JPH02294461A - Carburizing treating method for steel member - Google Patents
Carburizing treating method for steel memberInfo
- Publication number
- JPH02294461A JPH02294461A JP11653589A JP11653589A JPH02294461A JP H02294461 A JPH02294461 A JP H02294461A JP 11653589 A JP11653589 A JP 11653589A JP 11653589 A JP11653589 A JP 11653589A JP H02294461 A JPH02294461 A JP H02294461A
- Authority
- JP
- Japan
- Prior art keywords
- carburizing
- steel member
- treatment
- surface carbon
- cooling rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 37
- 239000010959 steel Substances 0.000 title claims abstract description 37
- 238000005255 carburizing Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 34
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000010791 quenching Methods 0.000 claims abstract description 11
- 230000000171 quenching effect Effects 0.000 claims abstract description 11
- 230000009466 transformation Effects 0.000 claims abstract description 10
- 238000005256 carbonitriding Methods 0.000 claims description 9
- 238000011282 treatment Methods 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 238000005121 nitriding Methods 0.000 abstract description 4
- 239000000523 sample Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 18
- 150000001247 metal acetylides Chemical class 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、鋼部材に対して浸炭焼入れ若しくは浸炭窒化
焼入れを行なう浸炭処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carburizing method for carburizing and quenching or carbonitriding a steel member.
(従来の技術)
自動車用の歯車部品等のように耐ピッチング性と耐摩耗
性を要求される鋼部材に対しては、これらの性能を向上
させるために、浸炭焼入れ若しくは浸炭窒化焼入れが行
われている。(Prior art) For steel parts that require pitting resistance and wear resistance, such as automobile gear parts, carburizing and quenching or carbonitriding and quenching are performed to improve these properties. ing.
これらの焼入れは、鋼部材をCOとCOZ系の浸炭ガス
或いは浸炭窒化ガス雰囲気中で加熱した後急冷すること
により行われるが、前記の雰囲気ガス中に存在する02
が、鋼部材中に焼入れ性向上のために配合されているC
r,St或いはMn等と反応して酸化物を生成してしま
う。このため、鋼部材の表面に焼入性の悪い異常組織が
生じ、この異常組織は鋼部材の耐ピッチング性及び耐摩
耗性向上に対する障害になる。These hardening processes are performed by heating the steel member in a CO and COZ-based carburizing gas or carbonitriding gas atmosphere and then rapidly cooling it.
However, C is added to steel members to improve hardenability.
It reacts with r, St, Mn, etc. to generate oxides. For this reason, an abnormal structure with poor hardenability is generated on the surface of the steel member, and this abnormal structure becomes an obstacle to improving the pitting resistance and wear resistance of the steel member.
そこで、近時、特開昭62−33757号公報に示され
るように、鋼部材を、予め浸炭処理した後、A1変態点
以下の温度に達するまで冷却し、その後、再度、再加熱
処理した後、浸窒化処理する方法が提案されている。Therefore, recently, as shown in Japanese Patent Application Laid-open No. 62-33757, steel members are carburized in advance, cooled to a temperature below the A1 transformation point, and then reheated. , a method of nitriding has been proposed.
この方法は、1度目の浸炭処理によって生じた異常組織
を2度目の浸窒化処理によって改善することによって耐
ピッチング性と耐摩耗性の向上を図ると共に、再加熱に
よって靭性の向上を図るものである。This method aims to improve pitting resistance and wear resistance by improving the abnormal structure caused by the first carburizing treatment by a second nitriding treatment, and also aims to improve toughness by reheating. .
(発明が解決しようとする課題)
しかるに、鋼部材に対して予め浸炭処理を行なった後、
A1変態点以下の温度に冷却し、再度、再加熱処理及び
浸窒化処理を行なえば、常に同程度、耐ピッチング性、
耐摩耗性及び靭性が向上するものではなく、処理条件に
よってはそれらの向上が十分でないという問題があった
。(Problem to be solved by the invention) However, after carburizing a steel member in advance,
If it is cooled to a temperature below the A1 transformation point and then reheated and nitrided, the same level of pitting resistance and
There was a problem that wear resistance and toughness were not improved, and depending on the processing conditions, these improvements were not sufficient.
前記に鑑みて、本発明は、処理条件を限定することによ
り、耐ピッチング性、耐摩耗性及び靭性を確実に向上さ
せることを目的とする。In view of the above, an object of the present invention is to reliably improve pitting resistance, wear resistance, and toughness by limiting treatment conditions.
(課題を解決するための手段)
前記の目的を達成するため、本発明は、浸炭処理過程に
おける鋼部材の表面炭素濃度、及び、浸炭処理後にA1
変態点以下の温度へ冷却する過程における冷却速度を限
定するものである。(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention aims to improve the surface carbon concentration of a steel member during the carburizing process and the A1 concentration after the carburizing process.
This limits the cooling rate in the process of cooling to a temperature below the transformation point.
具体的に本発明の講じた解決手段は、鋼部材を、その表
面炭素濃度が0. 8〜1.0%になるよう浸炭処理し
た後、冷却速度0.5〜10℃/分でA1変態点以下の
温度に達するまで冷却し、しかる後、浸炭焼入れ若しく
は浸炭窒化焼入れをする構成とするものである。Specifically, the solution taken by the present invention is to prepare a steel member with a surface carbon concentration of 0. After carburizing to 8 to 1.0%, cooling at a cooling rate of 0.5 to 10°C/min until reaching a temperature below the A1 transformation point, and then carburizing and quenching or carbonitriding and quenching. It is something to do.
(作用)
前記の構成により、鋼部材の表面炭素濃度が0,8〜1
.0%であるから、耐ピッチング性及び耐摩耗性の向上
を確保するために必要な量のCが表面層に固溶されてい
る一方、焼入れ後の金属組織中における粒界に炭化物は
析出しない。(Function) With the above configuration, the surface carbon concentration of the steel member is 0.8 to 1.
.. Since it is 0%, the necessary amount of C is dissolved in the surface layer to ensure improved pitting resistance and wear resistance, while carbides do not precipitate at grain boundaries in the metal structure after quenching. .
また、鋼部材を浸炭処理後、0.5℃/分以上の冷却速
度でA1変態点以下の温度に冷却するため、この冷却過
程で炭化物は粒界に析出しない。Moreover, since the steel member is cooled to a temperature below the A1 transformation point at a cooling rate of 0.5° C./min or more after carburizing, carbides are not precipitated at grain boundaries during this cooling process.
さらに、冷却過程での冷却速度が10℃/分以下である
から、熱処理に伴う変形量が大きくならない。Furthermore, since the cooling rate in the cooling process is 10° C./min or less, the amount of deformation due to heat treatment does not increase.
(実施例) 以下、本発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below.
まず、鋼部材の表面炭素濃度が0,8〜1.0%になる
ように、この鋼部材を、CoとCO2系の浸炭ガス雰囲
気中での約900〜約930℃の温度下において約2時
間〜約4時間保持して浸炭処理する。次に、この鋼部材
を冷却速度0.5〜10℃/分でA1変態点以下の温度
に達するまで冷却する。その後、この鋼部材を、COと
CO.系の浸炭ガス雰囲気中、或いは、これに適量のN
H3ガスを添加して戸る浸炭窒化ガス雰囲気中での約8
00〜約850℃の温度下において約5分〜約20分間
保持した後、急冷して浸炭焼入れ或いは浸炭窒化焼入れ
を行なう。First, the steel member is heated at a temperature of about 900 to about 930°C in a Co and CO2-based carburizing gas atmosphere so that the surface carbon concentration of the steel member is 0.8 to 1.0%. Carburizing treatment is carried out by holding for about 4 hours. Next, this steel member is cooled at a cooling rate of 0.5 to 10° C./min until it reaches a temperature below the A1 transformation point. After that, this steel member was mixed with CO and CO. In the carburizing gas atmosphere of the system, or with an appropriate amount of N
About 8 in a carbonitriding gas atmosphere with H3 gas added.
After being maintained at a temperature of 0.000 to about 850° C. for about 5 to about 20 minutes, it is rapidly cooled and then carburized and quenched or carbonitrided and quenched.
この場合、浸炭処理による鋼部材の表面炭素濃度を0、
8〜1.0%の範囲内に限定し、且つ、浸炭処理後の冷
却速度を0.5〜10℃/分の範囲内に限定する理由は
次の通りである。In this case, the surface carbon concentration of the steel member due to carburizing treatment is 0,
The reasons for limiting the content to within the range of 8 to 1.0% and limiting the cooling rate after carburizing to within the range of 0.5 to 10°C/min are as follows.
すなわち、鋼部材の表面炭素濃度が0.8%未満である
と、耐ピッチング性及び耐摩耗性の向上が図れないので
、鋼部材の表面炭素濃度は0.8%以上が好ましい。That is, if the surface carbon concentration of the steel member is less than 0.8%, the pitting resistance and wear resistance cannot be improved, so the surface carbon concentration of the steel member is preferably 0.8% or more.
また、表面炭素濃度がO.・8%以上になるよう浸炭処
理した鋼部材を、0.5℃/分未満の冷却速度で冷却す
ると、この冷却過程で金属組織中における粒界に炭化物
が析出してしまい、靭性の向上が図れないので、冷却速
度は0.5℃/分以上が好ましい。Moreover, the surface carbon concentration is O.・If a steel member that has been carburized to a carburization rate of 8% or more is cooled at a cooling rate of less than 0.5°C/min, carbides will precipitate at grain boundaries in the metal structure during this cooling process, resulting in improvement in toughness. Therefore, the cooling rate is preferably 0.5° C./min or more.
また、浸炭処理後に鋼部材を10℃/分超の冷却速度で
冷却すると、熱処理に伴う変形量が大きくなるので、冷
却速度は10℃/分以下が好ましい。Furthermore, if the steel member is cooled at a cooling rate of more than 10° C./min after carburizing treatment, the amount of deformation accompanying the heat treatment will increase, so the cooling rate is preferably 10° C./min or less.
さらに、鋼部材の表面炭素濃度が1.0%超であると、
浸炭処理後に10℃/分以下の冷却速度で冷却した場合
、浸炭焼入れ或いは浸炭窒化焼入れ後の金属組織中にお
ける粒界に炭化物が析出してしまい、靭性の向上が図れ
ないので、鋼部材の表面炭素濃度は1.0%以下が好ま
しい。Furthermore, if the surface carbon concentration of the steel member is more than 1.0%,
If cooling is performed at a cooling rate of 10°C/min or less after carburizing, carbides will precipitate at grain boundaries in the metal structure after carburizing or carbonitriding, making it impossible to improve toughness. The carbon concentration is preferably 1.0% or less.
次に、鋼部材の組成については、以下の各元素を各々以
下に述べる範囲内で配合することが好ましい。Next, regarding the composition of the steel member, it is preferable to mix the following elements within the ranges described below.
すなわち、Cについては0.10〜0.30%の範囲内
が好ましい。その理由は、Cは鋼部材の芯部の強度を確
保するために必要な元素であって、0.10%未満では
その効果が不十分なためであり、0.30%超では鋼部
材の硬さが硬くなり過ぎて、靭性が低下すると共に切削
性が悪化するためである。That is, C is preferably within the range of 0.10 to 0.30%. The reason for this is that C is an element necessary to ensure the strength of the core of steel members, and if it is less than 0.10%, its effect is insufficient, and if it exceeds 0.30%, the This is because the hardness becomes too hard, resulting in decreased toughness and poor machinability.
Siについては0.05〜0.50%の範囲内が好まし
い。その理由は、SiはCと同様、鋼部材の強度向上に
有効な元素であって、0.05%未満ではその効果が不
十分なためであり、一方、このStは酸化物生成傾向が
強くて浸炭処理後に表面異常層の生成を助長すると共に
、浸炭阻害作用があって、0,50%超ではこれらの弊
害が生じるためである。The content of Si is preferably within the range of 0.05 to 0.50%. The reason for this is that, like C, Si is an effective element for improving the strength of steel members, and its effect is insufficient if it is less than 0.05%.On the other hand, this St has a strong tendency to form oxides. This is because it promotes the formation of an abnormal surface layer after carburizing treatment and has a carburizing inhibiting effect, and if it exceeds 0.50%, these disadvantages will occur.
Mnについては0.30〜1.80%の範囲内が好まし
い。その理由は、Mnは焼入れ性向上元素であって、0
.30%未満ではその効果が不十分なためであり、1.
80%超では焼入れ性が過大になると共に切削性が悪化
するためである。Regarding Mn, it is preferably within the range of 0.30 to 1.80%. The reason is that Mn is an element that improves hardenability, and 0
.. This is because the effect is insufficient if it is less than 30%; 1.
This is because if it exceeds 80%, the hardenability becomes excessive and the machinability deteriorates.
P及びSについては不純物であるから、各々0.030
%以下が好ましい。Since P and S are impurities, each has a value of 0.030
% or less is preferable.
Niについては2.50%以下が好ましい。その理由は
、Niは焼入れ性向上元素であると共に基地の靭性向上
に有効であるが、2.50%超ではその効果が飽和する
一方、経済性が損なわれるためである。Regarding Ni, 2.50% or less is preferable. The reason for this is that Ni is an element that improves hardenability and is effective in improving the toughness of the base, but if it exceeds 2.50%, the effect is saturated and the economic efficiency is impaired.
Crについては0.30〜1.50%の範囲内が好まし
い。その理由は、Crは焼入れ性向上元索であって、0
.30%未満ではその効果が不十分なためであり、一方
、このC『は炭化物生成元索でもあり、1.50%超で
は炭化物生成作用が過大になり過ぎるためである。Regarding Cr, it is preferably within the range of 0.30 to 1.50%. The reason is that Cr is a material that improves hardenability, and 0
.. This is because the effect is insufficient if it is less than 30%, and on the other hand, this C' is also a source of carbide generation, and if it exceeds 1.50%, the carbide generation effect becomes too excessive.
Moについては0,50%以下が好ましい。その理由は
、Mnは焼入れ性向上元素であるが、0.50%超では
その効果が飽和する一方、経済性が損なわれるためであ
る。The content of Mo is preferably 0.50% or less. The reason for this is that although Mn is an element that improves hardenability, if it exceeds 0.50%, its effect is saturated and economic efficiency is impaired.
以下、本発明を評価するために行なった具体例と比較例
についての処理内容、及び、これら各具体例と比較例に
おける、粒界炭化物の析出の有無と熱処理変形量の測定
結果について図面に基づいて説明する。Below, we will discuss the processing details of specific examples and comparative examples carried out to evaluate the present invention, as well as the measurement results of the presence or absence of precipitation of grain boundary carbides and the amount of heat treatment deformation in these specific examples and comparative examples, based on the drawings. I will explain.
鋼部材として、SCM415Hの材質よりなり、モジュ
ール:1.1、歯数:30のオートマッチクトランスミ
ッションギャを7個準備し、各々のギヤを供試材1〜洪
試材7とした。そして、供試材2〜4のものを具体例と
し、供試材1及び5〜7のものを比較例として、各々以
下に示すような処理を行なった。As a steel member, seven automatic matching transmission gears made of SCM415H material, module: 1.1, number of teeth: 30 were prepared, and each gear was designated as sample material 1 to test material 7. Then, samples 2 to 4 were used as specific examples, sample materials 1 and 5 to 7 were used as comparative examples, and the following treatments were performed on each sample.
まず、第1図の熱処理パターン図に示すように、供試材
1〜7を各々異なる濃度の浸炭ガス雰囲気中における9
00℃の温度下に3時間保持して浸炭処理し、表面炭素
濃度を、供試材1及び2については0.85%、供試材
3〜5については1.0%、供試材6及び7については
1,1%にした。First, as shown in the heat treatment pattern diagram of FIG.
Carburization treatment was carried out by holding at a temperature of 00°C for 3 hours, and the surface carbon concentration was 0.85% for test materials 1 and 2, 1.0% for test materials 3 to 5, and 1.0% for test materials 6. and 7 were set at 1.1%.
次に、供試材1については0. 1℃/分、供試材2
及び3については0.5℃/分、供試材4及び6につい
ては10℃/分、供試材5及び7については15℃/分
の冷却速度で、各々の供試材1〜7をA1変態点以下の
温度に達するまで冷却した。Next, for sample material 1, 0. 1℃/min, sample material 2
and 3 at a cooling rate of 0.5°C/min, specimens 4 and 6 at a cooling rate of 10°C/min, and specimens 5 and 7 at a cooling rate of 15°C/min. It was cooled until it reached a temperature below the A1 transformation point.
次に、第2図の熱処理パターン図に示すように、各供試
材1〜7に対して、870℃の温度下に10分間保持し
て結晶粒の微細化処理を行ない、その後、所定濃度のN
H3ガスを添加してなる浸炭窒化ガス雰囲気中における
820℃の温度下に15分間保持し、表面窒素濃度を0
.2%にした後、ソルト浴に入れて浸炭窒化焼入れした
。Next, as shown in the heat treatment pattern diagram in Figure 2, each sample material 1 to 7 was held at a temperature of 870°C for 10 minutes to refine the crystal grains, and then N of
The temperature was maintained at 820°C for 15 minutes in a carbonitriding gas atmosphere containing H3 gas to reduce the surface nitrogen concentration to 0.
.. After reducing it to 2%, it was placed in a salt bath and carbonitrided and quenched.
さらに、第3図の熱処理パターン図に示すように、各供
試材1〜7に対して、170”Cの温度下に90分間保
持した後、空冷して焼戻しをした。Furthermore, as shown in the heat treatment pattern diagram of FIG. 3, each of the test materials 1 to 7 was held at a temperature of 170''C for 90 minutes, and then air-cooled and tempered.
その結果は第1表に示すとおりであって、浸炭処理後に
測定した歯筋方向の変形量については、供試材1:−3
μm1供試材2:−3μm,供試材3:−4μm、供試
材4:−7μm1供試材5:一20μm1供試材6:−
8μm1供試材7:一22μmであって、焼戻し処理後
に粒界炭化物の析出の有無については、供試材1、6及
び7は粒界炭化物が折出し7、供試材2〜5は粒界炭化
物が析出しなかった。The results are shown in Table 1, and the amount of deformation in the tooth trace direction measured after carburizing treatment was as follows: Sample material 1:-3
μm1 Test material 2: -3 μm, Test material 3: -4 μm, Test material 4: -7 μm1 Test material 5: -20 μm1 Test material 6: -
8 μm1 Sample material 7:-22 μm, and regarding the presence or absence of grain boundary carbide precipitation after tempering, test materials 1, 6, and 7 have precipitated grain boundary carbides, and sample materials 2 to 5 have grain boundary carbides precipitated. No boundary carbide precipitated.
(以下、余白)
供試材1は、表面炭素濃度が0,85%であって適当で
あるが、冷却速度が0.1℃/分と小さいため、第4図
の顕微鏡写真(倍率400倍)に示すように、金属組織
中に粒界炭化物が析出した。(Hereafter, blank space) Sample material 1 has a surface carbon concentration of 0.85%, which is appropriate, but the cooling rate is as low as 0.1°C/min. ), grain boundary carbides were precipitated in the metal structure.
供試材5は、表面炭素濃度が1.0%であって適当であ
るが、冷却速度が15℃/分と大きいため、熱処理変形
量が大きかった。Sample material 5 had a surface carbon concentration of 1.0%, which was appropriate, but the cooling rate was as high as 15° C./min, so the amount of heat treatment deformation was large.
供試材6は、表面炭素濃度が1.1%であって高すぎる
ため、冷却速度が適当であるにも拘らず、第5図の顕微
鏡写真(倍率400倍)に示すように、金属組織中に粒
界炭化物が多く析出した。Sample material 6 had a surface carbon concentration of 1.1%, which was too high, so despite the appropriate cooling rate, the metallographic structure remained unchanged, as shown in the micrograph in Figure 5 (400x magnification). Many grain boundary carbides were precipitated inside.
供試材7は、表面炭素濃度が1.1%と高く、且つ、冷
却速度が15℃/分と大きいため、金属組織中に粒界炭
化物が析出したと共に、熱処理変形瓜も大きかった。Since sample material 7 had a high surface carbon concentration of 1.1% and a high cooling rate of 15° C./min, grain boundary carbides precipitated in the metal structure and the heat treatment deformed the melon to a large extent.
これに対して、供試材2は表面炭素濃度が0.85%、
冷却速度が0. 5℃/分で、供試材3は表面炭素濃
度が1、0%、冷却速度が0. 5℃/分であって、各
々適当であるため金属組織中に粒界炭化物が析出しなか
ったと共に、熱処理変形量も小さかった。On the other hand, sample material 2 has a surface carbon concentration of 0.85%,
Cooling rate is 0. At 5°C/min, sample material 3 had a surface carbon concentration of 1.0% and a cooling rate of 0.0%. 5° C./min, each of which was appropriate, so that grain boundary carbides did not precipitate in the metal structure and the amount of heat treatment deformation was small.
また、供試材4も表面炭素濃度が1.0%、冷却速度が
10℃/分と適当であるから、第6図の顕微鏡写真(倍
率400倍)に示すように、金属組織中に粒界炭化物が
析出しなかったと共に、熱処理変形量も小さかった。In addition, since sample material 4 also has an appropriate surface carbon concentration of 1.0% and a cooling rate of 10°C/min, grains are present in the metal structure, as shown in the micrograph in Figure 6 (400x magnification). No interface carbides were precipitated, and the amount of deformation due to heat treatment was small.
以下、本発明を評価するために行なった実機による耐ピ
ッチングテストの結果について説明する。Below, the results of a pitting resistance test conducted using an actual machine to evaluate the present invention will be explained.
この耐ピッチングテストは、面圧: 190kgf /
m m 2、回転数: 2 0 0 O r.p.I
.、潤滑油=ATF,油温:90℃のテスト条件で、比
較例としての供試材1、3、及び、具体例としての供試
材6に対して各々ピッチング発生サイクル数を測定した
ものであって、その結果は次のとおりである。すなわち
、
供試材1 7 3.2X10’サイクルeg材1 :
5. 8 x 1 0’ ”tイク&供試材1 : 3
.7X10’サイクルであった。This pitting resistance test was conducted at a surface pressure of 190 kgf/
m m 2, number of rotations: 2 0 0 O r. p. I
.. The number of pitting cycles was measured for sample materials 1 and 3 as comparative examples and sample material 6 as a specific example under the test conditions of , lubricating oil = ATF, oil temperature: 90 ° C. The results are as follows. That is, sample material 1 7 3.2X10' cycle EG material 1:
5. 8 x 10' t Ike & sample material 1: 3
.. There were 7 x 10' cycles.
このテスト結果によっても、具体例のものは比較例のも
のに比べてピッチング発生までのサイクル数が多く、本
発明の効果が裏付けられている。This test result also shows that the number of cycles until pitting occurs in the specific example is greater than that in the comparative example, which supports the effectiveness of the present invention.
(発明の効果)
以上説明したように、本発明に係る鋼部材の浸炭処理方
法によると、鋼部材を、その表面炭素濃度が0.8〜1
.0%になるよう浸炭処理し、且つ、その後の冷却速度
を0.5〜10℃/分にしたので、熱処理に伴う変形量
を大きくすることなく、耐ピッチング性、耐摩耗性及び
靭性を確実に向上させることができる。(Effects of the Invention) As explained above, according to the carburizing method for steel members according to the present invention, the steel members can be treated with a surface carbon concentration of 0.8 to 1.
.. Carburized to 0%, and the subsequent cooling rate was set to 0.5-10℃/min, ensuring pitting resistance, wear resistance, and toughness without increasing the amount of deformation caused by heat treatment. can be improved.
第1図〜第3図は各々供試材に対する熱処理パターン図
であ9て、第1図は浸炭処理、第2図は浸炭窒化焼入れ
処理、第3図は焼戻し処理を各々示し、第4図〜第6図
は各々供試材の金属組織を示す顕微鏡写真であって、第
4図は供試材1、第5図は供試材3、第6図は供試材6
のものである。
第
図
第
図
第
図Figures 1 to 3 are heat treatment pattern diagrams for the test materials, with Figure 1 depicting carburizing treatment, Figure 2 depicting carbonitriding and quenching treatment, Figure 3 depicting tempering treatment, and Figure 4. - Figures 6 are micrographs showing the metallographic structure of each sample material, where Figure 4 is sample material 1, Figure 5 is sample material 3, and Figure 6 is sample material 6.
belongs to. Figure Figure Figure
Claims (1)
になるよう浸炭処理した後、冷却速度0.5〜10℃/
分でA_1変態点以下の温度に達するまで冷却し、しか
る後、浸炭焼入れ若しくは浸炭窒化焼入れをすることを
特徴とする鋼部材の浸炭処理方法。(1) Steel members whose surface carbon concentration is 0.8 to 1.0%
After carburizing, the cooling rate is 0.5-10℃/
1. A method for carburizing a steel member, comprising cooling the steel member until it reaches a temperature equal to or lower than the A_1 transformation point in minutes, followed by carburizing and quenching or carbonitriding and quenching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11653589A JPH02294461A (en) | 1989-05-09 | 1989-05-09 | Carburizing treating method for steel member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11653589A JPH02294461A (en) | 1989-05-09 | 1989-05-09 | Carburizing treating method for steel member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02294461A true JPH02294461A (en) | 1990-12-05 |
Family
ID=14689532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11653589A Pending JPH02294461A (en) | 1989-05-09 | 1989-05-09 | Carburizing treating method for steel member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02294461A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059703A (en) * | 1991-06-28 | 1993-01-19 | Nkk Corp | Surface hardening treatment of titanium material |
JPH059702A (en) * | 1991-06-28 | 1993-01-19 | Nkk Corp | Surface treatment of heating and cooking appliance made of titanium |
JP2014532808A (en) * | 2011-10-31 | 2014-12-08 | イーシーエム テクノロジーズ | Low pressure carbonitriding method with a wide temperature range in the initial nitriding stage |
JP2014532809A (en) * | 2011-10-31 | 2014-12-08 | イーシーエム テクノロジーズ | Low pressure carbonitriding method using a small temperature gradient in the initial nitriding stage |
-
1989
- 1989-05-09 JP JP11653589A patent/JPH02294461A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059703A (en) * | 1991-06-28 | 1993-01-19 | Nkk Corp | Surface hardening treatment of titanium material |
JPH059702A (en) * | 1991-06-28 | 1993-01-19 | Nkk Corp | Surface treatment of heating and cooking appliance made of titanium |
JP2014532808A (en) * | 2011-10-31 | 2014-12-08 | イーシーエム テクノロジーズ | Low pressure carbonitriding method with a wide temperature range in the initial nitriding stage |
JP2014532809A (en) * | 2011-10-31 | 2014-12-08 | イーシーエム テクノロジーズ | Low pressure carbonitriding method using a small temperature gradient in the initial nitriding stage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101184860B (en) | Carburized induction hardened parts | |
JPH05148535A (en) | Production of surface hardened parts having decreased heat treating strain and excellent bending fatigue strength | |
KR20090121308A (en) | Carburized Nitride High Frequency Quenched Steel Parts with Excellent Surface Pressure Fatigue Strength at High Temperature and Manufacturing Method Thereof | |
JP2579640B2 (en) | Manufacturing method of high fatigue strength case hardened product | |
JP3792341B2 (en) | Soft nitriding steel with excellent cold forgeability and pitting resistance | |
US4202710A (en) | Carburization of ferrous alloys | |
JPH02294461A (en) | Carburizing treating method for steel member | |
JP2549039B2 (en) | Carbonitriding heat treatment method for high strength gears with small strain | |
JP4737601B2 (en) | High temperature nitriding steel | |
CN114231999A (en) | Forming process of hexagonal wrench tool steel 6145 without spheroidizing annealing | |
JPH0643604B2 (en) | Manufacturing method for machine structural parts | |
JPH1136060A (en) | Quenching method for preventing heat treating strain in case hardening steel | |
JP2001140020A (en) | Method for heat-treating carbo-nitriding treated member excellent in pitting resistance | |
KR101185060B1 (en) | Ann's gear automatic transmission with heat treatment | |
KR20000027040A (en) | Method for heat treatment of surface of steel to reduce heating transformation | |
JP3001946B2 (en) | Method of carburizing and quenching steel members | |
JPH1136016A (en) | Quenching method for case hardening steel capable of preventing heat treatment strain | |
JP3940322B2 (en) | Manufacturing method of steel part for machine structure and steel part for machine structure | |
EP3158104B1 (en) | Ferrous alloy and its method of manufacture | |
JPS6233757A (en) | Method for carburizing and nitriding steel member containing chromium | |
RU2052536C1 (en) | Method for thermochemical treatment of steel products | |
JP3705462B2 (en) | Manufacturing method of gear with excellent tooth surface strength | |
JPH0572442B2 (en) | ||
JPH02156063A (en) | Carburization hardening method | |
JPH0525538A (en) | Production of high strength member reduced in strain |