JPH02285223A - Signal processing for pyroelectric type infrared detector - Google Patents
Signal processing for pyroelectric type infrared detectorInfo
- Publication number
- JPH02285223A JPH02285223A JP1108635A JP10863589A JPH02285223A JP H02285223 A JPH02285223 A JP H02285223A JP 1108635 A JP1108635 A JP 1108635A JP 10863589 A JP10863589 A JP 10863589A JP H02285223 A JPH02285223 A JP H02285223A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- infrared detector
- section
- optical chopper
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、物体から放射される赤外線を電気的信号に変
換する焦電型赤外線検出器の信号処理方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a signal processing method for a pyroelectric infrared detector that converts infrared rays emitted from an object into electrical signals.
従来の技術
従来の多素子焦電型赤外線検出器の信号処理方法は入射
赤外線を変調する光チヲッパーの開閉によって生じる信
号をA/D変換した後ディジタル的に開時に発生するp
信号と閉時に発生するn信号なディジタルメモリーに入
力した後あるタイミングでp−n演算している。例えば
、特開昭56−91589号公報記載の構成が知られて
いる。2. Prior Art A conventional signal processing method for a multi-element pyroelectric infrared detector is to convert the signal generated by opening and closing of an optical chopper that modulates incident infrared rays into an A/D converter, and then digitally convert the signal generated by the opening and closing of an optical chopper.
A pn calculation is performed at a certain timing after inputting the signal and the n signal generated at the time of closing into the digital memory. For example, a configuration described in Japanese Unexamined Patent Publication No. 56-91589 is known.
以下、簡単にその構成を説明すると第10図において1
3は多素子赤外線検出器、12は赤外レンズ、11は光
チヨツパ−,14はプリアンプ、36はA/D変侠部、
37はpメモリ一部、38//inメモリ一部、39は
p−n演算部、40はD/A変換部、2oはタイミンク
発生部である。Below, the configuration will be briefly explained.
3 is a multi-element infrared detector, 12 is an infrared lens, 11 is an optical chopper, 14 is a preamplifier, 36 is an A/D conversion section,
37 is a part of p memory, 38 is a part of //in memory, 39 is a pn calculation section, 40 is a D/A conversion section, and 2o is a timing generation section.
タイミング発生部20からのタイミング信号に従って開
閉する光チヨツパ−11によって変調された入射赤外線
は、赤外レンズ12で多素子赤外線検出器13に結像さ
れ電気信号に変換されプリアンプ14で増幅され、A/
D変換部36に加えられる。A/D変換部36ではタイ
ミング発生部20からの開閉基準信号に従ってディジタ
ル信号に変換されチョッパー開閉基準信号に応じて得ら
れる正信号(以下p信号と記す)はpメモリ一部37に
真信号(以下n信号と記す)はnメモリ一部38に記憶
され、p−n演算部39で減算処理され再びD/A変換
部40によりアナログ信号に変換される。The incident infrared rays modulated by the optical chopper 11, which opens and closes according to the timing signal from the timing generator 20, is imaged by the infrared lens 12 on the multi-element infrared detector 13, converted into an electrical signal, and amplified by the preamplifier 14. /
It is added to the D converter 36. The A/D converter 36 converts the positive signal (hereinafter referred to as p signal) into a digital signal according to the opening/closing reference signal from the timing generating section 20 and the positive signal (hereinafter referred to as p signal) obtained according to the chopper opening/closing reference signal to the p memory part 37 as a true signal ( The n signal (hereinafter referred to as n signal) is stored in the n memory part 38, subjected to subtraction processing in the p-n calculation section 39, and then converted into an analog signal by the D/A conversion section 40 again.
発明が解決しようとする課題
しかし、従来の多素子赤外検出器の信号処理方法は、画
素数が128 X 12Bや256 X 256等の面
状センサのように大容量の信号を処理する場合は有効な
手段であるが、N=2〜16程度の画素数では周辺処理
部が大きく複雑になってしまうという課題があった。Problems to be Solved by the Invention However, conventional signal processing methods for multi-element infrared detectors are difficult to process when processing large-capacity signals such as planar sensors with a pixel count of 128 x 12B or 256 x 256. Although this is an effective means, there is a problem that the peripheral processing section becomes large and complicated when the number of pixels is about N=2 to 16.
本発明は、N=2〜16程度の多素子の焦電型赤外線検
出器に好適な信号処理方法を提供するもので、第1の目
的は信号処理方法を簡略化することである。第2の目的
は素子の配置と光チョッパーとの関係によって生じる各
素子の感度バラツキを軽減することである。第3の目的
は各素子の支持方法と光チョッパーとの関係によって生
じる各素子の感度バラツキを軽減することである。The present invention provides a signal processing method suitable for a multi-element pyroelectric infrared detector with N=2 to 16 or so, and a first object thereof is to simplify the signal processing method. The second purpose is to reduce variations in sensitivity of each element caused by the relationship between the arrangement of the elements and the optical chopper. The third purpose is to reduce variations in sensitivity of each element caused by the relationship between the supporting method of each element and the optical chopper.
課題を解決するだめの手段
上記目的を達成するため、請求項1記載の発明は、光チ
ョンパー開閉時に得られる正信号と負信号の差をアナロ
グ的に演算するようにしたものである。Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 is such that the difference between the positive signal and the negative signal obtained when the optical chopper is opened and closed is calculated in an analog manner.
請求項2および3記載の発明は、光チョッパー開閉時に
得られる信号をサンプリングホールドした信号としない
信号の差を演算するようにしたものである。According to the second and third aspects of the present invention, the difference between the signal obtained when the optical chopper is opened and closed is sampled and held, and the signal that is not sampled and held is calculated.
請求項4記載の発明は、光チョッパー開閉時に得られる
正信号のピークホールド信号と負信号のボトムホールド
信号の差を演算するようにしだものである。According to the fourth aspect of the invention, the difference between a positive peak hold signal and a negative bottom hold signal obtained when the optical chopper is opened and closed is calculated.
作用
請求項1ないし3記載の発明においては、光チョクバー
開閉時に得られる正信号と負信号の差がアナログ的に演
算されるので、演算処理が非常に簡単になる。In the invention according to claims 1 to 3, the difference between the positive signal and the negative signal obtained when the optical choke bar is opened and closed is calculated in an analog manner, so that the calculation process is very simple.
請求項4記載の発明においては、光チョッパーの開閉に
より発生するn信号時にはピークホールド方式で最大値
を検出し、n信号時にはボトムホールド方式で最小値を
検出し両者の差を演算処理することで素子の配置と光チ
ョッパーとの関係または各素子の支持方法と光チョッパ
ーとの関係によっ°て生じる各素子の感度バラツキを軽
減することができる。In the invention according to claim 4, when the n signal is generated by opening and closing the optical chopper, the maximum value is detected by the peak hold method, and when the n signal is detected, the minimum value is detected by the bottom hold method, and the difference between the two is calculated. It is possible to reduce variations in sensitivity of each element caused by the relationship between the arrangement of the elements and the optical chopper or the relationship between the supporting method of each element and the optical chopper.
実施例
以下、図面を参照しながら本発明の実施例について説明
する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の第1の実施例における多素子赤外線検
出器の信号処理方法を示すブロック図である。第1図に
おいて11は光チヨツパ−,12ハ赤外レンズ、13は
多素子赤外検出器、14はプリアンプ、16はサンプリ
ングホールド(以下S/Hと記す)部、18はp−n演
算部、20はS/H’;’イミング部である。第2図及
び第3図は各部における信号波形を示すものである。FIG. 1 is a block diagram showing a signal processing method of a multi-element infrared detector according to a first embodiment of the present invention. In FIG. 1, 11 is an optical chopper, 12 is an infrared lens, 13 is a multi-element infrared detector, 14 is a preamplifier, 16 is a sampling hold (hereinafter referred to as S/H) section, and 18 is a pn calculation section. , 20 is an S/H';' timing section. FIGS. 2 and 3 show signal waveforms at each part.
光チヨツパ−11によって変調された入射赤外線は赤外
レンズ12で多素子赤外線検出器13に結像され電気信
号に変換されプリアンプ14で第2図に示す光チョッパ
ー開閉信号aに対応した原信号すとなり、S/H部16
でS/HタイミングパルスCによりS/Hして、信号d
を得、p−n演算部18でS/H後の信号dからしない
原信号すを減算すると信号eが得られ、アナログ的にp
−n演算することができる。The incident infrared rays modulated by the optical chopper 11 are imaged by the infrared lens 12 on the multi-element infrared detector 13 and converted into electrical signals. Therefore, S/H section 16
S/H is performed using the S/H timing pulse C, and the signal d
By subtracting the original signal S which is not used from the signal d after S/H in the p-n calculation unit 18, a signal e is obtained, and p
-n operation can be performed.
以上の説明から明らかなように、光チョッパーの開閉に
よって得られる信号は開時にはp信号、閉時にはn信号
(但し、被写体温度が光チョッパー温度より低い場合は
開時にはn信号、閉時にはp信号)となり、DCオフセ
ットはぼゼロのPP信号であるが、本実施例によればこ
のようにアナログ的に378部16、p−n演算部18
を利用してp−nすることでディジタル信号で行う場合
と同様の信号処理ができる。As is clear from the above explanation, the signal obtained by opening and closing the optical chopper is the p signal when open and the n signal when closed (however, if the subject temperature is lower than the optical chopper temperature, the signal is n when open and the p signal when closed). Therefore, the DC offset is a PP signal of almost zero, but according to this embodiment, the 378 section 16 and the p-n calculation section 18 are analogously used.
By using p-n, signal processing similar to that performed with digital signals can be performed.
尚、第3図の各部の信号波形はS/Hタイミングな光チ
ョッパー閉のタイミングで行った、負信号をS/Hする
もので第2図と同様な効果が得られる。Note that the signal waveforms at each part in FIG. 3 are those in which the negative signal is subjected to S/H at the timing of closing the optical chopper, which is the S/H timing, and the same effect as in FIG. 2 can be obtained.
次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.
第4図において、第1図の構成と異なる点は378部1
6の代わりにピークホールド部23とボトムホールド部
24を設け、p−n演算処理する点である。In Figure 4, the difference from the configuration in Figure 1 is 378 part 1.
6, a peak hold section 23 and a bottom hold section 24 are provided to perform pn calculation processing.
また、第5図に各部の信号波形を示す。Further, FIG. 5 shows signal waveforms at each part.
以上の構成において、以下その動作を説明する。The operation of the above configuration will be explained below.
光チヨツパ−11によって変調された入射赤外線は赤外
レンズ12で多素子赤外線検出器13に結像され電気信
号に変換されプリアンプ14で第5図に示す光チョッパ
ー開閉信号aに対応してn信号、n信号より成る原信号
すとなりピークホールド部23とボトムホールド部24
に分割供給される。ピークホールド部23、ボトムホー
ルド部24の各々では第5図に示すP/Hパルス「及び
B/Hパルスhのタイミングで各々n信号、n信号を処
理するとピークホールド信号gおよびボトムホールド信
号lが得られる。さらにp−n演算部27でピークホー
ルド信号gからボトムホールド信号iを減算するとp−
n後の信号lが得られアナログ的にp−n演算すること
ができる。The incident infrared rays modulated by the optical chopper 11 are imaged by the infrared lens 12 on the multi-element infrared detector 13 and converted into electrical signals. , an original signal consisting of n signals, a peak hold section 23 and a bottom hold section 24.
It will be supplied in parts. When the peak hold section 23 and the bottom hold section 24 process the n signal and the n signal, respectively, at the timing of the P/H pulse "and B/H pulse h" shown in FIG. 5, the peak hold signal g and the bottom hold signal l are processed. Further, when the bottom hold signal i is subtracted from the peak hold signal g in the p-n calculation unit 27, p-
A signal l after n is obtained and pn calculation can be performed in an analog manner.
第4図の実施例は第1図の実施例に比較して以下に示す
ように各素子の感度のバラツキを補正することができる
。第6図に示す4×4素子のように面状センサ32をチ
ョッパー走査方向にチョッピングするような場合、Sl
l−S14の各素子のプリアンプした信号の波形は光チ
ョッパー開閉基準信号aを基準とすると第7図に示すよ
うに信号の立ち上がりに差があり、第1の実施例に示す
S/H回路16を用いる方法では光チョッパー開閉基準
信号Cを基準とするS/HタイミングではS/Hレベル
に差ができ同じ被写体を見ても信号に差ができるが、第
4図の実施例ではこの問題は生じない。Compared to the embodiment of FIG. 1, the embodiment of FIG. 4 can correct variations in sensitivity of each element as shown below. When chopping the planar sensor 32 in the chopper scanning direction like the 4×4 element shown in FIG.
When the waveform of the preamplified signal of each element of the l-S 14 is based on the optical chopper opening/closing reference signal a, there is a difference in the rising edge of the signal as shown in FIG. In the method using the optical chopper opening/closing reference signal C, there is a difference in the S/H level at the S/H timing based on the optical chopper opening/closing reference signal C, and there is a difference in the signal even when viewing the same subject, but this problem is solved in the embodiment shown in FIG. Does not occur.
また、第4図の実施例は素子の支持方法に起因する感度
のバラツキを補償することができる。この様子を第8図
および第9図を用いて説明する。Furthermore, the embodiment shown in FIG. 4 can compensate for variations in sensitivity caused by the method of supporting the element. This situation will be explained using FIGS. 8 and 9.
第8図は2×2素子を宙吊り状態で支持した構成で、同
図(alは平面図、(b+は断面側面図を示す。FIG. 8 shows a configuration in which 2×2 elements are supported in a suspended state, and the figure (al shows a plan view, and (b+ shows a cross-sectional side view).
図において、81〜S4は焦電型赤外線検出素子で、支
持台34の中空部35内に基板36上に載置されて支持
されている。第8図(alに矢印で示したチョッパー走
査方向にチョッピングする場合、81〜S4の素子のプ
リアンプでの増幅後の信号の波形は第9図に示すように
光チョッパー開閉基準信号fatを基準すると支持方法
によって左右のヒートシンクの状態がちがい信号の立ち
上がりが光チョッパーの開と閉で変化する。したがって
、第1図の実施例に示すS/H回路16を用いる方法で
は光チョッパー開閉基準信号aを基準とするS/Hタイ
ミング(C1ではS/Hレベルに差ができ同じ被写体を
見ても信号に差ができるが、第4図の実施例ではこの問
題は生じない。In the figure, pyroelectric infrared detecting elements 81 to S4 are mounted and supported within the hollow portion 35 of the support base 34 on the substrate 36. When chopping in the chopper scanning direction shown by the arrow in Figure 8 (al), the waveform of the signal after amplification in the preamplifier of elements 81 to S4 is based on the optical chopper opening/closing reference signal fat as shown in Figure 9. The state of the left and right heat sinks differs depending on the support method, and the rise of the signal changes when the optical chopper opens and closes. Therefore, in the method using the S/H circuit 16 shown in the embodiment of FIG. 1, the optical chopper opening/closing reference signal a is At the reference S/H timing (C1), there is a difference in the S/H level, and a difference in signals occurs even when viewing the same subject, but this problem does not occur in the embodiment shown in FIG.
このように第6図及び第8図に示すような構成の素子の
場合にも第4図のピークホールド回路23及びボトムホ
ールド回路24を用いてp−n演算することで第1図で
は起こりがちな各素子の感度のバラツキも少なくできる
。In this way, even in the case of elements with configurations as shown in FIGS. 6 and 8, the problem that occurs in FIG. Incidentally, variations in the sensitivity of each element can also be reduced.
なお、上記各実施例において、p−n演算を行う場合に
ついて説明しだが、n−p演算してもよ(、n信号とn
信号の差を実質的に演算すればよい。In each of the above embodiments, the case where p-n operation is performed is explained, but n-p operation may also be performed (, n signal and n
What is necessary is to essentially calculate the difference between the signals.
発明の効果
以上のように本発明は多素子焦電型赤外線検出器の出力
をS/H回路を利用してアナログ的にn信号とn信号の
差を演算することにより信号処理を簡単に行うことがで
きる。更に光チョッパーの開時に発生するn信号時には
ピークホールド方式で最大値を検出し、閉時に発生する
n信号時にはボトムホールド方式で最小値を検出し演算
処理することにより各素子の配置と光チョッパーとの関
係または各素子の支持方法と光チョッパーとの関係によ
って生じる各素子の感度バラツキを軽減することができ
る。Effects of the Invention As described above, the present invention easily performs signal processing on the output of a multi-element pyroelectric infrared detector by calculating the difference between the n signal and the n signal in an analog manner using an S/H circuit. be able to. Furthermore, when the optical chopper is open, the maximum value is detected using the peak hold method when the n signal is generated, and when the n signal is generated when the optical chopper is closed, the minimum value is detected using the bottom hold method and arithmetic processing is performed to determine the arrangement of each element and the optical chopper. It is possible to reduce variations in sensitivity of each element caused by the relationship between the two elements or the relationship between the supporting method of each element and the optical chopper.
第1図は本発明の第1の実施例における多素子赤外線検
出器の信号処理方法を示すブロック図、第2図は第1図
のブロック図における各部の信号波形図、第3図は第1
図のブロック図の他の動作方法における各部の信号波形
図、第4図は本発明の第2の実例における多素子赤外線
検出器の信号処理方法を示すブロック図、第5図は第4
図のブロック図における各部の信号波形図、第6図は第
4図の構成における赤外線検出器の4×4素子素子上示
す平面図、第7図は第6図に示す各素子配列における出
力波形図、第8図(at、 (blは第4図の構成にお
ける赤外線検出器の2×2素子配列の場合における構成
の平面図および断面側面図、第9図は第8図に示す各素
子配列における出力波形図。
第10図は従来の多素子赤外線検出器の信号処理方法な
示すブロック図である・
11・・・光チヨツパー、12・・・赤外レンズ、13
・・・赤外線検出器、14・・・プリアンプ、16・・
・サンプリングホールド部、18・・・p−n演算部、
20・・・サンプリングホールドタイミング部、23・
・・ピークホールド部、24・・・ボトムホールド部、
27・・・P−N演算部、タイミング発生部。
29・・・FIG. 1 is a block diagram showing the signal processing method of a multi-element infrared detector in the first embodiment of the present invention, FIG. 2 is a signal waveform diagram of each part in the block diagram of FIG. 1, and FIG.
4 is a block diagram showing a signal processing method of a multi-element infrared detector in the second example of the present invention, and FIG.
Figure 6 is a plan view of the 4x4 elements of the infrared detector in the configuration shown in Figure 4. Figure 7 is the output waveform for each element arrangement shown in Figure 6. Figure 8 (at, (bl) is a plan view and a cross-sectional side view of the configuration of the infrared detector in the configuration shown in Figure 4 in the case of a 2 x 2 element array, and Figure 9 is each element arrangement shown in Figure 8. Figure 10 is a block diagram showing a signal processing method of a conventional multi-element infrared detector. 11... Optical chopper, 12... Infrared lens, 13
...Infrared detector, 14...Preamplifier, 16...
・Sampling hold section, 18...pn calculation section,
20... Sampling hold timing section, 23.
...Peak hold part, 24...Bottom hold part,
27...P-N calculation section, timing generation section. 29...
Claims (4)
線検出器へ入射させ、光チョッパーの開閉に応じて発生
する正信号および負信号の差をアナログ的に演算するこ
とを特徴とする焦電型赤外線検出器の信号処理方法。(1) A focusing system characterized in that incident infrared rays are modulated by an optical chopper and made to enter a pyroelectric infrared detector, and the difference between a positive signal and a negative signal generated in response to opening and closing of the optical chopper is calculated in an analog manner. Signal processing method for electric type infrared detector.
ー開タイミングでp信号をサンプリングホールドした信
号としない信号との差を演算することを特徴とする焦電
型赤外線検出器の信号処理方法。(2) A signal processing method for a pyroelectric infrared detector according to claim 1, characterized in that the difference between a signal in which the p signal is sampled and held and a signal in which the p signal is not sampled and held is calculated at the opening timing of the optical chopper.
ー閉タイミングでn信号をサンプリングホールドした信
号としない信号との差を演算することを特徴とする焦電
型赤外線検出器の信号処理方法。(3) A signal processing method for a pyroelectric infrared detector according to claim 1, characterized in that the difference between a signal obtained by sampling and holding the n signal and a signal not obtained by sampling and holding the n signal at the closing timing of the optical chopper is calculated.
ー開閉基準信号に対して発生する正信号のピークホール
ド信号と負信号のボトムホールド信号の差を演算するこ
とを特徴とする焦電型赤外線検出器の信号処理方法。(4) Pyroelectric infrared detection characterized by calculating the difference between a positive peak hold signal and a negative bottom hold signal generated with respect to the optical chopper opening/closing reference signal in the signal processing method according to claim 1. signal processing method of the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1108635A JPH02285223A (en) | 1989-04-26 | 1989-04-26 | Signal processing for pyroelectric type infrared detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1108635A JPH02285223A (en) | 1989-04-26 | 1989-04-26 | Signal processing for pyroelectric type infrared detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02285223A true JPH02285223A (en) | 1990-11-22 |
Family
ID=14489797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1108635A Pending JPH02285223A (en) | 1989-04-26 | 1989-04-26 | Signal processing for pyroelectric type infrared detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02285223A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493118A (en) * | 1992-09-17 | 1996-02-20 | Matsushita Electric Industrial Co., Ltd. | Thermal image detecting system |
-
1989
- 1989-04-26 JP JP1108635A patent/JPH02285223A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493118A (en) * | 1992-09-17 | 1996-02-20 | Matsushita Electric Industrial Co., Ltd. | Thermal image detecting system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4053500B1 (en) | Object recognition system, signal processing method of object recognition system, and electronic device | |
JPS5958306A (en) | distance meter | |
KR0173825B1 (en) | Digital signal processing system for removing dc bias in the output electric and similar detectors | |
US4255028A (en) | Focus detecting device in camera | |
Bourquin et al. | Two-dimensional smart detector array for interferometric applications | |
JPH02285223A (en) | Signal processing for pyroelectric type infrared detector | |
JPS5518652A (en) | Imaging state detecting system of image | |
US20050097152A1 (en) | Image processing apparatus and method | |
JP2003513479A (en) | Improved image processing | |
JP4574988B2 (en) | Focal plane detector | |
JPH01287428A (en) | infrared imaging device | |
JP3873413B2 (en) | Infrared imaging device | |
JP3062590B2 (en) | Scanning infrared detector | |
JPH051954A (en) | Temperature distribution measuring device | |
JPS60239180A (en) | infrared imaging device | |
JPS61207935A (en) | solid state imaging device | |
JP4364348B2 (en) | Imaging circuit and spatial compensation method | |
JPH0862048A (en) | Thermal image signal processor | |
JPH0686174A (en) | Infrared image sensor | |
JP3008889B2 (en) | Detector for defective pixel of infrared array sensor | |
JP2589469B2 (en) | Automatic tracking video camera | |
JPH069068B2 (en) | Mobile object detection device | |
JP2699731B2 (en) | Star scanner | |
JP2524343B2 (en) | Tv imager | |
JPS6176967A (en) | Sensitivity measuring device |