine) As shown in Part 2,
Necessary motor constants are determined from the measured values of resistance measurement tests, no-load tests, and restraint tests, and control constants are set.
(発明が解決しようとする課題)
従来のベトクル制御方式を用いた誘導電動機の制御装置
では、制御対象となる電動機の定数を得るのに、設計値
からの演算や定数測定試験に手間がかかり、煩雑である
などの問題点があった。特に、汎用の可変速ドライブに
おいては、その制御対象となる電動機の定数が未知であ
り、電動機の機種に応じてその都度定数測定試験を行な
い、得られた電動機データに基づいて制御定数の設定を
する必要があった。(Problems to be Solved by the Invention) In an induction motor control device using a conventional vector control method, calculations from design values and constant measurement tests are time-consuming to obtain the constants of the motor to be controlled. There were problems such as being complicated. In particular, in general-purpose variable speed drives, the constants of the motor to be controlled are unknown, so a constant measurement test is performed each time depending on the motor model, and control constants are set based on the obtained motor data. I needed to.
また、設計値から得られたデータでは実際値との間の誤
差が大きくなって制御演算誤差を生じることがあり、制
御装置の確認調整や再設定などの必要があった。Furthermore, the data obtained from the design values may have a large error from the actual values, resulting in control calculation errors, requiring confirmation and adjustment or resetting of the control device.
本発明は、上記のような問題点を解消するたるめになさ
れたもので、インバータを駆動電源とする誘導電動機に
おいて、実運転前にインバータを電動機定数測定器とし
て機能させ、電動機にトルクを発生させたり、回転させ
たりすることなく高精度に定数を求める誘導電動機の定
数測定方法を士是イ共するものである。The present invention has been made to solve the above-mentioned problems.In an induction motor using an inverter as a driving power source, the inverter functions as a motor constant measuring device before actual operation to generate torque in the motor. This invention shares a method for measuring the constants of an induction motor with high precision, without rotating or rotating the motor.
この、第1の発明に係る誘導電動機の定数測定方法は、
駆動電源としてインバータが接続された誘導電動機にお
いて、単相給電若しくはそれと等価な給電状態となるよ
うにインバータ出力電圧を発生させ、その電圧と誘導電
動機に流れる電流とを用いてモデル規範適応システムに
基づく誘導電動機の定数同定を行ない、一次抵抗Rs、
二次抵抗R1、一次自己インダクタンスし1、二次自己
インダクタンスしr及び相互インダクタンスMを求める
ものである。This method for measuring constants of an induction motor according to the first invention is as follows:
In an induction motor connected to an inverter as a drive power source, an inverter output voltage is generated so as to achieve a single-phase power supply or an equivalent power supply state, and this voltage and the current flowing through the induction motor are used to generate a model-based adaptive system. The constants of the induction motor are identified, and the primary resistance Rs,
The secondary resistance R1, the primary self-inductance 1, the secondary self-inductance r, and the mutual inductance M are determined.
また、この第2の発明に係る誘導電動機の定数測定方法
は、上記第1の発明と同様に発生させたインバター出力
電圧と周波数、及び誘導電動機に流れる電流とを用いて
、電圧から電流への周波数に対するゲイン特性を求め、
誘導電動機の伝達関数を示す式に代入演算Lr一次抵抗
R8、二次抵抗Rs、一次自己インダクタンスL1、二
次自己インダクタンスL r%及び相互インダクタンス
Mを求めるものである。Further, the method for measuring the constants of an induction motor according to the second invention uses the inverter output voltage and frequency generated in the same manner as in the first invention, and the current flowing through the induction motor to convert the voltage to the current. Find the gain characteristics for the frequency of
The primary resistance R8, the secondary resistance Rs, the primary self-inductance L1, the secondary self-inductance Lr%, and the mutual inductance M are obtained by substituting Lr into the equation showing the transfer function of the induction motor.
この第1の発明におけるモデル規範適応シスムに基づく
誘導電動機の定数同定方法は、同定アルゴリズムに出力
誤差を用いる並列式同定器を採用Lr単相給電状態にお
ける誘導電動機と、それと同じ形を持つ数学モデルを考
え、その両者に同じ電圧を与えた時の電流誤差が零とな
るように同定器が未知パラメータを演算Lr誤差がτと
なった時に演算された未知パラメータが実話導電動機の
定数と一致するように動作する。The induction motor constant identification method based on the model norm adaptation system in this first invention employs a parallel type identifier that uses output error as the identification algorithm. When the Lr error becomes τ, the unknown parameter calculated matches the constant of the actual conductive motor. It works like this.
又、この第2の発明における誘導電動機の定数測定方法
は、単相給電状態におけね誘導電動機の電圧から電流へ
の周波数に対するゲイン特性を求め、その中から複数の
周波数におけるゲインをお導電動機の単相給電状態にお
ける電圧から電流への伝達関数を示す式に代入Lrそれ
らを連立方程式として演算することにより、一次抵抗R
1、二次抵抗Rs、一次自己インダクタンスLr、二次
自己インダクタンスL、及び相互インダクタンスMを求
めるものである。In addition, the method for measuring the constants of an induction motor in this second invention is to obtain the gain characteristic of the induction motor from voltage to current with respect to frequency in a single-phase power supply state, and to calculate the gain at a plurality of frequencies from among the gain characteristics of the induction motor in a single-phase power supply state. By substituting Lr into the equation showing the transfer function from voltage to current in the single-phase power supply state and calculating them as a simultaneous equation, the primary resistance R
1. Secondary resistance Rs, primary self-inductance Lr, secondary self-inductance L, and mutual inductance M are determined.
以下、図面を参照してこの第1の発明の実施例を詳細に
説明する、第1図は本実施例による誘導電動機の定数測
定装置を示す構成図である。図において、(1)は定数
測定の対象となる誘導電動機、(2)はPWMインバー
タ、(3a) 、 (3b) 、 (3c)はそれぞれ
誘導電動機(1)のU相、■相、W相の一次電流に応答
した電流期間信号11x、lv、1wを出力する電流検
出器、(4)は上記電流帰還信号i。、 L 、 iv
を固定した直交軸からθだけずれた直交軸成分(d。Embodiments of the first invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a constant measuring device for an induction motor according to this embodiment. In the figure, (1) is the induction motor whose constants are to be measured, (2) is the PWM inverter, and (3a), (3b), and (3c) are the U phase, ■ phase, and W phase of the induction motor (1), respectively. (4) is the current feedback signal i, which outputs current period signals 11x, lv, and 1w in response to the primary current. ,L,iv
The orthogonal axis component (d) is shifted by θ from the orthogonal axis with fixed.
軸一次電流成分id@、およびqa軸一次電流成分i
q a−に変換する3相/ d”q’座標変換器、(5
)は位相角指令θに対応した正弦波信号sinθおよび
cosθを出力する関数発生器、(6) は一次電圧指
令のd@軸成分Vd’、”を3相電圧指令vu”、vv
”、v、”に変換するd@q″/3相座標変換器、(7
)はこれら電圧と電流から話導電vJm定数を同定する
定数チューニング装置である。Axis primary current component id@, and qa-axis primary current component i
3-phase/d"q' coordinate converter to convert to q a-, (5
) is a function generator that outputs sinusoidal signals sin θ and cos θ corresponding to the phase angle command θ, (6) is the d@axis component Vd' of the primary voltage command, and "is the 3-phase voltage command vu", vv
d@q″/three-phase coordinate converter that converts to “, v,” (7
) is a constant tuning device that identifies the conductive vJm constant from these voltages and currents.
ここでは、誘導電動機(1)を単相給電状態と等価にす
るため、位相角指令θ=0とする、そして、固定した直
交軸(d軸、q軸)からθだけずれた直交軸であるd@
軸、q@軸(ここではd軸、q軸と一致する)上の電圧
Vd” 、に所定値を印加LrVQ″gは0とする。こ
の時、誘導電動機(1)のU相、■相、W相には、次式
で示される電圧Vu、Vv。Here, in order to make the induction motor (1) equivalent to a single-phase power supply state, the phase angle command θ is set to 0, and the orthogonal axes are shifted by θ from the fixed orthogonal axes (d-axis, q-axis). d@
A predetermined value is applied to the voltage Vd'' on the axis and the q@ axis (coinciding with the d axis and the q axis here), and LrVQ''g is set to 0. At this time, voltages Vu and Vv shown by the following equations are applied to the U phase, ■ phase, and W phase of the induction motor (1).
V、が印加される。V, is applied.
V、= ffVd”、= V。V, = ffVd”, = V.
vV=v、= −JXva8.
・ (+)また、誘導電動機(1)のU相、■相
、W相に流れる電流1u、lv、1wは次式で現われる
。vV=v,=-JXva8.
(+) Also, the currents 1u, lv, and 1w flowing in the U phase, ■phase, and W phase of the induction motor (1) are expressed by the following equations.
iu= F可id@、= i。iu=Fableid@,=i.
lv= iw= −−rrXxd@*
”・(2)このようにして、単相給電状態が構成で
きる。lv= iw= --rrXxd@*
(2) In this way, a single-phase power supply state can be configured.
次に、定数チューニング装置(7)による定数の同定方
法を詳細に説明する。Next, a method for identifying constants using the constant tuning device (7) will be explained in detail.
本発明では、第2図に示すように同定アルゴリズムに出
力誤差を用いる並列式同定器を用いて電動機定数の同定
を行なう。第2図において、数学モデルは単相給電状態
の誘導電動機(1)と全く同じ形を持ち、両者に同じ入
力(ここでは電圧)を与えた時の出力(ここでは電流)
の誤差が;となるよう、同定器が未知パラメータを計算
する、また、計算された未知パラメータは数学モデルに
フィードバックされる。In the present invention, as shown in FIG. 2, motor constants are identified using a parallel type identifier that uses output errors in the identification algorithm. In Figure 2, the mathematical model has exactly the same shape as the induction motor (1) in a single-phase power supply state, and the output (current here) when the same input (voltage here) is applied to both.
The identifier calculates the unknown parameters such that the error of is; and the calculated unknown parameters are fed back to the mathematical model.
数学モデルが決まると、以下の手順で定数同定法が導出
できる。Once the mathematical model is determined, a constant identification method can be derived using the following steps.
(1’)等価非線形フィードバック系を決定する。(1') Determine an equivalent nonlinear feedback system.
その構成を第3図に示す。Its configuration is shown in FIG.
(2)等価非線形フィードバック系の内、線形定常ブロ
ックは、その伝達関数が強正実となるように決定する。(2) In the equivalent nonlinear feedback system, the linear stationary block is determined so that its transfer function is strongly real.
(3)等価非線形フィードバックの内、非線形ブロック
は次式で表されるボボフの積分不等式を満足するように
決定する。(3) Among the equivalent nonlinear feedback, the nonlinear block is determined so as to satisfy Boboff's integral inequality expressed by the following equation.
tV”Wdt≧−ro’ ””
(3)ここで、r 02は有限の正の定数である。tV"Wdt≧-ro'""
(3) Here, r 02 is a finite positive constant.
誘導電動機(1)の単相分の等価回路は第4図で示され
、その状態方程式は次式で表される。The single-phase equivalent circuit of the induction motor (1) is shown in FIG. 4, and its state equation is expressed by the following equation.
ここで、Rs、R,は一次及び二次抵抗、L、、L、は
一次及び二次自己インダクタンス、Mは相互インダクタ
ンス、a = 1− M2/L、L、は漏れ係数、1.
.11は一次及び二次電流、v3は一次電圧、P=−は
微分演算子である。Here, Rs, R, are the primary and secondary resistances, L, , L are the primary and secondary self-inductances, M is the mutual inductance, a = 1-M2/L, L is the leakage coefficient, 1.
.. 11 is a primary and secondary current, v3 is a primary voltage, and P=- is a differential operator.
t
(4)において、検出可能な変数はv8と11であり、
l、は検出不可能である。そこで(4)式を次式のよう
に変形する。In t (4), the detectable variables are v8 and 11,
l, is undetectable. Therefore, equation (4) is transformed as shown in the following equation.
ここでλ、 = L、i、+ Mi、は一次鎖交磁束で
ある。Here, λ, = L, i, + Mi, is the primary flux linkage.
(5)式に対応する数学モデルの状態方程式は次式で表
される。The state equation of the mathematical model corresponding to equation (5) is expressed by the following equation.
ここで、添字へは数学モデル内の定数及び変数を表す。Here, the subscript represents constants and variables within the mathematical model.
但Lr入力変数であるV、は実機、数学モデルとも同じ
である。However, V, which is the Lr input variable, is the same for both the actual machine and the mathematical model.
線形定常ブロックの状態方程式は実機の状態方程式(5
)式から数学モデルの状態方程式(6)式を引き算して
次式で表される。The state equation of the linear stationary block is the state equation of the actual machine (5
) is expressed by the following equation by subtracting the state equation (6) of the mathematical model.
・・・(7)
(7)式の右辺第2項及び第3項は実機と数学モデルの
状態変数の間に誤差を生じさせる入力を示しており、そ
れらの人力と検出できる状態変数の誤差、つまり−、−
1,の間には次式の関係がある。...(7) The second and third terms on the right side of equation (7) indicate inputs that cause errors between the state variables of the actual machine and the mathematical model, and the errors between these human inputs and the state variables that can be detected. , that is −, −
1, there is the following relationship.
先に述べたように線形定常ブロックの伝達関数は強正実
でなければならない。この場合、その伝達関数G (s
)は(8)式の一部と線形補償器の伝達関数C(s)
とから次式で表される。As mentioned earlier, the transfer function of a linear stationary block must be strongly real. In this case, its transfer function G (s
) is a part of equation (8) and the transfer function C(s) of the linear compensator
It is expressed by the following formula.
・・・(9)
G <s)はC(s)が次式を満足するとき強正実であ
る。...(9) G <s) is strongly real when C(s) satisfies the following equation.
(:(s) −C+ ” Co/S
・” (1
0)但LrGo> O、C+/Go > 1 / (R
−/ σI−m”Rr/ OLr)される。(:(s) −C+ ” Co/S
・” (1
0) However, LrGo > O, C+/Go > 1 / (R
−/σI−m”Rr/OLr).
v−C(s) (i、−1s)
= (11)次に、非線形時変ブロックは(3)式で
表されたボボフの積分不等式を満足するように決定する
。v-C(s) (i, -1s)
= (11) Next, the nonlinear time-varying block is determined so as to satisfy Boboff's integral inequality expressed by equation (3).
(3)式のVは(11)の式で表され、Wは(8)式よ
り次式で表される。V in equation (3) is expressed by equation (11), and W is expressed by the following equation from equation (8).
■、Wが(11) 、 (12)式で表されるとき、(
3)式を満足させるためには(14)式中の操作できる
量、即ち、l/σL、 、 1/Rs、R#/σLg+
Rr/σL、。■, When W is expressed by equations (11) and (12), (
3) In order to satisfy equation (14), the manipulable quantities in equation (14), i.e., l/σL, , 1/Rs, R#/σLg+
Rr/σL,.
R,Rr/σL、L、を(13)〜(16)式のように
操作することで可能になる。This is possible by manipulating R, Rr/σL, and L as shown in equations (13) to (16).
・・・(13)
fr、 R,R,P
・・・(14)
・・・(15)
・・・(16)
ココテ、kPl 〜kP4≧0、k11〜に14〉oテ
する。後者が0を含まないのは、定数同定の定常偏差を
Oにするためである。また、各定数の添字0は積分器の
初期値を表Lrそれらは任意の定数でよい。さらに、(
14)式中のkP2°、に12°につぃては、それらと
σL、Lr/R,R,との積を(17)、(18)式の
ようにkP2+k12と扱って構わない。...(13) fr, R, R, P ...(14) ...(15) ...(16) Here, kPl ~ kP4≧0, k11 ~ is 14〉o. The reason why the latter does not include 0 is to set the steady-state deviation of constant identification to 0. Further, the subscript 0 of each constant indicates the initial value of the integrator. They may be arbitrary constants. moreover,(
14) Regarding kP2° and 12° in the formula, the product of these and σL, Lr/R, R, may be treated as kP2+k12 as in formulas (17) and (18).
kp2= (σL−L−/R−Rr ) kp2’
・・・(17)k+z = (σL−Lr/R
mRr) k+2’ ・・・(18)以上を
まとめると同定アルゴリズムは(19)〜(22)式の
ように決定できる。kp2= (σL-L-/R-Rr) kp2'
...(17) k+z = (σL-Lr/R
mRr) k+2' (18) Summarizing the above, the identification algorithm can be determined as shown in equations (19) to (22).
・・・(21)
・・・(22)
なお、(6)式から得られる数字モデルのブロック線図
例を第5図に示す。定数同定に必要なi−1λ、、/R
,が得られるようになっていると共に、同定する定数が
配置されている。第6図は(19)〜(22)式から得
られる定数同定器のブロック線図例である。第7図は同
定に必要なV、の積分器の例である。ここでは、たまた
ま車なる積分器を用いたときに生じるオフセットの影響
を避けるため、時定数Tの一次遅れを用いた。第1図(
8)の定数同定装置はこれら第5図、第6図、第7図の
組合ゎせとじて構成される。(19)〜(22)式から
直接同定される定数は、モードル定数の積和、つまり1
1 R,R,R,R。...(21) ...(22) An example of a block diagram of the numerical model obtained from equation (6) is shown in FIG. i-1λ, , /R required for constant identification
, are obtained, and constants to be identified are arranged. FIG. 6 is an example of a block diagram of a constant identifier obtained from equations (19) to (22). FIG. 7 is an example of an integrator of V required for identification. Here, a first-order lag with a time constant T is used to avoid the influence of offset that occurs when an integrator, which happens to be a car, is used. Figure 1 (
The constant identification device 8) is constructed by combining these FIGS. 5, 6, and 7. The constant directly identified from equations (19) to (22) is the sum of the products of the modal constants, that is, 1
1 R, R, R, R.
σL、、 Rs、σLR2σLr、σL、Lrの4つで
あるが、これらは一般によく行なわれているり、〜L、
とする近似化により、四則演算でR3゜Rs、L、 J
=rL、、Mに分解することができる。There are four types: σL,, Rs, σLR2σLr, σL, and Lr, but these are commonly practiced, ~L,
By approximation, R3゜Rs, L, J
=rL,,M can be decomposed into.
また、モデル規範適応システムに基づく同定では同定の
収束性は1人力1出力の場合、人力が同定したいものの
半数以上の異なった周波数成分を含むとき補償される。Furthermore, in the case of identification based on a model norm adaptive system, the convergence of identification is compensated when one person uses one output and the human effort contains more than half of the different frequency components of those to be identified.
従って、■、は2f!類以上の周波数成分を含んでいれ
ばよく、例えば異なる正弦波の重畳波形、方形波、三角
波またはその他の合成波形等様々な与え形が可能である
。または、直流分を重畳させても構わない。このV、は
実際のインバータ出力電圧を測定して用いてもよく、ま
た、インバータへの指令を用いてもかまわない。Therefore, ■ is 2f! It is sufficient that the waveform contains frequency components of the same type or higher, and various shapes such as a superimposed waveform of different sine waves, a square wave, a triangular wave, or other composite waveforms are possible. Alternatively, direct current components may be superimposed. This V may be used by measuring the actual inverter output voltage, or may be used as a command to the inverter.
さらに、同定は、4つ同時に行なわず、1つだけ、又は
2.3個だけを任意に組合わせて同定、その他は同定を
行なわせないようにすることもできる。Furthermore, instead of identifying all four at the same time, it is also possible to identify only one or only 2.3 in any combination, and not to identify the others.
(lO)式の00がOの場合、線形定常ブロックは正実
であるが、(9)式のG (s)はω≠0でRo(G(
jw) ) > Oであり、交流入力である場合は同定
可能であるからC0=0でも構わない。If 00 in equation (lO) is O, the linear stationary block is real, but G (s) in equation (9) is ω≠0 and Ro(G(
jw) ) > O, and if it is an AC input, it can be identified, so C0=0 may be sufficient.
なお、上記実施例では、単相給電状態を構成するのにd
軸とq軸とd@軸、q@軸を一致させるようにしたが、
これら両者の間に一定の位相角を与えてもよい。In addition, in the above embodiment, d is required to configure the single-phase power supply state.
I tried to match the axis, q axis, d@ axis, and q@ axis, but
A constant phase angle may be given between these two.
また、第5図、第6図、第7図に定数同定装置を構成す
る各部分のブロック線図を示したが、本発明で述べた同
定アルゴリズムを逸脱しない範囲で任意に構成できるこ
とは勿論である。Furthermore, although block diagrams of the various parts constituting the constant identification device are shown in FIGS. 5, 6, and 7, it is of course possible to configure them arbitrarily without departing from the identification algorithm described in the present invention. be.
次に、この第2の発明の一実施例を図について説明する
。第8図は本実施例による諺導電動機の定数測定装置を
示す構成図である。図中、第1図と同一符号は同一、又
は相当部分を示す。図において、(9)は電圧と電流、
及び周波数から誘導電動機定数を演算する定数演算装置
である。Next, an embodiment of the second invention will be described with reference to the drawings. FIG. 8 is a configuration diagram showing a constant measuring device for a conductive motor according to this embodiment. In the figure, the same reference numerals as in FIG. 1 indicate the same or corresponding parts. In the figure, (9) is voltage and current,
and a constant calculation device that calculates induction motor constants from frequency.
次に上記構成に基づき動作について説明する。Next, the operation will be explained based on the above configuration.
ここでは第1の発明同様誘導電動機(1)を単相給電状
態と等価にするため、位相角指令θ=0とする。そして
、固定した直交軸(d軸、q釉)からθだけずれた直交
軸であるd”軸、qa軸(ここではd軸、q@と一致す
る)上の電圧Vd”、に所定値を印加LrVq″′8は
0とする。この時、誘導電動機(1)のU相、■相、W
相には次式で示される電圧!、、Vv、V、が印加され
る。Here, in order to make the induction motor (1) equivalent to a single-phase power supply state as in the first invention, the phase angle command θ is set to 0. Then, a predetermined value is applied to the voltage Vd'' on the d'' axis and the qa axis (here, the d axis, which coincides with the q@), which are orthogonal axes shifted by θ from the fixed orthogonal axes (d axis, q glaze). The applied LrVq'''8 is set to 0. At this time, the U phase, ■ phase, W phase of the induction motor (1)
The voltage on the phase is shown by the following formula! , , Vv, V are applied.
v、= FHva”、= v。v,= FHva'',= v.
Vv = Vw=−FKVd”g
”・(la)また、誘導電動機(1)のU相、■相、
W相に流れる電流iLl+lv+1wは次式で現われる
。Vv=Vw=-FKVd"g
”・(la) Also, the U phase, ■ phase of the induction motor (1),
The current iLl+lv+1w flowing in the W phase is expressed by the following equation.
I u = lfd” * = 11
iv= i、= −−/”7id@m
= (2a)このようにして、単相給電状態が構成
できる。I u = lfd" * = 11 iv = i, = --/"7id@m
= (2a) In this way, a single-phase power supply state can be configured.
次に、この単相給電状態の下で定数演算装置(8) に
よる定数の演算方法を詳細に説明する。Next, the method of calculating constants by the constant calculating device (8) under this single-phase power supply state will be explained in detail.
誘導電動機(1)の単相分の等価回路は第4図で′示さ
れ、その状態方程式は次式で表される。The single-phase equivalent circuit of the induction motor (1) is shown in FIG. 4, and its state equation is expressed by the following equation.
ここで、Rs、R,は一次及び二次抵抗、L、、Lrは
一次及び二次自己インダクタンス、Mは相互インダクタ
ンス、σ= 1−M”/L、L、は漏れ係数、i。Here, Rs, R, are the primary and secondary resistances, L,, Lr are the primary and secondary self-inductances, M is the mutual inductance, σ = 1-M''/L, and L is the leakage coefficient, i.
11は一次及び二次電流、■、は一次電圧、P=−は微
分演算子である。11 is the primary and secondary current, ■ is the primary voltage, and P=- is the differential operator.
t
(3a)式において、18が一定(直流量)である場合
はPi、 =Pi、 = Oとなり、次式が成り立つ。t In equation (3a), if 18 is constant (DC flow rate), Pi, = Pi, = O, and the following equation holds true.
)1,1.= v、 ”
’ (4a)従って、一次抵抗R8は、i、が一定(直
流量)となるようにV、を一定(直流電圧)として与え
ることにより、(4a)式から求まる。よって、これ以
後はR1が測定されたものとして、それ以外の電動機定
数つまり二次抵抗Rr、一次自己シンダクタンスし3、
二次自己インダクタンスLr%相互インダクタンスMに
ついての測定方法を説明する。)1,1. = v, ”
(4a) Therefore, the primary resistance R8 can be found from equation (4a) by giving V as a constant (DC voltage) so that i is constant (DC amount). Therefore, from now on, assuming that R1 has been measured, the other motor constants, that is, the secondary resistance Rr, the primary self-sinductance, and 3,
A method for measuring the secondary self-inductance Lr% mutual inductance M will be explained.
(3a)式より、V、を入力、i、を出力とする伝達関
数G (s)は次式となる。From equation (3a), the transfer function G (s) with input V and output i becomes the following equation.
1ト
S◆−
ここで、今後の式の展開を見やすくするため、誘導電動
機定数の積和、つまり
R,R1−= −c、 −(6a)
σL、 σL。1tS◆- Here, in order to make it easier to see the future development of the equation, we will use the sum of the products of the induction motor constants, that is, R, R1-= -c, -(6a)
σL, σL.
” 、 −C,・” (7a) σL、L。”, -C,・” (7a) σL,L.
一 ・ C3・・・(8a) σL3 この時、(5a)式は次式のように表すことができる。1・C3...(8a) σL3 At this time, equation (5a) can be expressed as the following equation.
52−(:IS+R5C2
また、C1,C2,C3が決まれば、R3は(4a)式
により測定された値を用いることにより、L、、R,/
L、、σを演算することができる。52-(:IS+R5C2 Also, once C1, C2, and C3 are determined, R3 can be calculated as L, , R, / by using the value measured by equation (4a).
L, ,σ can be calculated.
さらに、一般に良く使われている近似り、=L、を用い
ることにより、(10a)〜(tZa)式によってRs
、L、 =L、、Mが求まる。Furthermore, by using the commonly used approximation =L, Rs
,L, =L, ,M is found.
I
Rr= −−Rs ・・・(10
a)Vt+1gが一定(直流量)であれば、(4a)式
のようにvlとisの関係にはR,シか影響しない。従
って、CI、(:2.C3を得るためにvlを交流正弦
波電圧として与える。この時のV、の角周波数をω−と
Lr(9a)式でSをjω伽と入れ替えた周波数伝達関
数は(13a)式となる。I Rr= --Rs...(10
a) If Vt+1g is constant (DC flow rate), only R and shi will affect the relationship between vl and is as shown in equation (4a). Therefore, to obtain CI, (:2.C3, vl is given as an AC sine wave voltage. At this time, the angular frequency of V is set to ω- and Lr. is the formula (13a).
・・・(13a) また、ゲインは次式となる。...(13a) Also, the gain is expressed by the following formula.
いま、R8は既に測定された値を用いることができ、未
知数はCI、C2,C3の3つとなるから、(14a)
式を3元連立方程式とすればそれらを求めることができ
る。つまり、V、を異なる3つの角周波数ω6−1.ω
諷2.ωに3の交流電圧として与え、それぞれのV、か
らi、へのゲインG、、G2.G、を測定することによ
り、(14a)式に対して次の3元連立方程式が成立す
る。Now, we can use the already measured value for R8, and there are three unknowns: CI, C2, and C3, so (14a)
They can be obtained by making the equations into three-dimensional simultaneous equations. In other words, V is set to three different angular frequencies ω6-1. ω
Literary 2. ω is given as an AC voltage of 3, and the gains G, , G2 . By measuring G, the following three-dimensional simultaneous equations are established for equation (14a).
ここで、(15a)〜(17a)式を展開Lr整理する
と(18a) 〜(20a)式となる。Here, when formulas (15a) to (17a) are expanded and rearranged by Lr, formulas (18a) to (20a) are obtained.
= Cl−2R−h ”・(18a)−CI −
2R−C2”’ (19a)−CI −2R−C2・
・’ (20a)L、L。= Cl-2R-h”・(18a)-CI −
2R-C2"'(19a)-CI-2R-C2・
・' (20a) L, L.
あるから、C1〉0、C2〉0、C5〉0の条件が成立
Lrこの条件の下で(18a)〜(20a)式を解くと
C,、C2,C3は次のように求まる。Therefore, the conditions C1>0, C2>0, and C5>0 hold true. Under these conditions, solving equations (18a) to (20a) yields C, C2, and C3 as follows.
但Lr
・・・(24a)
Yl−−・・・(26a)
G、 G2
Y2讃 −・・・ (27a)
GI G3
z、=−0把 〒 +ω〜2 ・・・(
28a)Z2 =−0m l +ωa4 3
−(29a)(21a) 〜(29a)式より
求まったCI、C2,C3を用し)で(10a)〜(1
2a)式によりrtr、L、 =Lr、Mが演算できる
。However, Lr...(24a) Yl--...(26a) G, G2 Y2 praise--(27a) GI G3 z, =-0 grip 〒 +ω~2...(
28a) Z2 = -0ml +ωa4 3
- (29a) (21a) - Using CI, C2, C3 found from formula (29a)), (10a) - (1
rtr, L, = Lr, M can be calculated using equation 2a).
ここで、v8の3つの角周波数の選び方で大きな演算誤
差を生じる場合がある。従って、最適な3つの角周波数
の選び方について説明する。Here, a large calculation error may occur due to the selection of the three angular frequencies of v8. Therefore, how to select the three optimal angular frequencies will be explained.
(5a)式において、l、=L、−LとLr(比例+積
分)要素と一次遅れ要素の積に展開すると(30a)式
になる。When formula (5a) is expanded into the product of l,=L, -L, Lr (proportional+integral) element, and first-order lag element, formula (30a) is obtained.
2σ L 2σ L・・
・(30a)
但Lr
C= 、+R,−4σR,R。2σ L 2σ L...
・(30a) However, Lr C= , +R, -4σR,R.
(30a)式の右辺第1.2.3項をそれぞれG1(s
) 、 G2 (s) 、 Gs (s) とすれば、
ソレソレノケイント時定数は次のようになる。G1(s
), G2 (s), Gs (s), then
The soresolenocainto time constant is as follows.
G (s) = G、 (s)・G2 (s)・G3
(S)1”T2S 1+T3S
但Lr
C12Rr
これらのゲイン曲線を描くと、第9図のようになる。G
(s)は、それぞれ
ωr =1/T+、ω2 =1/T2.ω3=1/T3
の折点角周波数をもったゲイン曲線201oglG+
l 。G (s) = G, (s)・G2 (s)・G3
(S) 1”T2S 1+T3S However, Lr C12Rr When these gain curves are drawn, it becomes as shown in Fig. 9.G
(s) are ωr =1/T+, ω2 =1/T2, respectively. ω3=1/T3
A gain curve 201oglG+ with a corner frequency of
l.
201oglG21.201oglGslの合成となる
。This results in the synthesis of 201oglG21.201oglGsl.
いま、G (s)のゲイン曲線を、各折点角周波数で挟
まれた領域に分け、それぞれ
ωくC3(・1/T3 ) ・・・I
領域ω3(−1/T3) <ω〈C1(・1/TI)
・・弓■領域ωI(−1/TI) <ω〈C2(−1
/T2) −・・nrW1ffcωくC2(・1/T
2) ・・・■領域とする。Now, divide the gain curve of G (s) into regions sandwiched by each corner angular frequency, and divide each region by ω C3 (・1/T3) ... I
Area ω3 (-1/T3) <ω<C1 (・1/TI)
... Bow area ωI (-1/TI) <ω〈C2 (-1
/T2) -...nrW1ffcωkuC2(・1/T
2) ...■ Area.
このとき、各領域におけるG (s)のゲインは次のよ
うになる。At this time, the gain of G (s) in each region is as follows.
■領域
201ogl Gx l〜201ogにr” 201o
gに2◆201ogK== 201og(に1・K2
・K3)R3
If領領
域01ogl Gg l 舛201og K+4201
ogK2+ (201ogK。■Area 201ogl Gx l~201og r” 201o
g to 2◆201ogK== 201og(to1・K2
・K3) R3 If area 01ogl Ggl 201og K+4201
ogK2+ (201ogK.
−201ogT3−201ogω
= 201og(K+”に2・に3)
−201ogTs 201ogω
・・・(33a)
I11領域
201ogl Gg l 幻(201ogに、+2Ql
ogT、+ 201ogω)+201ogにz”(20
1ogに3−201ogT33−201oω)
=201og(にI’l’[2’に3)+2010g
(TI/T3)・・・(34a)
■領域
201ogIGt l ’= (201ogにr+
201ogT、+201ogω)+ (201ogK2
−201ogTz−201ogω)+ (201ogに
、−201ogT、−201ogω)= 201og
(K+ ”KfK、)+2010g(T+/T3)−2
010gω −(35a)従って5 ■領域で
はゲインはR8のみの関数となる。いま、R9は(4a
)式により求めることができ、(21a) 〜(29a
)式で未知数C,,C2,C,を求める段階では既知と
している。■領域のゲンイにはこれら未知数の情報は含
まれておらず、この領域でのゲインを演算に用いること
はできない。−201ogT3−201ogω = 201og (2 to 3 to K+”) −201ogTs 201ogω ... (33a) I11 area 201ogl Gg l Phantom (to 201og, +2Ql
ogT, + 201og ω) + 201og z” (20
1og to 3-201ogT33-201oω) = 201og(toI'l'[2'to 3)+2010g
(TI/T3)...(34a) ■Area 201ogIGt l'= (r+ to 201og
201ogT, +201ogω)+ (201ogK2
-201ogTz-201ogω)+ (201og, -201ogT, -201ogω) = 201og
(K+ ”KfK,)+2010g(T+/T3)-2
010gω -(35a) Therefore, in the 5 (2) region, the gain is a function only of R8. Now, R9 is (4a
) can be obtained using the formula (21a) to (29a
) are assumed to be known at the stage of calculating the unknowns C, ,C2,C. (2) The gain in the region does not include information on these unknowns, and the gain in this region cannot be used for calculations.
■、■領域において、v8の角周波数を2つ選んだ場合
、それらの差はωの関数となり、そこに上記未知数は現
われてこない。また、■領域で2つの角周波数を選んだ
場合、そのゲインの差は零となり、未知数に関係しなく
なる。When two angular frequencies of v8 are selected in the regions (1) and (2), the difference between them becomes a function of ω, and the above unknown quantity does not appear there. Furthermore, when two angular frequencies are selected in the region (■), the difference in gain becomes zero and is not related to the unknown quantity.
よって、3元連立方程式を立てる際に用いるV。Therefore, V used when setting up three-dimensional simultaneous equations.
の3つの角周波数は、■、■、■の各領域から1つずつ
選ぶ必要がある。本発明では、これらの傾城を判断する
ために、幾つかの角周波数における■3からi、へのゲ
インを測定Lr第9図Oのゲイン曲線における折点角周
波数t/T、 、 1/T2 、 l/T3を見つける
。これは第10図に示すように、対数目盛上でほぼ等間
隔となるように複数点の角周波数を選び、各測定点の間
のv8からi、へのゲインの変化量が大きくなる点とし
て見つけることかできる。It is necessary to select one each of the three angular frequencies from the regions ■, ■, and ■. In the present invention, in order to judge these inclinations, the gain from 3 to i at several angular frequencies is measured. , find l/T3. As shown in Figure 10, the angular frequencies of multiple points are selected at approximately equal intervals on the logarithmic scale, and the points where the amount of change in gain from v8 to i between each measurement point increases. I can find it.
なお、上記実施例では単相給電状態を構成するのにd軸
、q軸とd@軸、q″軸を一致させるようにしたが、こ
れら両者の間に一定の位相角を与えてもよい。Note that in the above embodiment, the d-axis and q-axis are made to coincide with the d@-axis and q'' axis to configure a single-phase power supply state, but a certain phase angle may be given between these two. .
また、■、に異なる3つの角周波数を与え、それぞれの
vlからi、へのゲインを求めた後、それらを(14a
)式に当てはめて3元連立方程式としたあとは、上記実
施例以外の解法で未知数を求めてもよく、上記実施例と
同様の効果を奏するのは持ち論である。Also, after giving three different angular frequencies to ■, and finding the gain from each vl to i,
) equation to form a three-dimensional simultaneous equation, the unknown quantity may be determined by a solution method other than the above embodiment, and it is my opinion that the same effect as the above embodiment can be obtained.
(発明の効果〕
以上のとおり、第1の発明によれば、誘導電動機の駆動
電源になるインバータから単相給電状態になるよう出力
電圧を発生させ、その電圧と読導機に流れる電流とを用
いてモデル規範適応システムに基づく誘導電動機の定数
同定を行なうようにしたため、該定数未知の電動機でも
その停止状態自動測定を確実・容易にLrさらには該定
数の自動設定をするというセルフチューニングを容易に
するという効果がある。(Effects of the Invention) As described above, according to the first invention, an output voltage is generated from the inverter serving as the drive power source of the induction motor so as to be in a single-phase power supply state, and the output voltage and the current flowing through the conductor are connected. Since the constants of the induction motor are identified based on the model norm adaptation system using the Lr, even if the constant is unknown, automatic measurement of the stopped state of the motor can be reliably and easily performed, and self-tuning of automatically setting the constant can be easily performed. It has the effect of making
又、この第2の発明によれば、誘導電動機の駆動電源に
なるインバータから単相給電状態になるよう出力電圧を
発生させ、その電圧と周波数及び該誘導電動機に流れる
電流とを用いて電圧から電流への周波数に対するゲイン
特性を求め、誘導電動機の伝達関数を示す式に代入演算
Lr誘導電動機定数を求めるようにしたため、該定数未
知の電動機でもその停止状態自動測定を確実・容易にL
rさらには該定数の自動設定をするというセルフチュー
ニングを容易にするという効果がある。Further, according to the second invention, an output voltage is generated from an inverter serving as a drive power source for an induction motor so as to be in a single-phase power supply state, and the output voltage is generated from the voltage using the voltage, frequency, and current flowing through the induction motor. The Lr induction motor constant is obtained by calculating the gain characteristic of the current with respect to the frequency and substituting it into the equation representing the transfer function of the induction motor, so even if the constant is unknown, automatic measurement of the stopped state of the motor can be reliably and easily performed.
Furthermore, it has the effect of facilitating self-tuning in which the constants are automatically set.
第1図は第1の発明の一実施例による誘導電動機の定数
測定装置を示す回路図、第2図は同定器の構成図、第3
図は等価非線形フィードバック系ブロック線図、第4図
は誘導電動機の単相分等価回路図、第5図は数学モデル
のブロック線図、第6図は定数同定器のブロック線図、
第7図はり、の積分器ブロック線図、第8図は第2の発
明の一実施例による誘導電動機の定数測定装置を示す回
路図、第9図はG (s)のゲイン曲線図、第1θ図は
折点角周波数の求め方を示す図である。
(1)は誘導電動機、(2)はPVIMインバータ、(
3a) 、 (3b) 、 (3c)はそれぞれU、V
、W相の電流検出器、(4)は3相/d@q@座標変換
器、(5)は関数発生器、(6)はdoq”/ 3相座
標変換器、(7)ハ定数チューニング装置、(8)は定
数演算装置。
尚、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a circuit diagram showing a constant measuring device for an induction motor according to an embodiment of the first invention, FIG. 2 is a configuration diagram of an identifier, and FIG.
The figure is a block diagram of an equivalent nonlinear feedback system, Figure 4 is a single-phase equivalent circuit diagram of an induction motor, Figure 5 is a block diagram of a mathematical model, and Figure 6 is a block diagram of a constant identifier.
FIG. 7 is a block diagram of an integrator for beams, FIG. 8 is a circuit diagram showing a constant measuring device for an induction motor according to an embodiment of the second invention, FIG. 9 is a gain curve diagram of G (s), and FIG. The 1θ diagram is a diagram showing how to obtain the corner angular frequency. (1) is an induction motor, (2) is a PVIM inverter, (
3a), (3b), and (3c) are U and V, respectively.
, W-phase current detector, (4) is 3-phase/d@q@ coordinate converter, (5) is function generator, (6) is doq''/3-phase coordinate converter, (7) C constant tuning The device (8) is a constant calculation device. In the figures, the same reference numerals indicate the same or corresponding parts.
Claims (4)
、単相給電もしくはそれと等価な給電状態となるように
インバータ出力電圧を発生させ、その電圧と誘導電動機
に流れる電流とを用いてモデル規範適応システムに基づ
く誘導電動機の定数同定を行ない、一次抵抗R_s、二
次抵抗R_r、一次自己インダクタンスL_s、二次自
己インダクタンスL_r及び相互インダクタンスMを求
めることを特徴とする誘導電動機の定数測定方法。(1) In an induction motor that uses an inverter as a drive power source, generate an inverter output voltage so as to achieve single-phase power supply or an equivalent power supply state, and use that voltage and the current flowing through the induction motor to create a model norm adaptation system. 1. A method for measuring the constants of an induction motor, the method comprising identifying the constants of the induction motor based on the above criteria, and determining the primary resistance R_s, secondary resistance R_r, primary self-inductance L_s, secondary self-inductance L_r, and mutual inductance M.
以上の周波数成分を含むことを特徴とする特許請求の範
囲第1項記載の誘導電動機の定数測定方法。(2) The method for measuring constants of an induction motor according to claim 1, wherein the output voltage of the inverter used for the measurement includes two or more frequency components.
、単相給電状態もしくはそれと等価な給電状態となるよ
うにインバータ出力電圧を発生させ、その電圧と周波数
、及び誘導電動機に流れる電流とを誘導電動機の伝達関
数式に代入演算し、一次抵抗R_s、二次抵抗R_r、
一次自己インダクタンスL_s、二次自己インダクタン
スL_r、及び相互インダクタンスMを求めることを特
徴とする誘導電動機の定数測定方法。(3) In an induction motor that uses an inverter as a drive power source, generate the inverter output voltage so that it is in a single-phase power supply state or an equivalent power supply state, and calculate the voltage, frequency, and current flowing through the induction motor. By substituting and calculating into the transfer function formula, the primary resistance R_s, the secondary resistance R_r,
A method for measuring constants of an induction motor, characterized by determining a primary self-inductance L_s, a secondary self-inductance L_r, and a mutual inductance M.
、複数の周波数における電圧と電流の比を求めることに
より、演算誤差が最小となる周波数を見い出し、それを
用いることを特徴とする特許請求の範囲第3項記載の誘
導電動機の定数測定方法。(4) The frequency of the inverter output voltage used for the measurement is determined by determining the ratio of voltage and current at a plurality of frequencies to find a frequency that minimizes the calculation error, and using that frequency. 3. A method for measuring constants of an induction motor according to item 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12521889A JPH0769401B2 (en) | 1989-05-18 | 1989-05-18 | Induction motor constant measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12521889A JPH0769401B2 (en) | 1989-05-18 | 1989-05-18 | Induction motor constant measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02304380A true JPH02304380A (en) | 1990-12-18 |
JPH0769401B2 JPH0769401B2 (en) | 1995-07-31 |
Family
ID=14904782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12521889A Expired - Lifetime JPH0769401B2 (en) | 1989-05-18 | 1989-05-18 | Induction motor constant measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0769401B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202620A (en) * | 1991-04-12 | 1993-04-13 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for measuring the time constant of the direct-axis damper of a synchronous machine |
US5311121A (en) * | 1991-04-12 | 1994-05-10 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for measuring the electrical time constant of the quadrature-axis damper of a synchronous machine |
WO2004109310A1 (en) * | 2003-06-06 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Device for determining constant of rotating machine |
JP2006262689A (en) * | 2005-03-15 | 2006-09-28 | Schneider Toshiba Inverter Europe Sas | Method and system for controlling motor when magnetic flux is reduced |
JP2007279039A (en) * | 2006-04-03 | 2007-10-25 | Suss Microtec Test Systems Gmbh | Electronic circuit impedance measurement method |
JP2010197354A (en) * | 2009-02-27 | 2010-09-09 | Nissan Motor Co Ltd | Capacity estimating device for secondary battery |
DE112010000959T5 (en) | 2009-03-05 | 2012-08-09 | Mitsubishi Electric Corporation | Device for detecting insulation degradation |
-
1989
- 1989-05-18 JP JP12521889A patent/JPH0769401B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202620A (en) * | 1991-04-12 | 1993-04-13 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for measuring the time constant of the direct-axis damper of a synchronous machine |
US5311121A (en) * | 1991-04-12 | 1994-05-10 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for measuring the electrical time constant of the quadrature-axis damper of a synchronous machine |
WO2004109310A1 (en) * | 2003-06-06 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Device for determining constant of rotating machine |
US7408322B2 (en) | 2003-06-06 | 2008-08-05 | Mitsubishi Denki Kabushiki Kaisha | Device for determining constant of rotating machine |
CN100422758C (en) * | 2003-06-06 | 2008-10-01 | 三菱电机株式会社 | Device for determining constant of rotating machine |
JP2006262689A (en) * | 2005-03-15 | 2006-09-28 | Schneider Toshiba Inverter Europe Sas | Method and system for controlling motor when magnetic flux is reduced |
JP2007279039A (en) * | 2006-04-03 | 2007-10-25 | Suss Microtec Test Systems Gmbh | Electronic circuit impedance measurement method |
JP2010197354A (en) * | 2009-02-27 | 2010-09-09 | Nissan Motor Co Ltd | Capacity estimating device for secondary battery |
DE112010000959T5 (en) | 2009-03-05 | 2012-08-09 | Mitsubishi Electric Corporation | Device for detecting insulation degradation |
US9335380B2 (en) | 2009-03-05 | 2016-05-10 | Mitsubishi Electric Corporation | Device for detecting insulation degradation |
Also Published As
Publication number | Publication date |
---|---|
JPH0769401B2 (en) | 1995-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | An automated rotor time-constant measurement system for indirect field-oriented drives | |
EP1312932B1 (en) | Method for measuring motor constant of induction motor | |
US6507184B1 (en) | Methods and apparatus for differential current measurement in a three-phase power system | |
EP2936675B1 (en) | System for determining a magnetizing curve and rotor resistance of an induction machine and method of making same | |
KR100222358B1 (en) | Apparatus and method for controlling torque of induction motor through vector controlled inverter | |
JPH02304380A (en) | Measuring method for constant of induction motor | |
JP2929344B2 (en) | Method and apparatus for measuring motor constants | |
JP3099159B2 (en) | Method and apparatus for measuring motor constants | |
JPH0843462A (en) | AC equipment constant measurement method and its equipment | |
JPH03117347A (en) | Method of measuring constant of induction motor | |
do Prado et al. | On-Line identification of induction motors using discrete models for sinusoidal signals | |
JP3159330B2 (en) | Induction motor vector control device | |
Upadhyay et al. | A Stator Flux Linkage DC Offset Based Stator Fault Detection For PMSM Drive Systems | |
JP2716920B2 (en) | PWM inverter device | |
JP2730017B2 (en) | Inverter device | |
JP3145876B2 (en) | Vector control method and device for induction motor | |
JP3118940B2 (en) | Induction motor vector control device | |
JPS62114487A (en) | Automatic setting method of slip frequency calculator | |
JP3265768B2 (en) | Variable speed device | |
JP3032681B2 (en) | Method and apparatus for measuring secondary resistance of induction motor | |
JP3121525B2 (en) | Vector control method and device for induction motor | |
JPH07135800A (en) | Control apparatus for induction machine | |
JP3123304B2 (en) | Induction motor vector control device | |
Ben-Brahim et al. | Auto-tuning for sensorless AC motor drive systems | |
JPH04248389A (en) | Speed-sensorless speed control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070731 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 14 |