JPH02282422A - Production of high-flux-density thin grain-oriented magnetic steel sheet - Google Patents
Production of high-flux-density thin grain-oriented magnetic steel sheetInfo
- Publication number
- JPH02282422A JPH02282422A JP1102166A JP10216689A JPH02282422A JP H02282422 A JPH02282422 A JP H02282422A JP 1102166 A JP1102166 A JP 1102166A JP 10216689 A JP10216689 A JP 10216689A JP H02282422 A JPH02282422 A JP H02282422A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel sheet
- cold rolling
- final
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims 5
- 229910000831 Steel Inorganic materials 0.000 title claims 3
- 239000010959 steel Substances 0.000 title claims 3
- 238000005096 rolling process Methods 0.000 claims 8
- 238000005097 cold rolling Methods 0.000 claims 4
- 229910000976 Electrical steel Inorganic materials 0.000 claims 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 230000004907 flux Effects 0.000 claims 2
- 229910052748 manganese Inorganic materials 0.000 claims 2
- 238000000034 method Methods 0.000 claims 2
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims 1
- 238000000137 annealing Methods 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 229910052718 tin Inorganic materials 0.000 claims 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、鋼板の圧延方向に磁化容易軸<100>をも
っている、所謂、磁気特性のすぐれた高磁束密度薄手一
方向性電磁鋼板の製造法に関するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the production of a thin, unidirectional electrical steel sheet with high magnetic flux density and excellent magnetic properties, which has an easy axis of magnetization <100> in the rolling direction of the steel sheet. It is about law.
(従来の技術)
一方向性電磁鋼板は、主としてトランス、その他、電気
機器の鉄心材料として使用されており、磁気特性として
、励磁特性と鉄損特性が良好でなければならない。(Prior Art) Unidirectional electrical steel sheets are mainly used as core materials for transformers and other electrical equipment, and as magnetic properties, they must have good excitation properties and iron loss properties.
この励磁特性を表わす数値として例えば磁場の強さ10
00^/roにおける磁束密度B1゜を用い、鉄損特性
は50ヘルツ(Hz)の交流磁束密度1.7テスラー(
T)における鉄損WIT/S。が用いられる。As a numerical value representing this excitation characteristic, for example, the strength of the magnetic field is 10
Using the magnetic flux density B1° at 00^/ro, the iron loss characteristics are as follows: 50 hertz (Hz) AC magnetic flux density 1.7 Tesla (
Iron loss WIT/S at T). is used.
ところで最近においては、省エネルギーが緊急の課題と
される現況から鉄損がより低いことが強く要望されてい
る。Recently, there has been a strong demand for lower iron loss due to the current situation where energy conservation is an urgent issue.
一方向性電磁鋼板は、その製造における仕上焼鈍で(1
10)<001>方位をもった所謂ゴス組織を2次再結
晶現象を利用して成長させることによって製造される。Unidirectional electrical steel sheets are manufactured by finishing annealing (1
10) Manufactured by growing a so-called Goss structure with <001> orientation using a secondary recrystallization phenomenon.
磁気特性を高めるには、<001>軸が圧延方向に高度
に揃い、(110)面が鋼板表面に平行な2次再結晶粒
を安定して発現させることが重要である。又、鉄損を大
幅に低減する方法として、磁区細分化技術があるが、こ
の鉄損改善効果を最も発揮させるために、2次再結晶後
の結晶粒径を大きくすることが重要である。In order to improve magnetic properties, it is important to stably develop secondary recrystallized grains whose <001> axes are highly aligned in the rolling direction and whose (110) planes are parallel to the surface of the steel sheet. Further, magnetic domain refining technology is a method for significantly reducing iron loss, but in order to maximize this iron loss improvement effect, it is important to increase the crystal grain size after secondary recrystallization.
このためには、最終強圧下冷延時に、冷延圧下率を適正
化し、温間圧延を行なうことが必要であると言われてい
る。For this purpose, it is said that it is necessary to optimize the cold rolling reduction rate and perform warm rolling during the final strong cold rolling.
この強圧下冷延の方法については、種々検討されている
。例えば、特公昭50−26493号公報記載の方法で
は、少量のC,AIを含んだ電磁鋼板の冷間圧延方法が
提案されている。これは、最終強冷延の圧下率が、81
〜95%において、材料温度が50〜350℃の範囲に
て行ない、その材料温度に応じて、熱効果継続時間が変
化することで、冷間圧延時のスベリ機構(SLip S
ystem)の僅かな変化が、1次再結晶粒の結晶方位
に変化を与え、これがAlNによる特定方位結晶粒の選
択的な成長、具体的には、(110)<001>方位の
結晶粒の成長を助長するとしている。この結果、高磁束
密度、低鉄損化が得られる。Various studies have been made regarding this method of cold rolling under heavy rolling. For example, the method described in Japanese Patent Publication No. 50-26493 proposes a method for cold rolling electrical steel sheets containing small amounts of C and AI. This means that the final hard cold rolling reduction is 81
~95%, the material temperature is in the range of 50 to 350°C, and the thermal effect duration changes depending on the material temperature, thereby improving the slip mechanism during cold rolling (SLip S
A slight change in the crystal orientation of the primary recrystallized grains (system) causes a change in the crystal orientation of the primary recrystallized grains. It is said to encourage growth. As a result, high magnetic flux density and low core loss can be obtained.
ところで、鉄損を低減せしめるには、St含有量の増加
や、鋼板板厚の薄手化や、鋼板に張力を付加する方法や
、外的に歪を付与することで磁区細分化を行なう方法等
がある。しかし、St含有量を高めると、鋼は晩化し、
冷延性が著しく劣化するため実際の製造では問題をきた
す。一方、鋼板板厚を薄手化、例えば、0.18mm厚
にすると、仕上焼鈍での2次再結晶の発現が不安定とな
り、磁気特性が劣化することがある。又、張力付加は、
コーティングされた絶縁被膜による張力作用に限界があ
るので鉄損を大幅に低減することは期待出来ない。更に
、磁区細分化は、素材の2次再結晶粒径の大きさに大き
く影響されるので素材の2次再結晶粒径を大きくする技
術が必要である。By the way, ways to reduce iron loss include increasing the St content, reducing the thickness of the steel plate, applying tension to the steel plate, and refining magnetic domains by applying strain externally. There is. However, increasing the St content causes the steel to deteriorate,
This causes problems in actual manufacturing because the cold rollability deteriorates significantly. On the other hand, if the thickness of the steel plate is reduced, for example, to 0.18 mm, the secondary recrystallization during final annealing may become unstable and the magnetic properties may deteriorate. In addition, tension addition is
Since there is a limit to the tension effect of the coated insulating film, it cannot be expected to significantly reduce iron loss. Furthermore, since magnetic domain refinement is greatly influenced by the size of the secondary recrystallized grains of the material, a technique for increasing the secondary recrystallized grain size of the material is required.
(発明が解決しようとする課題)
本発明は、高磁束密度でかつ鉄損が著しく低減され、さ
らに磁区細分化効果に優れた薄手一方向性電磁鋼板の製
造方法を提供することを目的とする。(Problems to be Solved by the Invention) An object of the present invention is to provide a method for producing a thin unidirectional electrical steel sheet that has a high magnetic flux density, significantly reduces iron loss, and has an excellent magnetic domain refining effect. .
(課題を解決するための手段)
本発明者達は、最近の低鉄損材に対する強い要望に応え
るべく、一方向性電磁鋼板の低鉄損化について種々の実
験と検討を行なった。その結果、AlNをインヒビター
として、高磁束密度の一方向性電磁鋼板を製造するにあ
たって、酸可溶性Mを含有する電磁鋼素材を熱延し、最
終強冷延部に950〜1200℃の範囲で高温連続焼鈍
後、急冷し、AlNを析出させ、81〜95%の圧下率
範囲で行う最終強冷延を含む1回もしくは2回以上の冷
延により0.15〜0.23−の最終板厚とし、脱炭し
、仕上焼鈍する薄手一方向性電磁鋼板の製造方法におい
て、上記強圧下率で行う冷延を30〜100圓径の小径
ロールにて、単位面積当りの圧延張力が10〜35kg
/−の高張力下で、前段パスを30%以上の高圧下率で
行ない、途中板厚が0.40m以下の後段パスの平均板
温を150〜230℃とすることにより、高磁束密度で
、鉄損が大幅に低減され更に、磁区細分化効果の優れた
薄手一方向性電磁鋼板が製造されることを確かめた。(Means for Solving the Problems) In order to meet the recent strong demand for low core loss materials, the present inventors conducted various experiments and studies on reducing the core loss of unidirectional electrical steel sheets. As a result, when manufacturing unidirectional electrical steel sheets with high magnetic flux density using AlN as an inhibitor, the electrical steel material containing acid-soluble M is hot-rolled and the final hard-rolled part is heated at a high temperature in the range of 950 to 1200°C. After continuous annealing, it is rapidly cooled to precipitate AlN, and cold rolled one or more times including final strong cold rolling in a rolling reduction range of 81 to 95% to achieve a final plate thickness of 0.15 to 0.23. In the method for manufacturing a thin unidirectional electrical steel sheet, which is decarburized and finish annealed, the cold rolling is performed at the above-mentioned strong reduction rate using a small diameter roll of 30 to 100 mm, and the rolling tension per unit area is 10 to 35 kg.
/- under high tension, the first pass is carried out at a high reduction rate of 30% or more, and the average plate temperature of the second pass is 150 to 230°C with an intermediate plate thickness of 0.40 m or less, thereby achieving high magnetic flux density. It was confirmed that thin unidirectional electrical steel sheets with significantly reduced core loss and excellent magnetic domain refining effects could be manufactured.
この電磁鋼素材にはC: 0.025〜0.085%。This electromagnetic steel material contains C: 0.025 to 0.085%.
Si:2.5〜4.5%、酸可溶性A/(以下so1.
AIと言う) : 0.010〜0.065%、Mn
:0.03〜0.15%、S:0.010〜0.050
%、N:0.0030〜0.0120%を含み、残部が
鉄及び不可避的不純物からなるものが適用される。これ
らの成分の他にCu + Sn + Cr + Moの
1種或は、2種以上を合計で1.5%以下含み得る。Si: 2.5 to 4.5%, acid soluble A/(hereinafter referred to as so1.
AI): 0.010-0.065%, Mn
:0.03~0.15%, S:0.010~0.050
%, N: 0.0030 to 0.0120%, with the balance consisting of iron and inevitable impurities. In addition to these components, one or more of Cu + Sn + Cr + Mo may be included in a total amount of 1.5% or less.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
まず、本発明の電磁鋼素材の鋼成分について述べる。First, the steel components of the electromagnetic steel material of the present invention will be described.
Cは、電磁鋼素材を加熱した際、Si量に応じて、少な
くとも鋼の一部にT変態を生じさせる必要がある。この
ため、C0,025%以上の含有を要する。一方、その
含有量が過多になると高磁束密度の成品が得られないの
で0. 085%以下とする。When the electromagnetic steel material is heated, C is required to cause T transformation in at least a portion of the steel, depending on the amount of Si. Therefore, the content of C is required to be 0.025% or more. On the other hand, if the content is too large, a product with high magnetic flux density cannot be obtained, so 0. 085% or less.
Siは、鉄損を低減するためには、2.5%以上必要で
あり、一方4.5%を超えると、冷延性が劣化するので
、4.5%以下とする。In order to reduce iron loss, Si is required to be 2.5% or more, and if it exceeds 4.5%, cold rollability deteriorates, so it is set to 4.5% or less.
sol、AIは、最終強冷延部の焼鈍でNNを析出し、
高磁束密度の成品を得るためには0.010%以上の含
有が必要である。一方、その含有量が多(なると脆化し
、又、コスト的にも不利となるので、0、065%以下
とする。sol, AI precipitates NN during annealing of the final strongly cold rolled part,
In order to obtain a product with high magnetic flux density, the content must be 0.010% or more. On the other hand, if the content is too large, it will become brittle and also disadvantageous in terms of cost, so it is set to 0.065% or less.
Nは、前記so1.klと結合し、インヒビターとして
ARNを形成せしめるためニ0.0030〜0.012
0%の含有が必要である。N is the so1. 0.0030 to 0.012 to bind to kl and form ARN as an inhibitor.
0% content is required.
MnとSは、MnSを形成するために必要な元素であり
、このためMnは、0.03%以上含有させる。Mn and S are elements necessary to form MnS, and therefore Mn is contained in an amount of 0.03% or more.
一方その含有量が多くなると仕上焼鈍における純化時間
を長くするので0.15%以下とする。Sは、前記Mn
と同様の理由から0.010%以上必要であり、又、o
、 o s o%以下とする。On the other hand, if the content increases, the purification time in final annealing becomes longer, so the content should be 0.15% or less. S is the Mn
For the same reason as above, 0.010% or more is necessary, and o
, oso% or less.
更に磁気特性を高めるためにCu + Sn + Cr
+ M。To further improve magnetic properties, Cu + Sn + Cr
+M.
の1種或は2種以上を含ませても差しつがえない。One or more of these may be included.
このとき合計の含有量の上限は1.5%である。この上
限を超えた場合は冷延性が劣化し、又脱炭性が劣化する
。At this time, the upper limit of the total content is 1.5%. If this upper limit is exceeded, cold rollability and decarburization properties will deteriorate.
前記成分を含み、残部が鉄および不可避的不純物からな
る珪素鋼スラブは、所定成分に溶製された溶鋼から、連
続鋳造により、或は造塊と分塊圧延により製造される。A silicon steel slab containing the above-mentioned components, with the remainder being iron and unavoidable impurities, is manufactured from molten steel melted to predetermined components by continuous casting or by ingot making and blooming rolling.
この珪素鋼スラブは所定温度に加熱された後、或は連続
鋳造に次いで直ちに熱延される。この熱延条件は特別な
条件にする必要はない。得られた熱延板は熱延板焼鈍が
施された後、1回冷延されるか、あるいは必要に応じて
中間焼鈍をはさんで2回以上冷延されうる。最終冷延前
の焼鈍(1回冷延のときは熱延板焼鈍)で、インヒビタ
ー作用の強いAlNを析出させるために、950〜12
00℃の高温に加熱し、次いで急冷する連続焼鈍を行う
。冷延は81〜95%の圧下率で行う最終強圧下冷延を
含む1回または2回以上で行われるが、最終強圧下冷延
を81〜95%とするのは主たるインヒビターを7VN
とした鋼板において優れた磁気特性を得るためである。After this silicon steel slab is heated to a predetermined temperature, or immediately after continuous casting, it is hot rolled. These hot rolling conditions do not need to be special conditions. The obtained hot-rolled sheet may be subjected to hot-rolled sheet annealing and then cold-rolled once, or cold-rolled two or more times with intermediate annealing as required. In order to precipitate AlN, which has a strong inhibitory effect, during annealing before the final cold rolling (hot-rolled sheet annealing in the case of one-time cold rolling),
Continuous annealing is performed by heating to a high temperature of 00°C and then rapidly cooling. Cold rolling is carried out once or twice, including a final strong reduction cold rolling performed at a rolling reduction ratio of 81 to 95%, but the final strong reduction cold rolling is 81 to 95% when the main inhibitor is 7VN.
This is to obtain excellent magnetic properties in the steel plate.
冷延については、実験データを参照して詳細に説明する
。Cold rolling will be explained in detail with reference to experimental data.
第1表に示す鋼成分からなる熱延板焼鈍されたサンプル
を次の条件にて冷延を行った。Hot-rolled annealed samples having the steel components shown in Table 1 were cold-rolled under the following conditions.
冷延条件
熱延板(原板)板厚 :2.3+um仕上板厚
:0.20mm総圧下率
:91.3%
圧延機ワークロール径 ニア0鵬φ
圧延張力 :25kg/+aj後段パス平
均板温 :20〜350℃熱延板焼鈍を施した熱延板
を、途中板厚が0.40鴫以下の後段パスの平均板温を
20〜350℃の範囲内で変更して冷延し、次いで85
0℃X150秒にて脱炭焼鈍し、焼鈍分離剤を塗布乾燥
した後、1200℃で仕上焼鈍を行なった。Cold rolling conditions Hot rolled sheet (original sheet) thickness: 2.3+um Finished sheet thickness: 0.20mm Total rolling reduction
: 91.3% Rolling mill work roll diameter Near 0 φ Rolling tension: 25 kg/+aj Average plate temperature in the latter pass: A hot rolled plate annealed at 20 to 350°C, with a thickness of 0.40 mm in the middle. Cold rolling was carried out by changing the average plate temperature in the following subsequent passes within the range of 20 to 350°C, and then 85°C
Decarburization annealing was performed at 0°C for 150 seconds, an annealing separator was applied and dried, and final annealing was performed at 1200°C.
かくして得られた一方向性電磁鋼板サンプル1゜2,3
につき、鉄損WIT/S。、磁束密度B1゜、結晶粒径
、レーザー処理鉄損向上率を測定し、その結果を第1図
〜第4図に示す。The thus obtained unidirectional electrical steel sheet sample 1゜2,3
Iron loss WIT/S. , magnetic flux density B1°, crystal grain size, and laser treatment iron loss improvement rate were measured, and the results are shown in FIGS. 1 to 4.
これらの図からも明らかな様に、最終冷延時に0.40
mm以下の後段パスの平均板温を150〜230”Cで
温間圧延したものは、鉄tjl W + ?15゜。As is clear from these figures, 0.40
Iron tjl W + -15° is obtained by warm rolling at an average plate temperature of 150 to 230"C in the subsequent pass of less than mm.
磁束密度BIGが、大幅に向上し、結晶粒径が大きくな
り、レーザー処理による鉄損向上率も優れている。The magnetic flux density BIG is significantly improved, the crystal grain size is increased, and the iron loss improvement rate by laser treatment is also excellent.
この様に、最終冷延時に、特に薄手時に温間圧延を行な
うと、磁気特性が向上し、結晶粒径が大きくなる理由は
次の様に考えられる。本成分系の特徴である高磁束密度
を得るには、特に板厚0.23飾以下の薄手材では、最
終冷延率が90%を超える。一方、最終製品の磁性を向
上させるには、1次再結晶後のマトリックスに(110
)粒が多数存在していることが望ましい。しかし、(1
10)粒の存在量は、冷延率80%以上で急減してしま
うため、高磁束密度と、(110)粒を存在させること
、とは一般に両立し難い。特にワークロール径が100
mφより小さい冷延機で、圧延張力10〜35kg/−
の高張力で冷延する場合、大径ワークロール、低張力圧
延に比べ変形形態が引抜傾向になり、相対的に(110
)粒が更に減少する。しかし、残った(110)粒は、
非常にシャープであり、2次再結晶をしたものは、高磁
束密度、低鉄損、結晶粒径大の傾向を示す。The reason why the magnetic properties are improved and the grain size becomes larger when warm rolling is performed during the final cold rolling, especially when thin, is considered to be as follows. In order to obtain the high magnetic flux density that is a feature of this component system, the final cold rolling rate exceeds 90%, especially for thin materials with a plate thickness of 0.23 mm or less. On the other hand, in order to improve the magnetism of the final product, it is necessary to add (110
) It is desirable that a large number of grains exist. However, (1
10) Since the amount of grains present rapidly decreases at a cold rolling rate of 80% or more, it is generally difficult to achieve both a high magnetic flux density and the presence of (110) grains. Especially when the work roll diameter is 100
Cold rolling mill smaller than mφ, rolling tension 10 to 35 kg/-
When cold rolling with high tension of
) grains are further reduced. However, the remaining (110) grains are
It is very sharp, and those that have undergone secondary recrystallization tend to have high magnetic flux density, low iron loss, and large crystal grain size.
特に薄手製品において、冷延途中の板厚が薄くなった場
合、冷延時の板温度を高めることにより、前述の様な(
110)粒の減少を防止するか或は富化することが出来
る。従って板厚0.23 InIn以下の製品を製造す
る場合、ワークロール(WR)径100mmφ以下の冷
延機を用い、10〜35kg/一の高張力を適用しない
と、所定の板厚まで薄くすることが困難である。この場
合、従来の圧延法に比べ(110)粒が相対的に減少す
るのに対し、特に薄手での冷延時の板温を150〜23
0℃に高めることで、減少する(110)粒を補うこと
ができ、従って、シャープな(110)粒が存在しうる
ので、高磁束密度、低鉄損、結晶粒径大なる製品が得ら
れる。ワークロール径が30a+mφ未満と小さくなる
と鉄損の劣化が生じ、またロール寿命も短かくなるので
3011II11φ以上とする。また途中板厚0.40
mm以下の後段パスでの平均板温が150℃未満では前
記のような作用効果は得られず、また、230 ’Cを
超えると、組織の回復が起こり、逆に(100)粒が減
少し、特性向上効果が消失する。Especially for thin products, if the thickness of the plate becomes thinner during cold rolling, increasing the plate temperature during cold rolling will cause the above-mentioned (
110) Grain reduction can be prevented or enriched. Therefore, when manufacturing a product with a plate thickness of 0.23 InIn or less, use a cold rolling mill with a work roll (WR) diameter of 100 mm or less and apply a high tension of 10 to 35 kg/1 to thin the plate to the specified thickness. It is difficult to do so. In this case, the number of (110) grains is relatively reduced compared to the conventional rolling method, but the plate temperature during cold rolling, especially in thin sheets, is 150 to 23.
By increasing the temperature to 0℃, it is possible to compensate for the decreasing (110) grains, and therefore sharp (110) grains can exist, resulting in products with high magnetic flux density, low core loss, and large crystal grain size. . If the work roll diameter is smaller than 30a+mφ, iron loss will deteriorate and the roll life will be shortened, so it is set to 3011II11φ or more. In addition, the intermediate board thickness is 0.40
If the average plate temperature in the subsequent pass below 150°C is less than 150°C, the above effects cannot be obtained, and if it exceeds 230°C, the structure will recover and the (100) grains will decrease. , the property improvement effect disappears.
(実施例)
実施例1
第2表に示す珪素鋼スラブを熱延し、得られた板厚2.
3mmの熱延板を板厚1.5 mmへ冷延し、これにA
lNの析出焼鈍を施し、第3表に示す条件で最終冷間圧
延した。その後、850℃X120秒にて、脱炭焼鈍し
、MgOを主成分とする焼鈍分離剤を塗布、乾燥後、1
200℃×20時間の仕上焼鈍を行った。(Example) Example 1 The silicon steel slab shown in Table 2 was hot rolled, and the obtained plate thickness was 2.
A 3 mm hot-rolled plate was cold rolled to a plate thickness of 1.5 mm, and A
It was subjected to precipitation annealing of 1N and final cold rolled under the conditions shown in Table 3. After that, decarburization annealing was performed at 850°C for 120 seconds, and an annealing separator containing MgO as the main component was applied, and after drying,
Finish annealing was performed at 200°C for 20 hours.
この様にして製造された一方向性電磁鋼板の各サンプル
について鉄損WIT/S。と磁束密度B1゜を測定した
。その結果を仕上冷延における板温度と共に第4表に示
す。Iron loss WIT/S for each sample of unidirectional electrical steel sheet manufactured in this way. and the magnetic flux density B1° were measured. The results are shown in Table 4 along with the plate temperature during finish cold rolling.
第
表
実施例2
第5表に示す鋼成分からなる珪素鋼スラブを熱延し板厚
2.4 mmの熱延板とした。次いで、熱延板焼鈍を行
ない、第6表に示す条件で仕上冷延を行い、850”C
X120秒で脱炭焼鈍し、MgOを主成分とする焼鈍分
離剤を塗布、乾燥後1200℃×20時間の仕上焼鈍を
行なった。Table 1 Example 2 A silicon steel slab having the steel components shown in Table 5 was hot rolled into a hot rolled plate having a thickness of 2.4 mm. Next, the hot-rolled sheet was annealed and finished cold-rolled under the conditions shown in Table 6 to 850"C.
Decarburization annealing was performed at x120 seconds, an annealing separator containing MgO as a main component was applied, and after drying, final annealing was performed at 1200°C x 20 hours.
製造された一方向性電磁鋼板の各サンプルについて鉄損
Wl’115゜、と磁束密度B1゜、結晶粒径。For each sample of the produced unidirectional electrical steel sheet, the iron loss Wl'115°, the magnetic flux density B1°, and the grain size.
レーザー処理時の鉄損向上率を測定した。この結果を第
7表に示す。The iron loss improvement rate during laser treatment was measured. The results are shown in Table 7.
(発明の効果)
以上の実施例の結果から明らかなように、本発明による
と、鉄損が著しく低減され、かつ、レーザー処理効果に
優れた一方向性電磁鋼板が製造され得るので、産業上寄
与するところが極めて大である。(Effects of the Invention) As is clear from the results of the above examples, according to the present invention, a unidirectional electrical steel sheet with significantly reduced core loss and excellent laser treatment effects can be manufactured, and therefore it is industrially useful. The contribution is extremely large.
第1図は、仕上冷延時の途中板厚0.40mm以下の平
均板温と鉄損の関係、第2図は、仕上冷延時の途中板厚
0.40onn以下の平均板温と磁束密度の関係、第3
図は、仕上冷延時の途中板厚0.40mm以下の平均板
温と結晶粒径の関係、第4図は、仕上冷延時の途中板厚
0.40[1111以下の平均板温とレーザー処理によ
る鉄損向上率の関係を示す図である。
第、2図
114040mm>1下平G!>ffi (’C)レー
サ°°−列埋【(コる鋏屓向上辛(′/、)結晶粒径(
ASTk4
No、 )
炒 ÷
帰Figure 1 shows the relationship between the average plate temperature and iron loss when the intermediate plate thickness is 0.40 mm or less during finish cold rolling, and Figure 2 shows the relationship between the average plate temperature and magnetic flux density when the intermediate plate thickness is 0.40 onn or less during finish cold rolling. relationship, 3rd
The figure shows the relationship between average plate temperature and grain size for intermediate plate thicknesses of 0.40 mm or less during finish cold rolling, and Figure 4 shows the relationship between average plate temperature and laser treatment for intermediate plate thicknesses of 0.40 mm or less during finish cold rolling. It is a figure showing the relationship of iron loss improvement rate by. 2nd figure 114040mm>1 lower flat G! >ffi ('C) Laser °° - row buried
ASTk4 No, ) fried ÷ return
Claims (2)
:2.5〜4.5%、酸可溶性Al:0.010〜0.
065%、Mn:0.03〜0.15%、S:0.01
0〜0.050%、N:0.0030〜0.0120%
を含み、残部が鉄および不可避的不純物からなる電磁鋼
スラブを熱延し、最終強冷延の前に950〜1200℃
の範囲で連続焼鈍後急冷し、AlNを析出させ、81〜
95%の圧下率範囲で行う最終強冷延を含む1回もしく
は2回以上の冷延により0.15〜0.23mmの最終
板厚とし、脱炭し、仕上焼鈍する薄手一方向性電磁鋼板
の製造方法において、前記強圧下率で行う冷延を30〜
100mm径の小径ロールにて、単位面積当りの圧延張
力が10〜35kg/一の高張力下で、前段パスを30
%以上の高圧下率で行い、途中板厚が0.40mm以下
の後段パスの平均板温を150〜230℃とすることを
特徴とする高磁束密度薄手一方向性電磁鋼板の製造方法
。(1) In weight%, C: 0.025-0.085%, Si
: 2.5-4.5%, acid-soluble Al: 0.010-0.
065%, Mn: 0.03-0.15%, S: 0.01
0-0.050%, N: 0.0030-0.0120%
A magnetic steel slab is hot-rolled and heated to 950-1200°C before final hard rolling.
After continuous annealing in the range of 81~
A thin unidirectional electrical steel sheet that is cold-rolled once or twice or more, including final hard-rolling in a rolling reduction range of 95%, to a final thickness of 0.15 to 0.23 mm, decarburized, and finish annealed. In the manufacturing method, cold rolling performed at the above-mentioned strong reduction rate is
With a small diameter roll of 100 mm diameter, under a high rolling tension of 10 to 35 kg/unit area, 30 first passes are performed.
A method for producing a thin unidirectional electrical steel sheet with a high magnetic flux density, characterized in that the process is carried out at a high rolling reduction rate of % or more, and the average plate temperature in the subsequent pass with an intermediate plate thickness of 0.40 mm or less is 150 to 230°C.
:2.5〜4.5%、酸可溶性Al:0.010〜0.
065%、Mn:0.03〜0.15%、S:0.01
0〜0.050%、N:0.0030〜0.0120%
を含み、さらにCu、Sn、Cr、Moの1種または2
種以上を合計で1.5%以下含有し、残部が鉄および不
可避的不純物からなる電磁鋼スラブを熱延し、最終強冷
延の前に950〜1200℃の範囲で連続焼鈍後急冷し
、AlNを析出させ、81〜95%の圧下率範囲で行う
最終強冷延を含む1回もしくは2回以上の冷延により0
.15〜0.23mmの最終板厚とし、脱炭し、仕上焼
鈍する薄手一方向性電磁鋼板の製造方法において、前記
強圧下率で行う冷延を30〜100mm径の小径ロール
にて、単位面積当りの圧延張力が10〜35kg/mm
^2の高張力下で、前段パスを30%以上の高圧下率で
行い、途中板厚が0.40mm以下の後段パスの平均板
温を150〜230℃とすることを特徴とする高磁束密
度薄手一方向性電磁鋼板の製造方法。(2) In weight%, C: 0.025-0.085%, Si
: 2.5-4.5%, acid-soluble Al: 0.010-0.
065%, Mn: 0.03-0.15%, S: 0.01
0-0.050%, N: 0.0030-0.0120%
and further contains one or two of Cu, Sn, Cr, and Mo.
A magnetic steel slab containing a total of 1.5% or less of carbon dioxide, the balance consisting of iron and unavoidable impurities, is hot rolled, and before the final hard cold rolling, it is continuously annealed in the range of 950 to 1200 ° C. and then rapidly cooled, 0 by precipitating AlN and cold rolling one or more times including final hard rolling in a rolling reduction range of 81 to 95%.
.. In a method for manufacturing a thin grain-oriented electrical steel sheet in which the final plate thickness is 15 to 0.23 mm, decarburized, and finish annealed, cold rolling is carried out at the above-mentioned strong reduction rate using small diameter rolls with a diameter of 30 to 100 mm, and the unit area is Rolling tension per unit is 10-35kg/mm
High magnetic flux characterized by performing the first pass at a high reduction rate of 30% or more under high tension of ^2, and making the average plate temperature of the second pass with an intermediate plate thickness of 0.40 mm or less between 150 and 230°C. A method for producing a thin-density unidirectional electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10216689A JP2784661B2 (en) | 1989-04-21 | 1989-04-21 | Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10216689A JP2784661B2 (en) | 1989-04-21 | 1989-04-21 | Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02282422A true JPH02282422A (en) | 1990-11-20 |
JP2784661B2 JP2784661B2 (en) | 1998-08-06 |
Family
ID=14320125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10216689A Expired - Lifetime JP2784661B2 (en) | 1989-04-21 | 1989-04-21 | Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2784661B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470652B1 (en) * | 2000-12-20 | 2005-03-07 | 주식회사 포스코 | A method for manufacturing high strength cold rolled steel sheet with superior formability |
WO2008133337A1 (en) | 2007-04-24 | 2008-11-06 | Nippon Steel Corporation | Process for producing unidirectionally grain oriented electromagnetic steel sheet |
-
1989
- 1989-04-21 JP JP10216689A patent/JP2784661B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470652B1 (en) * | 2000-12-20 | 2005-03-07 | 주식회사 포스코 | A method for manufacturing high strength cold rolled steel sheet with superior formability |
WO2008133337A1 (en) | 2007-04-24 | 2008-11-06 | Nippon Steel Corporation | Process for producing unidirectionally grain oriented electromagnetic steel sheet |
US8236110B2 (en) | 2007-04-24 | 2012-08-07 | Nippon Steel Corporation | Method of producing grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2784661B2 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6048886B2 (en) | High magnetic flux density unidirectional electrical steel sheet with excellent iron loss and method for manufacturing the same | |
US5139582A (en) | Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics | |
KR930004849B1 (en) | Oriented electrical steel with excellent magnetic properties and manufacturing method thereof | |
JP2639227B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JPH0753886B2 (en) | Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss | |
JP4281119B2 (en) | Manufacturing method of electrical steel sheet | |
JPH02282422A (en) | Production of high-flux-density thin grain-oriented magnetic steel sheet | |
JPS6333518A (en) | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production | |
JP7578188B2 (en) | Aging treatment method and manufacturing method of grain-oriented electrical steel sheet | |
JPH06256847A (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH0797628A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JP3338263B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH02259016A (en) | Manufacturing method of unidirectional electrical steel sheet without surface swelling defects | |
JPH0261031A (en) | Non-oriented silicon steel sheet excellent in magnetic property and its production | |
KR970007162B1 (en) | Method for manufacturing oriented electrical steel sheet of low temperature slab heating method with excellent iron loss characteristics | |
JPH0257125B2 (en) | ||
JPH02263924A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH02133525A (en) | Manufacturing method of thin grain-oriented electrical steel sheet with excellent magnetic properties | |
KR960003900B1 (en) | Manufacturing method of oriented electrical steel sheet with excellent magnetic properties | |
US20250109451A1 (en) | Aging treatment method and method of producing grain-oriented electrical steel sheet | |
JP3451652B2 (en) | Method for producing unidirectional silicon steel sheet | |
JPS6311407B2 (en) | ||
JP3324044B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP3546114B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080529 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090529 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |