JPS61207935A - solid state imaging device - Google Patents
solid state imaging deviceInfo
- Publication number
- JPS61207935A JPS61207935A JP60048001A JP4800185A JPS61207935A JP S61207935 A JPS61207935 A JP S61207935A JP 60048001 A JP60048001 A JP 60048001A JP 4800185 A JP4800185 A JP 4800185A JP S61207935 A JPS61207935 A JP S61207935A
- Authority
- JP
- Japan
- Prior art keywords
- reference temperature
- polygon mirror
- black body
- scanning
- body surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/52—Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/09—Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は固体撮像装置、特に回転多面鏡を用いる走査系
を備える固体撮像装置にかかり、その出力信号の基準電
位設定方法の改善に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device, particularly to a solid-state imaging device equipped with a scanning system using a rotating polygon mirror, and relates to an improvement in a method for setting a reference potential of an output signal thereof.
例えば気象、海流、地質等の探査、医学上の診断、工業
における検査、管理などにサーモグラフィ技術を活用し
ようとする気運がますます高まっている。For example, there is an increasing trend to utilize thermography technology for exploration of weather, ocean currents, geology, etc., medical diagnosis, industrial inspection, management, etc.
サーモグラフィ装置には回転多面鏡を用いる走査系が多
く用いられているが、従来の走査系では装置が大型とな
り不便であるために、その改善が強く要望されている。Scanning systems using rotating polygonal mirrors are often used in thermography apparatuses, but since conventional scanning systems make the apparatus large and inconvenient, there is a strong demand for improvement.
サーモグラフィにおいては実時間で高感度の赤外2次元
画像を得る固体撮像装置が必要とされるが、1次元アレ
イ状に配置された光検知素子と回転多面鏡との組合せに
よって2次元画像を得る走査方法が現在多く行われてい
る。Thermography requires a solid-state imaging device to obtain highly sensitive infrared two-dimensional images in real time, but two-dimensional images are obtained by combining photodetectors arranged in a one-dimensional array and a rotating polygon mirror. Many scanning methods are currently in use.
すなわち光検知素子には、pn接合を備えて入射光に応
じて起電力を発生する光起電形、電気抵抗が入射光に応
じて変化する光伝導形、半導体基体に形成されたポテン
シャル井戸に入射光に応じたキャリアが蓄積されるMI
S形などがあるが、この光検知素子で1次元のアレイが
構成される。In other words, the photodetecting element includes a photovoltaic type that has a pn junction and generates an electromotive force depending on the incident light, a photoconductive type that has an electric resistance that changes depending on the incident light, and a photoconductive type that has a pn junction and generates an electromotive force depending on the incident light, and a photoconductive type that has a potential well formed in a semiconductor substrate. MI where carriers are accumulated according to the incident light
There are S-shaped and other types, and these photodetecting elements form a one-dimensional array.
この光検知素子アレイと、これに垂直な方向に回転する
回転多面鏡とにより、従来例えば第3図(a)乃至(C
)に模式的に示す如き動作で2次元画像が得られている
。Conventionally, by using this photodetecting element array and a rotating polygon mirror that rotates in a direction perpendicular to the photodetecting element array,
A two-dimensional image is obtained by the operation as schematically shown in ).
同図において、lは光検知素子で紙面に垂直方向に1次
元アレイ状をなし、2は集光レンズ、23は回転多面鏡
、24は受光窓、25は基準温度板である。本従来例の
回転多面g!23は8面の平面反射鏡を備えて、紙面に
平行に矢印方向に回転する。In the figure, reference numeral 1 denotes a photodetecting element arranged in a one-dimensional array in a direction perpendicular to the plane of the paper, 2 a condenser lens, 23 a rotating polygon mirror, 24 a light receiving window, and 25 a reference temperature plate. Rotating polygon g of this conventional example! Reference numeral 23 is equipped with an eight-sided plane reflecting mirror, and rotates in the direction of the arrow parallel to the plane of the paper.
回転多面鏡23の1面で反射され、集光レンズ2によっ
て光検知素子l上に結像する光の受光窓24への入射角
が、同図(a)及び(b)に見られる如く回転多面鏡2
3の回転に伴って変化し、受光窓24で定まる視野角で
光検知素子アレイ1に垂直な方向の走査が行われ、続い
て同図(C1に見られる如く、基準温度板25を観測す
る走査が行われる。The angle of incidence of the light reflected by one surface of the rotating polygon mirror 23 and focused on the photodetecting element l by the condensing lens 2 onto the light receiving window 24 is rotated as shown in FIGS. polygon mirror 2
3, scanning is performed in a direction perpendicular to the photodetecting element array 1 at a viewing angle determined by the light receiving window 24, and then the reference temperature plate 25 is observed as shown in the same figure (C1). A scan is performed.
この様に対象物の走査と基準温度板25の観測とを各鏡
面で次々に繰り返すために、回転多面鏡23を大きくし
その走査角を必要な視野角より拡大している。In this way, in order to repeat the scanning of the object and the observation of the reference temperature plate 25 one after another on each mirror surface, the rotating polygon mirror 23 is made large and its scanning angle is expanded beyond the necessary viewing angle.
例えば光検知素子1が光伝導形である場合に、光検知増
幅回路は第4図の様に構成され、前記回転多面鏡23の
走査によりこの回路の各部の信号波形は第5図の様にな
る。ただし第4図において、11は定電流源、12は前
置増幅器、13はクランパ、14は主増幅器であり、ま
た第5図(a)は前置増幅器12の出力でT、は視野白
信号期間、T、は基準温度信号期間の信号を示し、同図
(b)はクランプパルスφCい同図(C)はクランパ出
力である。For example, when the photodetection element 1 is of the photoconductive type, the photodetection amplification circuit is configured as shown in FIG. 4, and the signal waveforms of each part of this circuit are changed as shown in FIG. Become. However, in Fig. 4, 11 is a constant current source, 12 is a preamplifier, 13 is a clamper, and 14 is a main amplifier, and Fig. 5(a) is the output of the preamplifier 12, and T is a visual field white signal. A period, T, indicates a signal during the reference temperature signal period, FIG.
この光検知増幅回路において、光検知素子1の抵抗値が
入射フォトン数に応じて変化し、これが電圧の変化とし
て入力された前置増幅器12から第5図(alの出力が
得られるが、基準温度板25の走査に同期してクランプ
パルスφ、Lがクランパ13に印加され、その出力が基
準温度に相当する電圧Vsにクランプされて第5図(C
)のレベルになる。In this photodetection amplification circuit, the resistance value of the photodetection element 1 changes according to the number of incident photons, and this is input as a voltage change from the preamplifier 12, which obtains the output shown in FIG. Clamp pulses φ and L are applied to the clamper 13 in synchronization with the scanning of the temperature plate 25, and its output is clamped to the voltage Vs corresponding to the reference temperature, as shown in FIG.
) level.
また前記従来例とは異なる基準温度レベルの設定方法と
して、基準温度板を光路内に挿入、離脱させるチョッパ
ー法も行われているが、この方法ではチョッパー機構に
より装置の構成、寸法が制約されている。Furthermore, as a reference temperature level setting method different from the conventional example, a chopper method is also used in which a reference temperature plate is inserted into and removed from the optical path, but in this method, the configuration and dimensions of the device are restricted by the chopper mechanism. There is.
以上説明した如く、サーモグラフィに用いる固体撮像装
置においては基準温度レベルの設定手段が必要であるが
、従来の装置においてはそのために容積が拡大されてい
る。As explained above, a solid-state imaging device used for thermography requires means for setting a reference temperature level, but the volume of conventional devices is increased for this purpose.
固体撮像装置の小型、軽量化、操作性の向上等の利用分
野からの要望に対応するために、この基準温度レベル設
定手段の改善が重要な問題点となっている。In order to meet the demands of solid-state imaging devices from various fields of use, such as smaller size, lighter weight, and improved operability, improvement of this reference temperature level setting means has become an important issue.
前記問題点は、光検知素子と回転多面鏡とを備え、黒体
面が該回転多面鏡の鏡面間に介在して、該黒体面が該光
検知素子を見込む位置にあるときの出力信号を該黒体面
の温度に対応する電位にクランプし、該電位を出力信号
の基準電位とする本発明による固体撮像装置により解決
される。The above-mentioned problem is that a light detecting element and a rotating polygon mirror are provided, a black body surface is interposed between the mirror surfaces of the rotating polygon mirror, and an output signal is detected when the black body surface is at a position looking into the light detecting element. This problem is solved by the solid-state imaging device according to the present invention, which clamps the potential to a potential corresponding to the temperature of the black body surface and uses this potential as the reference potential of the output signal.
本発明によれば、回転多面鏡に少なくとも1面の黒体面
を鏡面間に挿入して設け、かつこの黒体面を基準温度に
保って、この黒体面が光検知素子を見込む位置にあると
きの出力信号を所定の電位にクランプして出力信号の基
準電位とする。According to the present invention, a rotating polygon mirror is provided with at least one black body surface inserted between the mirror surfaces, and this black body surface is maintained at a reference temperature, so that when the black body surface is at a position looking into a photodetector element, The output signal is clamped to a predetermined potential and used as a reference potential for the output signal.
この出力信号の基準電位設定方法により、回転多面鏡の
走査角を所要の視野角に合致させてその各鏡面及び光路
を縮小することが可能となり、またチョッパー機構等も
不要であって、装置の小型、軽量化、操作性の向上等が
達成される。This method of setting the reference potential of the output signal makes it possible to match the scanning angle of the rotating polygon mirror to the required viewing angle and reduce the size of each mirror surface and optical path, and also eliminates the need for a chopper mechanism, making it possible to Smaller size, lighter weight, improved operability, etc. are achieved.
以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.
第1図は本発明による固体撮像装置の実施例の回転多面
鏡による走査を示す模式斜視図である。FIG. 1 is a schematic perspective view showing scanning by a rotating polygon mirror of an embodiment of the solid-state imaging device according to the present invention.
同図において、1は光検知素子で1次元アレイ状をなし
、2は集光レンズ、3は回転多面鏡、3I11はその鏡
面、3bは本発明による黒体面である。本実施例の回転
多面鏡3は8面の平面反射鏡面3mと、対称位置に設け
られた2面の黒体面3bを備えて、光検知素子アレイ1
に垂直な矢印方向に回転する。In the figure, 1 is a photodetecting element arranged in a one-dimensional array, 2 is a condenser lens, 3 is a rotating polygon mirror, 3I11 is its mirror surface, and 3b is a black body surface according to the present invention. The rotating polygon mirror 3 of this embodiment includes eight flat reflecting mirror surfaces 3m and two blackbody surfaces 3b provided at symmetrical positions, and includes a photodetecting element array 1.
Rotate in the direction of the arrow perpendicular to .
この黒体面3bは放射係数が1と見做される面であり、
基準温度に保たれる。This blackbody surface 3b is a surface whose radiation coefficient is considered to be 1,
Maintained at reference temperature.
本実施例の光検知増幅回路は先に第4図を参照して説明
した従来例と同様に構成され、回転多面鏡3の走査によ
りこの回路の各部の信号波形は第。The photodetection and amplification circuit of this embodiment is constructed in the same manner as the conventional example described above with reference to FIG.
2図の様になる。ただし同図(alは前置増幅器12の
出力でT1は視野白信号期間、T2は基準温度信号朋間
の信号を示し、同図(b)はクランプパルスφ、い同図
(C)はクランパ13の出力である。It will look like Figure 2. However, in the same figure (al is the output of the preamplifier 12, T1 is the visual field white signal period, T2 is the signal between the reference temperature signals, (b) is the clamp pulse φ, and (C) is the clamp pulse). This is the output of 13.
本実施例では、黒体面3bが光検知素子1、すなわち集
光レンズ2の瞳を見込む位置にある基準温度信号期間T
2で第2図(a)の如く黒体面3bの温度放射が検知さ
れ、クランプパルスφCLをこれに同期してクランパ1
3に印加し所定の基準温度電圧■。In this embodiment, the reference temperature signal period T is such that the black body surface 3b is in a position where it looks into the pupil of the photodetecting element 1, that is, the condenser lens 2.
2, the temperature radiation of the black body surface 3b is detected as shown in FIG. 2(a), and the clamp pulse φCL is synchronized with the clamper 1.
3 and a predetermined reference temperature voltage ■.
にその電位をクランプして、クランパ13の出力を第2
図(C)の如き基準温度信号期間を備えた信号とする。The output of the clamper 13 is clamped to the second
The signal is assumed to have a reference temperature signal period as shown in Figure (C).
本実施例では回転多面鏡の走査角を視野角と同等とし、
基準温度板を走査するための空間、及びチョッパー機構
の空間が不必要であるために、前記従来例より大幅な小
型化が実現された。In this example, the scanning angle of the rotating polygon mirror is made equal to the viewing angle,
Since the space for scanning the reference temperature plate and the space for the chopper mechanism are unnecessary, a significant reduction in size is achieved compared to the conventional example.
前記実施例では光検知素子1が例えば100乃至200
素子程度のアレイであり、回転多面鏡3の1水平走査で
1フレームすなわち1画面を形成するとしているが、光
検知素子アレイの素子数が例えば50素子程度以下で鏡
面に傾き角を与えた回転多面鏡により垂直走査が加えら
れて、複数回の走査で1画面を形成する固体撮像装置に
ついても同様に本発明を適用することができる。In the embodiment, the number of photodetecting elements 1 is, for example, 100 to 200.
It is assumed that one horizontal scan of the rotating polygon mirror 3 forms one frame, or one screen. However, if the number of elements in the photodetecting element array is, for example, about 50 or less, rotation with a tilt angle given to the mirror surface is possible. The present invention can be similarly applied to a solid-state imaging device in which vertical scanning is performed using a polygon mirror and one screen is formed by multiple scans.
また以上の説明は回転多面鏡が集光レンズの物体側に配
置された対物面走査の場合であるが、回転多面鏡が集光
レンズと光検知素子との間に配置された像面走査の場合
についても同様に本発明を適用することができる。Furthermore, the above explanation is for the case of object plane scanning in which the rotating polygon mirror is placed on the object side of the condensing lens, but for image plane scanning in which the rotating polygon mirror is placed between the condensing lens and the photodetector element. The present invention can be similarly applied to these cases.
以上説明した如く本発明によれば、固体撮像装置の回転
多面鏡の走査角を視野角より大きくすること、及び基準
温度板を走査するための空間、もしくはチョッパー機構
の空間が不必要となり、その構造の合理化、大幅な小型
化が実現され、操作性も向上する。As explained above, according to the present invention, the scanning angle of the rotating polygon mirror of the solid-state imaging device is made larger than the viewing angle, and the space for scanning the reference temperature plate or the space for the chopper mechanism becomes unnecessary. The structure has been streamlined and significantly downsized, and operability has also been improved.
第1図は本発明による固体撮像装置の実施例の回転多面
鏡による走査を示す模式斜視図、第2図は本実施例の光
検知増幅回路の各部の信号波形を示す図、
第3図は2次元走査の従来例を示す模式図、第4図は光
検知増幅回路の例を示す回路図、第5図は従来例の光検
知増幅回路の各部の信号波形を示す図である。
図において、
1は1次元アレイ状をなす光検知素子、2は集光レンズ
、 3は回転多面鏡、3mはその鏡面、 3b
はその黒体面、11は定電流源、 12は前置増幅
器、13はクランパ、 14は主増幅器を示す。
% 1 図
第 2 図
1f、3 図
v5
茅4図
あ S 図FIG. 1 is a schematic perspective view showing scanning by a rotating polygon mirror in an embodiment of the solid-state imaging device according to the present invention, FIG. FIG. 4 is a schematic diagram showing a conventional example of two-dimensional scanning, FIG. 4 is a circuit diagram showing an example of a photodetection amplification circuit, and FIG. 5 is a diagram showing signal waveforms at various parts of the conventional photodetection amplification circuit. In the figure, 1 is a one-dimensional array of photodetecting elements, 2 is a condenser lens, 3 is a rotating polygon mirror, 3m is its mirror surface, and 3b
11 is a constant current source, 12 is a preamplifier, 13 is a damper, and 14 is a main amplifier. % 1 Figure 2 Figure 1f, 3 Figure v5 Kaya 4 Figure A S Figure
Claims (1)
鏡の鏡面間に介在して、該黒体面が該光検知素子を見込
む位置にあるときの出力信号を該黒体面の温度に対応す
る電位にクランプし、該電位を出力信号の基準電位とす
ることを特徴とする固体撮像装置。A light detecting element and a rotating polygon mirror are provided, a black body surface is interposed between the mirror surfaces of the rotating polygon mirror, and an output signal when the black body surface is in a position facing the light detecting element is determined as the temperature of the black body surface. A solid-state imaging device characterized by clamping to a corresponding potential and using the potential as a reference potential of an output signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60048001A JPS61207935A (en) | 1985-03-11 | 1985-03-11 | solid state imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60048001A JPS61207935A (en) | 1985-03-11 | 1985-03-11 | solid state imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61207935A true JPS61207935A (en) | 1986-09-16 |
Family
ID=12791071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60048001A Pending JPS61207935A (en) | 1985-03-11 | 1985-03-11 | solid state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61207935A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0406717A2 (en) * | 1989-07-01 | 1991-01-09 | Josef-Ferdinand Dipl.-Ing. Menke | Method for clamping black level in infra-red scanners |
WO1998035254A1 (en) * | 1997-02-07 | 1998-08-13 | Raytheon Company | Scan mirror remote temperature sensing system and method |
-
1985
- 1985-03-11 JP JP60048001A patent/JPS61207935A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0406717A2 (en) * | 1989-07-01 | 1991-01-09 | Josef-Ferdinand Dipl.-Ing. Menke | Method for clamping black level in infra-red scanners |
WO1998035254A1 (en) * | 1997-02-07 | 1998-08-13 | Raytheon Company | Scan mirror remote temperature sensing system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6268883B1 (en) | High speed infrared imaging system and method | |
KR100265672B1 (en) | Reading system and method for infrared detector array | |
EP0534769B1 (en) | Readout system and process for IR detector arrays | |
US4596930A (en) | Arrangement for multispectal imaging of objects, preferably targets | |
US4873442A (en) | Method and apparatus for scanning thermal images | |
JPS61207935A (en) | solid state imaging device | |
JPS63133128A (en) | Optical difference sensor | |
US4737642A (en) | Arrangement for multispectral imaging of objects, preferably targets | |
Polatoğlu et al. | Working principles of ccd and cmos sensors and their place in astronomy | |
JPS60115806A (en) | Attitude detecting sensor consisting of optical fiber and two-dimensional solid-state image pickup element | |
US4762989A (en) | Image detection with image plane divider | |
JPH0510825A (en) | Disaster prevention detection device having thermal image detection means | |
US7795569B2 (en) | Focal plane detector with integral processor for object edge determination | |
JPH07301568A (en) | Infrared detector | |
JPS6251381A (en) | Infrared ray image pickup device | |
WO2019127251A1 (en) | Imaging device and imaging method | |
TW432872B (en) | Imaging circuit and method of spatial compensation | |
JPS60239180A (en) | infrared imaging device | |
JPS61120589A (en) | Supervisory device | |
RU2024212C1 (en) | Method of infra-red imaging identification of shape of objects | |
JP3023157B2 (en) | Light incident position detector for sun sensor | |
JPH10290388A (en) | Light wave sensor device | |
Karbovsky | The Kyiv meridian axial circle with a CCD micrometer | |
JPS60126776A (en) | Image pickup device | |
JPH10332488A (en) | Infrared image pickup apparatus |