JPH02275788A - Part material covered with diamond - Google Patents
Part material covered with diamondInfo
- Publication number
- JPH02275788A JPH02275788A JP1315935A JP31593589A JPH02275788A JP H02275788 A JPH02275788 A JP H02275788A JP 1315935 A JP1315935 A JP 1315935A JP 31593589 A JP31593589 A JP 31593589A JP H02275788 A JPH02275788 A JP H02275788A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- carbide
- diamond film
- sintered body
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 112
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 111
- 239000000463 material Substances 0.000 title abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 150000004767 nitrides Chemical class 0.000 claims abstract description 18
- 239000012808 vapor phase Substances 0.000 claims abstract description 16
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- -1 oxides Chemical class 0.000 claims description 25
- 230000000737 periodic effect Effects 0.000 claims description 16
- 150000002739 metals Chemical class 0.000 claims description 12
- 150000001247 metal acetylides Chemical class 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000001308 synthesis method Methods 0.000 claims description 8
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 6
- 150000002894 organic compounds Chemical class 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 10
- 239000000919 ceramic Substances 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 238000010189 synthetic method Methods 0.000 abstract description 3
- 229910052797 bismuth Inorganic materials 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 239000010408 film Substances 0.000 description 64
- 239000007789 gas Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 16
- 238000005520 cutting process Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 238000005245 sintering Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 9
- 229910002090 carbon oxide Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000002736 metal compounds Chemical class 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N Cyclopropane Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000001293 FEMA 3089 Substances 0.000 description 1
- 229910012988 LiCo3 Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001361 allenes Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010942 ceramic carbide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000010727 cylinder oil Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000012208 gear oil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000010681 turmeric oil Substances 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/18—Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
- B23B27/20—Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/06—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
- B24D3/10—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5001—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
- C04B41/5002—Diamond
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/936—Chemical deposition, e.g. electroless plating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Chemical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はダイヤモンド被覆部材に関し、さらに、if
L、 < Kうと、特定の成分からなるセラミック系超
硬基材である焼結体の表面に、密着性に優れたダイヤモ
ンド膜を有するダイヤモンド被覆部材に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a diamond-coated member, and furthermore,
L, < K relates to a diamond-coated member having a diamond film with excellent adhesion on the surface of a sintered body, which is a ceramic carbide base material made of a specific component.
[従来技術と発明か解決しようとする課題]従来、切削
工具、研磨工具、ダイスなど高い硬度や耐摩耗性を要求
される工具類には超硬合金焼結ダイヤモンド、単結晶ダ
イヤモンドなどが用いられている。[Prior art and the problem to be solved by the invention] Conventionally, tools such as cutting tools, polishing tools, and dies that require high hardness and wear resistance have been made of cemented carbide sintered diamond, single crystal diamond, etc. ing.
これらの中て、ダイヤモンド工具は、硬度、耐摩耗性な
どに著しく優れていることなどから特に々fまれている
。Among these tools, diamond tools are particularly prized because of their outstanding hardness and wear resistance.
従来から、このダイヤモンド工具には、超硬合金や高硬
度の全屈等からなる基材の表面に焼結ダイヤモンドや単
結晶ダイヤモンドをろう付は等により装着したものか用
いられてきた。Conventionally, diamond tools have been used in which sintered diamond or single-crystal diamond is attached to the surface of a base material made of cemented carbide or highly hard fully curved material by brazing or the like.
一方、近年に至って、CVD法やPVD法などの気相法
ダイヤモンド合成技術を用いて、超硬合金や高硬度の金
属等からなる基材の表面にダイヤモンド膜を析出形成さ
せる製造方法か検討されており、これによって得られる
ダイヤモンド被覆部材を前記の用途に適用しようとする
試みかなされている。On the other hand, in recent years, research has been conducted on the production method of depositing and forming a diamond film on the surface of a base material made of cemented carbide or high-hardness metal using vapor phase diamond synthesis technology such as CVD or PVD. Attempts have been made to apply the resulting diamond-coated members to the above-mentioned uses.
ところで、ダイヤモンドは最も硬い物質であるのて、超
硬合金等の基材の表面に形成されるダイヤモンド膜は、
その基材に高い硬度や耐摩耗性を付与するためのコーテ
イング材、あるいは保護膜などとして有効に利用てきる
ものと考えられる。By the way, since diamond is the hardest substance, the diamond film formed on the surface of a base material such as cemented carbide is
It is thought that it can be effectively used as a coating material or a protective film to impart high hardness and wear resistance to the base material.
たとえば、切削工具、研磨工具等の超硬工具に使用され
る超硬合金製の基材の表面にダイヤモンド膜を形成させ
ると、さらに優れた超硬工具か得られるはすである。For example, if a diamond film is formed on the surface of a cemented carbide base material used for carbide tools such as cutting tools and polishing tools, even better carbide tools can be obtained.
しかしながら、超硬合金の表面とダイヤモンド膜とは、
一般に密着性か悪く、実用に耐える工具を得ることに成
功していない。However, the surface of the cemented carbide and the diamond film are
In general, the adhesion is poor, and it has not been possible to obtain a tool that can be used in practice.
そこで、超硬合金の表面とダイヤモンド膜との密着性を
向上させるために、これらの間に中間層を形成する技術
か提案されている。Therefore, in order to improve the adhesion between the surface of the cemented carbide and the diamond film, a technique has been proposed in which an intermediate layer is formed between the surfaces of the cemented carbide and the diamond film.
たとえば、時開IV(5B −126972号公報には
、超硬合金の表面に先ずNa 、Va 、VTa族金属
の炭化物、窒化物、ホウ化物および酸化物から選ばれた
一種以上よりなる中間層を形成し、その後に該中間層の
Lにダイヤモンド膜を形成してなるダイヤモンド膜付き
超硬合金が記載されている。For example, in Jikai IV (No. 5B-126972), an intermediate layer made of one or more selected from carbides, nitrides, borides, and oxides of Na, Va, and VTa group metals is first formed on the surface of a cemented carbide. A diamond film-coated cemented carbide is disclosed in which a diamond film is formed on L of the intermediate layer.
しかし、このような公報に記載されている方法ては、中
間層の形成とダイヤモンド膜の形成という段階的な膜形
成方法を採用しているのて、製造工程か煩雑となり、し
かも密着性の向−Lを図ると言いながら、超硬合金とダ
イヤモンド膜との密着性か実用的なレベルにまで充分に
4寿されているとは言い難い。However, the method described in such publications uses a step-by-step film formation method of forming an intermediate layer and forming a diamond film, which makes the manufacturing process complicated, and also makes it difficult to improve adhesion. -L, it is difficult to say that the adhesion between the cemented carbide and the diamond film has been sufficiently maintained to a practical level.
一方、中間層を形成することなく超硬合金等からなる基
材とダイヤモンド1漠との密着性の向上を図る技術も提
案されている。On the other hand, a technique has also been proposed for improving the adhesion between a base material made of cemented carbide or the like and a diamond layer without forming an intermediate layer.
たとえば、特開昭63−100182号公報には、特定
賃のCoを含有し、特定粒径の炭化タングステンからな
る炭化タングステン系超硬合金にダイヤモンド膜を形成
してなるダイヤモンド膜付き超硬合金か記載されている
。For example, JP-A-63-100182 discloses a diamond film-coated cemented carbide made by forming a diamond film on a tungsten carbide-based cemented carbide that contains a specific amount of Co and is made of tungsten carbide with a specific grain size. Are listed.
しかし、この公報においても、超硬合金とダイヤモンド
膜との密着性か充分に実用的なレベルにあるとは言い難
い。However, even in this publication, it cannot be said that the adhesion between the cemented carbide and the diamond film is at a sufficiently practical level.
特に、このCoの添加量が多くなると熱膨張係数か増大
するほか、Coへの炭素の拡散か生して良好なダイヤモ
ンド膜の形成か困難になり、密着性も低下し、十分な耐
久性か得られない。In particular, when the amount of Co added increases, the coefficient of thermal expansion increases, and due to the diffusion of carbon into Co, it becomes difficult to form a good diamond film, the adhesion decreases, and it becomes difficult to maintain sufficient durability. I can't get it.
また、特公昭60−59086号公報には、5iffN
4および/またはSiCからなるセラミックス製基材の
表面に厚み0.5〜50ルのダイヤモンド膜を被覆して
なる切削工具か開示されている。In addition, in Japanese Patent Publication No. 60-59086, 5iffN
A cutting tool is disclosed in which the surface of a ceramic base material made of 4 and/or SiC is coated with a diamond film having a thickness of 0.5 to 50 mm.
しかしなから、その切削性衡は充分なものではない。However, its machinability is not sufficient.
本発明は、前記1に情を改善するためになされたもので
ある。The present invention has been made to improve the situation mentioned above.
本発明の目的は、超硬基材とダイヤモンド膜との密着性
を4廊することによって、高性俺て耐久性に優れた切削
工JL、耐庁耗性王几、耐摩耗性部材等として使用する
ことのできる寿命の長いダイヤモンド被覆部材を提供す
ることにある。The purpose of the present invention is to improve the adhesion between the carbide base material and the diamond film, so that it can be used as a highly durable cutting tool, a wear-resistant material, a wear-resistant member, etc. The object of the present invention is to provide a diamond-coated member that can be used and has a long life.
[前記課題を解決するための手段]
本発明者は、前記課題を解決するために鋭意研究を川ね
た結果、基材として炭化タングステンと特定の全屈化合
物とからなる焼結体の表面に気相合成法によりダイヤモ
ンド膜を形成してなるダイヤモンド被覆部材か、ダイヤ
モンド膜と基材との密着性において著しく優れているこ
とを見出し、その知見に基づいて本発明を完成するに至
った。[Means for Solving the Problems] As a result of extensive research in order to solve the problems described above, the inventors of the present invention discovered that the surface of a sintered body made of tungsten carbide and a specific total bending compound as a base material. The present inventors have discovered that a diamond-coated member formed by forming a diamond film using a vapor phase synthesis method has significantly superior adhesion between the diamond film and the base material, and has completed the present invention based on this knowledge.
すなわち、本願第1の発明は、 (A)i&化タンクス
テンと (B)ケイ素またはホウ素の炭化物または窒化
物の少なくとも一種とから得られる焼結体の表面に、気
相合成法て形成されたダイヤモンド1漠を有することを
特徴とするダイヤモンド被覆部材てあり、
本願第2の発明は、 (Δ)炭化タングステンと、(I
t)ケイ素またはホウ素の炭化物または窒化物の少なく
とも一種と、 (C)周期表Ia、II aHa、IV
a、Va、mb、IVb族金属または稀土類元素の炭化
物、酸化物、窒化物、炭窒化物、炭酸塩、ホウ化物また
は有機化合物の少なくとも一種とから得られる焼結体の
表面に、気相合成法により形成されたダイヤモンド膜を
有することを特徴とするダイヤモンド被覆部材である。That is, the first invention of the present application provides a sintered body formed by a vapor phase synthesis method on the surface of a sintered body obtained from (A) i&tankium chloride and (B) at least one type of carbide or nitride of silicon or boron. There is a diamond-coated member characterized by having a large number of diamonds.
t) at least one carbide or nitride of silicon or boron; (C) periodic table Ia, II aHa, IV
A vapor phase is applied to the surface of a sintered body obtained from at least one of carbides, oxides, nitrides, carbonitrides, carbonates, borides, or organic compounds of group a, Va, mb, IVb metals or rare earth elements. This is a diamond-coated member characterized by having a diamond film formed by a synthetic method.
従来のダイヤモンド膜付き超硬合金において、超硬合金
とダイヤモンド膜との密着性が低下しているのは、これ
らの間に残留応力か存在しているためたと考えられる。In conventional cemented carbide with a diamond film, the reason why the adhesion between the cemented carbide and the diamond film is reduced is thought to be due to the presence of residual stress between them.
それに対して本発明のダイヤモンド被覆部材かダイヤモ
ンド膜とその基材である焼結体との密着性に優れている
のは、特定の成分からなる焼結セラミック系の基材を用
いているためだと考えられる。On the other hand, the reason why the diamond coated member of the present invention has excellent adhesion between the diamond film and the sintered body that is its base material is because it uses a sintered ceramic base material made of specific components. it is conceivable that.
すなわち、炭化タングステンと特定の金属の炭化物や窒
化物を焼結して得られるカーバイト系複合金属化合物焼
結体、あるいはそれとさらに特定の金属の炭化物、窒化
物、酸化物、炭酸塩、炭窒化物、ホウ化物または有機化
合物を焼結して得られるカーバイト系複合金属化合物焼
結体を用いているためと思われる。In other words, carbide composite metal compound sintered bodies obtained by sintering tungsten carbide and carbides and nitrides of specific metals, or carbides, nitrides, oxides, carbonates, and carbonitrides of specific metals. This is probably because a carbide-based composite metal compound sintered body obtained by sintering a compound, a boride, or an organic compound is used.
その特定成分の焼結体を基材として用いることによって
、なぜダイヤモンド膜との密着性および耐久性か著しく
向上するのか、そのメカニズムについては現段階では必
ずしも明確てはないが、その主な理由としてたとえば次
のようなことか考えられる。The mechanism of why adhesion and durability with the diamond film are significantly improved by using a sintered body with a specific component as a base material is not necessarily clear at this stage, but the main reason is For example, the following may be considered.
すなわち、前記焼結体の表面に気相合成法でダイヤモン
ド膜を形成するときに、このダイヤモンド膜は、焼結体
の表面に新たに生成する炭化物やY・めその表面付近に
存在する金属炭化物もしくは炭化物系組成物等とほぼ連
続した相構造になるように1&長する。That is, when a diamond film is formed on the surface of the sintered body by vapor phase synthesis, the diamond film is made of carbides newly generated on the surface of the sintered body and metal carbides existing near the surface of Y/Meso. Alternatively, it is lengthened so that it has a phase structure that is almost continuous with the carbide composition, etc.
また、前記焼結体は二種以上の金属化合物からなる複合
焼結体であるのてその表面に微細な凹凸もしくは表面細
孔か存在し、そこにダイヤモンドの微細粒子が食い込む
形でダイヤモンド膜か形成される。その結果、前記焼結
体の方か従来の超硬合金よりもダイヤモンド膜とより一
層強固に結合する。Furthermore, since the sintered body is a composite sintered body made of two or more types of metal compounds, there are minute irregularities or surface pores on the surface, and the diamond film is formed by the fine diamond particles biting into the surface pores. It is formed. As a result, the sintered body bonds more firmly to the diamond film than conventional cemented carbide.
しかも、本発明て基材として用いる焼結体は、Co、N
i、Fe等の単体金属や合金を含有しないセラミック系
超硬材であるのて、従来の炭化タングステン−〇〇系超
超硬合金りも熱膨張係数か小さく、残留する熱収縮応力
も十分に小さくなり、また炭素の拡散も生じない。Moreover, the sintered body used as the base material in the present invention is Co, N
Since it is a ceramic cemented carbide that does not contain single metals or alloys such as i, Fe, etc., it has a smaller thermal expansion coefficient than conventional tungsten carbide-〇〇-based cemented carbide, and has sufficient residual thermal shrinkage stress. It becomes smaller and no carbon diffusion occurs.
したかって、本発明ては基材の表面に品性イ距のダイヤ
モンド膜か形成されるとともにそのダイヤモンド膜か基
材から剥離しにくく安定に堅持されると考えられる。Therefore, it is believed that in the present invention, a diamond film of high quality is formed on the surface of the base material, and the diamond film is not easily peeled off from the base material and is stably maintained.
なお、本発明て用いる前記焼結体は、カーバイト系の超
硬材(ce+*ented carbide)に属する
ものてあり、従来の超硬合金と同様それ自体ても高い硬
度および耐摩耗性を有するものであるか、本発明のダイ
ヤモンド被覆部材は、そのような超硬材である焼結体の
表面に気相合成法ダイヤモンド膜を強固に形成させてい
るのて、さらに高い硬度および耐摩耗性等の優れた表面
特性か付与されており、しかも優れた耐久性を有する超
硬部材もしくは超硬材料である。The sintered body used in the present invention belongs to carbide-based cemented carbide (CE+ented carbide), and like conventional cemented carbide, it itself has high hardness and wear resistance. However, the diamond-coated member of the present invention has even higher hardness and wear resistance because a vapor-phase synthesized diamond film is firmly formed on the surface of the sintered body, which is such a superhard material. It is a cemented carbide member or material that has excellent surface properties such as, and has excellent durability.
以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.
本願請求項1および2の発IIにおいて、ダイヤモンド
膜の基材として用いる焼結体は、超硬工具や耐摩耗性部
材等の部材としてすでに成形されているものであっても
よく、部分的に成形されているものてあってもよく、あ
るいは特定の形状に成形されていないものてあってもよ
い。In feature II of claims 1 and 2 of the present application, the sintered body used as the base material of the diamond film may be one that has already been formed as a member such as a cemented carbide tool or a wear-resistant member, and may partially It may be molded, or it may not be molded into a specific shape.
すなわち、形状としては特に制限はなく、任意の形状て
あって良い。That is, the shape is not particularly limited and may be any shape.
本願請求項1および2の発明において、前記焼結体は気
相合成法により形成されるダイヤモンド膜の基材として
用いる。In the invention of claims 1 and 2 of the present application, the sintered body is used as a base material for a diamond film formed by a vapor phase synthesis method.
前記焼結体の製造方法としては特に制限はないか、通常
、次のようにして好適に製造することかてきる。There are no particular restrictions on the method for producing the sintered body, but it can usually be produced suitably in the following manner.
本願請求項1の発明における前記焼結体は、炭化タング
ステン[(A)成分]とケイ素またはホウ素の炭化物ま
たは窒化物の少なくとも一種[(B)成分]を原料とし
て用いて、これらを焼結することにより得ることかでき
る。The sintered body in the invention of claim 1 of the present application is obtained by sintering tungsten carbide [component (A)] and at least one kind of carbide or nitride of silicon or boron [component (B)] as raw materials. You can get something by doing this.
なお、得られた焼結体は必要に応じて、所望の形状に加
工することができる。Note that the obtained sintered body can be processed into a desired shape if necessary.
本願請求項2の発明における焼結体は、前記(A) 6
分と前記CB)成分と、周期表Ia、Ila、ma、I
Va、Va、mb、IVb族金属または稀土類元素の炭
化物、酸化物、窒化物、炭窒化物、炭酸塩、ホウ化物ま
たは有機化合物の少なくとも一種[(C)成分]を原料
として用いて、これらを焼結することにより得ることが
てきる。The sintered body in the invention of claim 2 of the present application is the above-mentioned (A) 6
minutes and the above CB) components and the periodic table Ia, Ila, ma, I
Using at least one type of carbide, oxide, nitride, carbonitride, carbonate, boride or organic compound [component (C)] of Va, Va, mb, IVb group metal or rare earth element as a raw material, It can be obtained by sintering.
なお、この場合も、得られた焼結体は必要に応じて、所
望の形状に加工することかできる。In this case as well, the obtained sintered body can be processed into a desired shape, if necessary.
本願請求項1および2の発明において、前記(A)成分
として用いる炭化タングステンとしては、従来の超硬工
具等に使用されるものなどが使用可能であり、具体的に
は、WC,WCオ (但し、Xはl以外の正の実数を表
し1通常、このXはlより大きいかあるいはlより小さ
い数である。)て表わされる定比化合物および不定比化
合物、あるいはこれらに酸素等の他の元素か結合、置換
または侵入したものなどを挙げることかてきる。これら
の中ても、通常、WCが特に好適に使用される。In the inventions of claims 1 and 2 of the present application, as the tungsten carbide used as the component (A), those used in conventional cemented carbide tools etc. can be used. However, X represents a positive real number other than 1. Normally, this X is a number larger than 1 or smaller than 1). It can be used to list elements, bonds, substitutions, or intrusions. Among these, WC is usually particularly preferably used.
なお、これらは一種屯独で用いてもよく、2種以上を併
用してもよく、あるいは2種以上の混合物、固溶体や組
成物等として用いてもよい。Note that these may be used singly, in combination of two or more, or as a mixture, solid solution, composition, etc. of two or more.
本願請求項1および2の発c月における前記(11)成
分のケイ素またはホウ素の炭化物、窒化物としては、た
とえば、SiC等のシリコンカーバイト、5izN4等
の窒化ケイ素、B、C等の炭化ホウ素などを挙げること
かできる。これらの中でも、ケイ素の炭化物、ケイ素の
窒化物、およびホウ素の炭化物か好ましく、特に5iC
2SiユN、、B、C等か好ましい。The carbide or nitride of silicon or boron as the component (11) in claims 1 and 2 of the present application includes, for example, silicon carbide such as SiC, silicon nitride such as 5izN4, boron carbide such as B, C, etc. I can list many things. Among these, silicon carbide, silicon nitride, and boron carbide are preferable, especially 5iC
2SiYN, , B, C, etc. are preferable.
なお、これらは一種単独で用いてもよく、2種以上を併
用してもよく、あるいは2種以上の混合物、固溶体や組
成物等として用いてもよい。In addition, these may be used alone, two or more types may be used in combination, or two or more types may be used as a mixture, solid solution, composition, etc.
本願請求項2の発明における前記(C)成分として用い
る周期表Ia、IIa、ma、■a、Va、mb、 ■
b族金属、積上類元素の炭化物、酸化物、窒化物、炭窒
化物、炭酸塩、ホウ化物または有機化合物の好適な具体
例としては、たとえばLit Coz 、Nag Co
z 、KCOi等の周期表Ia族金属の炭酸塩1MgC
0z 、CaC01等の周期表Ua族金属の炭酸塩、M
gO等の周期表IIa族金属の酸化物、Y2O3等の周
期表■a族金属の酸化物、ZrO□、TiO2等の周期
表IVaVa族金属化物、TiC等の周期表IVaVa
族金属化物、TiN、ZrN等の周期表rVaVa族金
属化物、NbC,TaC等の周期表Va族金属の炭化物
、入党203等の周期表mb族金属の酸化物、A!LN
等の周期表mb族金属の窒化物、5iOz等の周期表I
Vb族金屈全屈化物、The、、Cet O3,Cen
2.Erz 03、D y203 、Lax 0.3等
の稀土類元素の酸化物、Mg(CN)z、T1CN等の
炭窒化物、YBa 、LaBg等の稀土類元素のホウ化
物Mg、A文、Si、S喚、Y、ランタニド系福上類元
素のアルコキシド化合物、アルキル化合物などを挙げる
ことかできる。Periodic table Ia, IIa, ma, ■a, Va, mb, ■ used as the (C) component in the invention of claim 2 of the present application
Preferred specific examples of carbides, oxides, nitrides, carbonitrides, carbonates, borides or organic compounds of Group B metals, stacked group elements include, for example, Lit Coz, Nag Co
Carbonates of group Ia metals of the periodic table such as z, KCOi, etc. 1MgC
0z, carbonates of Ua group metals of the periodic table such as CaC01, M
Oxides of group IIa metals of the periodic table such as gO, oxides of metals of group ■a of the periodic table such as Y2O3, metal oxides of group IVaVa of the periodic table such as ZrO□, TiO2, IVaVa of the periodic table such as TiC, etc.
group metallization, metallization of group VaVa of the periodic table such as TiN and ZrN, carbide of group Va of the periodic table metal such as NbC and TaC, oxide of metal of group mb of the periodic table such as 203, A! LN
Nitride of periodic table group MB metal such as, periodic table I such as 5iOz
Vb group gold flexure compound, The, , Cet O3, Cen
2. Oxides of rare earth elements such as Erz 03, Dy203, Lax 0.3, carbonitrides such as Mg(CN)z, T1CN, borides of rare earth elements such as YBa, LaBg, Mg, A, Si, Examples include alkoxide compounds and alkyl compounds of S, Y, and lanthanide-based elements.
これらの中でも好ましいのは、周期表II a、II[
a、IVa、またはmb族金属の炭化物、酸化物、また
は窒化物であり、特に好ましいのはMg、Y、B、AM
、Ti、またはZrの炭化物、酸化物、または窒化物で
あり、さらに好ましいのはYt Oz 、Ant O−
1,Zrot 、M gOおよびTiNである。Among these, the periodic table II a, II [
carbides, oxides, or nitrides of group a, IVa, or mb metals, particularly preferred are Mg, Y, B, AM
, Ti, or Zr carbide, oxide, or nitride, more preferably YtOz, AntO-
1, Zrot, M gO and TiN.
なお、これらは一種単独て用いてもよく、2秤量」二を
併用してもよく、あるいは2種以上の混合物、固溶体や
組成物等として用いてもよい。Incidentally, these may be used alone, two or more of them may be used in combination, or two or more may be used as a mixture, solid solution, composition, etc.
また、前記の各種の化合物は、純粋なものに限らず、本
発明の目的に支障のない範囲で不純物を含有していても
よい。Further, the various compounds described above are not limited to pure ones, and may contain impurities within a range that does not interfere with the purpose of the present invention.
たとえば、前記WC等の炭化物は、微量の過剰炭素、過
剰金属、酸化物等を含有していてもよく、前記SiCは
少量のTiC等を含有していてもよい、
本願請求項1および2の発明において、前記焼結体に使
用する (A)成分と (Il)成分の割合としては、
(八)成分と (II)*分の合計を100重)4%と
したときに、 (13)成分については、通常、1〜9
0重量%、好ましくは2〜80玉量%より好ましくは3
〜70 重−漬%の範囲内である。For example, the carbide such as WC may contain a trace amount of excess carbon, excess metal, oxide, etc., and the SiC may contain a small amount of TiC etc. In the invention, the ratio of component (A) and component (Il) used in the sintered body is as follows:
When the total of (8) component and (II) * is 100%), (13) component is usually 1 to 9
0% by weight, preferably 2 to 80% by weight, more preferably 3% by weight
It is within the range of ~70% heavy pickling.
この(R)成分の割合が1重量%未満であると、焼結性
および焼結体の強度等が不十分になり、方、90屯量%
を越えると、焼結体の硬度が十分てないことかある。If the proportion of this (R) component is less than 1% by weight, the sinterability and strength of the sintered body will be insufficient;
If it exceeds this, the hardness of the sintered body may not be sufficient.
本願請求項2の発明において、前記焼結体に使用する
(C)成分の割合としては、 (A)L&、分と (B
)成分と (C)成分の合計を100重量%としたとき
(C)成分を、通常、0.2〜20重41%、好ましく
は、 0.3〜15重量%より好ましくは0.5〜10
重に%の範囲内にするのか適当である。In the invention of claim 2 of the present application, used in the sintered body
(C) The ratio of the components is (A) L&, min and (B
When the total of component ) and component (C) is 100% by weight, component (C) is usually 0.2 to 20% by weight, preferably 0.3 to 15% by weight, more preferably 0.5 to 15% by weight. 10
It is appropriate to keep it within the range of %.
この(C)成分の割合を上記の範囲内にすることによっ
て、焼結性および強度等の向」−を安定化する効果かあ
るとともにダイヤモンド膜の密着性をさらに向1−させ
ることかてきる。By keeping the proportion of this component (C) within the above range, it is possible to have the effect of stabilizing the properties such as sinterability and strength, and to further improve the adhesion of the diamond film. .
なお、この(C)成分の、1.q合か、20重量%を越
えると、焼結体ひいてはダイヤモンド被覆部材の硬度か
1−分なものとならないことかある。In addition, 1. of this (C) component. If the amount exceeds 20% by weight, the hardness of the sintered body and thus of the diamond-coated member may not be as high as 1 minute.
本願請求項1および2の発明における焼結体は、その原
料として前記所定の各成分を用いるほかは、公知のカー
バイト系焼結型超硬材、特に炭化タングステン系焼結体
の製造に用いられる各種の方法を利用して製造すること
がてきる。The sintered body according to the invention of claims 1 and 2 of the present application can be used in the production of known carbide-based sintered cemented carbide materials, especially tungsten carbide-based sintered bodies, except that the predetermined components are used as raw materials. It can be manufactured using various methods.
すなわち、+i7記焼結体は、前記所定の各原料を、必
要に応して適宜の粒径に粉砕し、所定の−1,1合て、
必要に応して補助結合剤[たとえば、エチレングリコー
ル、EVA (エチレン−ビニルアクリレート)、ポリ
フチレンメタクリレート、アダマンタン等を主成分とす
る物質等]を加えて、混合し、プレス成形し、必要かあ
れば予備焼結し、その後、焼結し、必要かあれば加工す
ることによって得ることかてきる。That is, the +i7 sintered body is obtained by pulverizing each of the above-mentioned predetermined raw materials to an appropriate particle size as necessary, and then combining the predetermined -1,1,
If necessary, add an auxiliary binder [e.g., a substance whose main component is ethylene glycol, EVA (ethylene-vinyl acrylate), polyethylene methacrylate, adamantane, etc.], mix, press-form, and assemble as necessary. If necessary, it can be obtained by pre-sintering, then sintering, and processing if necessary.
この焼結に使用する前記各成分はいずれにおいでも、粉
末状、微粉末状、超微粒子状、ウィスカー状、あるいは
他の各種の形状のものとして使用することか可能である
か、平均粒径か、通常、0.05〜4.0ルm、好まし
くは、0.05〜2.0μm程度の微粒子もしくは超微
粒子状のものやアスペクト比か20〜200程度のウィ
スカー状のものなどを好適に使用することかてきる。In any case, each of the above-mentioned components used for this sintering can be used in the form of powder, fine powder, ultrafine particles, whiskers, or various other shapes, and the average particle size. Usually, fine particles or ultrafine particles of about 0.05 to 4.0 μm, preferably about 0.05 to 2.0 μm, whisker-like particles with an aspect ratio of about 20 to 200, etc. are preferably used. I have something to do.
これらの各成分は微粒であるほど焼結部材の強度は−に
かるか、平均粒径か0.05未満のものは、製法および
コストの面て実用的に不利になることか・ある。The finer the particles of each of these components, the lower the strength of the sintered member, and those with an average particle size of less than 0.05 may be disadvantageous in terms of manufacturing method and cost.
焼結温度としては、通常、 1.60(1〜2,200
℃好ましくは、 1,600〜z、ooo℃程度の範囲
内にするのか適当である。The sintering temperature is usually 1.60 (1 to 2,200
The temperature is preferably within the range of 1,600 to 00°C.
焼結時間としては、通常、12時間以上、好ましくは、
12〜24時間程度の範囲内にするのか適当である。The sintering time is usually 12 hours or more, preferably
It is appropriate to keep it within the range of about 12 to 24 hours.
本発明によると、以上のようにして)、(材に用いる焼
結体を得ることかてきる。According to the present invention, it is possible to obtain a sintered body to be used as a material as described above.
この焼結体は、前記焼結に際してr・め所望の形状にし
ておいてから得ることかてきるし、あるいは、前記焼結
後、必要に応して所望の形状に加工して1本発明のダイ
ヤモンド被覆部材の基材として用いることかできる。This sintered body can be obtained by shaping it into a desired shape during the sintering, or alternatively, after the sintering, it can be processed into a desired shape as necessary. It can be used as a base material for diamond-coated parts.
+Ui記焼結体を構成する前記各成分は、通常の焼結体
に見られるように、微粒組織、複合金属化合物、粗粒組
織の何れの形態をとっていてもよくあるいはこれらの混
合物の形y悲を有していてもよいか、通常は、微粒組織
と複合金属化合物とを主にする形yムを、有しているも
のか好適である。+ Ui The above-mentioned components constituting the sintered body may be in the form of a fine grain structure, a composite metal compound, a coarse grain structure, or a mixture thereof, as seen in ordinary sintered bodies. It is preferable that the material has a shape mainly consisting of a fine grain structure and a composite metal compound.
本発明のダイヤモンド被覆部材は、前記焼結体の所9J
の表面に気相合成法によりタイヤセン1〜j詠を形成し
てなるものである。しかもこのダイヤモンド膜は効率的
に容易にかつ均一な厚みに形成することかてきる。The diamond-coated member of the present invention is provided at 9J of the sintered body.
Tiases 1 to 1j are formed on the surface of the resin by vapor phase synthesis method. Moreover, this diamond film can be efficiently and easily formed to a uniform thickness.
ちなみに、従来のWC系超硬合金製基材に気相合成法を
適用しても、プラズマが均一に集中せず、ダイヤモンド
膜の厚みか不均一になりやすいし、またSi:IN、等
のセラミックス製)、!5材に気相合成法を適用した場
合は、ダイヤモンドの成膜速度か遅い問題かある。By the way, even when vapor phase synthesis is applied to conventional WC-based cemented carbide substrates, the plasma does not concentrate uniformly and the thickness of the diamond film tends to be uneven. Made of ceramics),! When applying the vapor phase synthesis method to the 5 materials, there is a problem that the diamond film formation rate is slow.
本発明のダイヤモンド被覆部材において、前記ダイヤモ
ンド膜の厚みは、 jt;4記したようにダイヤモンド
膜と焼結体とのはっきりとした境界面を決めることか困
難である等の理由によって、厳密に規定することがてき
ないのであるか、通常0.1〜100ルm程度、好まし
くは、0.2〜30鉢m程度にするのか適当である。In the diamond-coated member of the present invention, the thickness of the diamond film is strictly defined due to the difficulty in determining a clear interface between the diamond film and the sintered body as described in 4. If it is not possible to do so, it is appropriate to make the size usually about 0.1 to 100 m, preferably about 0.2 to 30 m.
このダイヤモンド膜があまり薄いと、焼結体の表面を充
分に被覆することかてきないことかあり、一方、ダイヤ
モンド膜の厚みかあまり大きいと、焼結体からダイヤモ
ンド膜か′Asすることかある。If this diamond film is too thin, it may not be possible to sufficiently cover the surface of the sintered body.On the other hand, if the diamond film is too thick, the diamond film may be separated from the sintered body. .
なお、本発明においては、単にダイヤモンドと訂うとき
、それはダイヤモンドの他に、ダイヤモンド状炭素を一
部において含有するダイヤモンドおよびダイヤモンド状
炭素を含むものである。In the present invention, when simply referring to diamond, it includes not only diamond but also diamond that partially contains diamond-like carbon and diamond-like carbon.
前記ダイヤモンド膜を形成する際に用いる炭素源ガスと
しては、通常用いられている各種のものを使用すること
がてきる。As the carbon source gas used in forming the diamond film, various commonly used carbon source gases can be used.
この炭素源ガスとしては、たとえば、メタンエタン、プ
ロパン、メタン等のパラフィン系炭化水素:エチレン、
プロピレン、フチレン等のオレフィン系炭化水素:アセ
チレン、アリレン等のアセチレン系炭化水素:ブタジェ
ン、アレン等のジオレフィン系炭化水素、シクロプロパ
ン、シクロメタン、シクロペンタン、シクロヘキサン等
の脂環式炭化水素;シクロブタジェン、ベンゼン、トル
エン、キシレン、ナフタレン等の芳香族炭化水素、アセ
トン、ジエチルケトン、ベンゾフェノン等のケトン類:
メタノール、エタノール等のアルコール類:このほかの
含酸素炭化水素、1−リメチルアミン、トリエチルアミ
ン等のアミン類:このほかの含窒素炭化水素、炭酸ガス
、−酸化炭素過酸化炭素、さらに、単体てはないか、ガ
ソリン等の消防法危険物第4類、第1類、ケロシン、テ
レピン油、しょうのう油等の第2石油類、重油等の第3
石油類、ギヤー油、シリンター油等の第4石油類も使用
することかてきる。また前記各種の炭素化合物を混合し
て使用することもてきる。Examples of this carbon source gas include paraffinic hydrocarbons such as methaneethane, propane, and methane; ethylene;
Olefin hydrocarbons such as propylene and phthylene; Acetylene hydrocarbons such as acetylene and arylene; Diolefin hydrocarbons such as butadiene and allene; Alicyclic hydrocarbons such as cyclopropane, cyclomethane, cyclopentane, and cyclohexane; cyclobutane; Aromatic hydrocarbons such as Zhen, benzene, toluene, xylene, and naphthalene; ketones such as acetone, diethyl ketone, and benzophenone:
Alcohols such as methanol and ethanol: Other oxygen-containing hydrocarbons, amines such as 1-limethylamine and triethylamine: Other nitrogen-containing hydrocarbons, carbon dioxide gas, -carbon oxide carbon peroxide, and not alone Gasoline, etc., are Class 4 and Class 1 hazardous materials under the Fire Service Act, Class 2 petroleum, such as kerosene, turpentine, and turmeric oil, and Class 3, heavy oil, etc.
Petroleum oils, gear oil, cylinder oil, and other tertiary petroleum oils may also be used. It is also possible to use a mixture of the various carbon compounds mentioned above.
これらの中ても、好ましいのはメタン、エタン、プロパ
ン等のパラフィン系炭化水素、エタノール、メタノール
等のアルコール類、アセトン、ベンゾフェノン等のケト
ン類、トリメチルアミン、トリエチルアミン等のアミン
類、炭酸ガス、−酸化炭素あるいは、これらの混合物て
あり、特に−酸化炭素を主成分とするものか々fましい
。Among these, preferred are paraffinic hydrocarbons such as methane, ethane, and propane; alcohols such as ethanol and methanol; ketones such as acetone and benzophenone; amines such as trimethylamine and triethylamine; Carbon or a mixture thereof, particularly carbon oxide as a main component, is preferred.
また、これらは水素等の活性ガスやヘリウム、アルゴン
。ネオン、キセノン、窒素等の不活性ガスと混合して用
いてもよい。In addition, these include active gases such as hydrogen, helium, and argon. It may be used in combination with an inert gas such as neon, xenon, or nitrogen.
原本“1ガスかメタンガス(CI+ 、 )を含有する
場合、メタンガスの含有量は5モル%未満であるのか好
ましい。When containing methane gas (CI+, ), it is preferable that the content of methane gas is less than 5 mol%.
特に−酸化炭素か好ましいのは、−酸化炭素を1〜8(
)モル%という高い濃度で有する原料ガスを使用してダ
イヤモンド膜を形成すると、反応か焼結体の表面に止ま
らず、より深い部分、つまり炭化物等の化合物か存在す
る表層部分ても進行する結果、焼結体とダイヤモンド膜
との密着性をより向上させることかてきるからである。Particularly preferred is -carbon oxide, -carbon oxide is 1 to 8 (
) When a diamond film is formed using a raw material gas with a high concentration of mol%, the reaction does not stop at the surface of the sintered body, but proceeds deeper, that is, in the surface layer where compounds such as carbides are present. This is because the adhesion between the sintered body and the diamond film can be further improved.
また、好適な炭素源ガスとして一酸化炭素を使用する場
合、−酸化炭素と水素ガスとを組合わせるのか好ましい
。−酸化炭素と水素ガスとをM1合わせた原料ガスによ
ると、ダイヤモンド膜の成長速度か速い(たとえば、同
一条件ては、メタンと水素ガスとを組合わせた原料ガス
の場合の2〜10倍のダイヤモンド薄膜の成長速度かイ
1tられること・かある。)。Moreover, when carbon monoxide is used as a suitable carbon source gas, it is preferable to combine carbon oxide and hydrogen gas. - The growth rate of the diamond film is faster with a raw material gas that is a combination of carbon oxide and hydrogen gas (for example, under the same conditions, it is 2 to 10 times faster than with a raw material gas that is a combination of methane and hydrogen gas). (The growth rate of a diamond thin film may be affected.)
!)η記−酸化炭素としては特に制限かなく、たとえば
石炭、コークス等と空気または本法気を熱時反応させて
得られる発生炉ガスや水性ガスを十分に精製したものを
用いることかてきる。! ) η - There are no particular restrictions on the carbon oxide; for example, sufficiently purified generator gas or water gas obtained by the hot reaction of coal, coke, etc. with air or this method gas can be used. .
前記水素ガスとしては、特に制限かなく、たとえば石油
類のガス化、天然ガス、水性ガス等の変成、水の電解、
鉄と氷Iに気との反応、石炭の完全ガス化等により得ら
れるものを十分に精製したものを用いることかてきる。The hydrogen gas is not particularly limited, and may be used, for example, in the gasification of petroleum, the transformation of natural gas, water gas, etc., the electrolysis of water,
It is possible to use sufficiently refined iron and ice obtained by reaction with air, complete gasification of coal, etc.
水素ガスと一酸化炭素との混合ガスを原料ガスとして使
用する場合、−酸化炭素ガスの含有量か1通常1〜80
モル%、好ましくは1〜60モル%、さらに好ましくは
2〜60モル%となる割合で原料ガスを調製する。When using a mixed gas of hydrogen gas and carbon monoxide as a raw material gas, -the content of carbon oxide gas is usually 1 to 80
The raw material gas is prepared at a ratio of mol%, preferably 1 to 60 mol%, more preferably 2 to 60 mol%.
前記混合ガス中の一酸化炭素ガスの含有量か1モル%よ
りも少ないと、ダイヤモンド膜の1&長速度か十分に得
られないことかあり、一方、−酸化炭素ガスの含有液か
80モル%を越えると堆植するダイヤモンド膜中のダイ
ヤモンド成分の純度か低下することかある。If the content of carbon monoxide gas in the mixed gas is less than 1 mol%, it may not be possible to obtain a sufficient diamond film velocity.On the other hand, if the carbon monoxide gas content is less than 80 mol% If it exceeds this, the purity of the diamond component in the deposited diamond film may decrease.
前記)に素源ガスもしくはこれを含有する原料ガスは、
活性化(励起)状態で、前記焼結体の所定の表面に、通
常、適当なキャリアーガスとともに流通させるなどして
接触・反応せしめ、所望の性状のダイヤモンド膜を形成
させる。The source gas or the raw material gas containing it in the above) is
In an activated (excited) state, the diamond film is brought into contact and reacted with a predetermined surface of the sintered body, usually by flowing it together with a suitable carrier gas, to form a diamond film with desired properties.
このキャリアーガスとしては、通常、前記例示の不活性
ガス、必要に応じて水素等の反応性ガスあるいはこれら
の混合ガスを使用することかてきる。また、このキャリ
アーガスには、所望により、水ノ入気、酸素等の添加ガ
スを含有させることもてきる。As this carrier gas, the above-mentioned inert gases, if necessary, reactive gases such as hydrogen, or mixed gases thereof can be used. Additionally, this carrier gas may contain additive gases such as water inlet and oxygen, if desired.
本発明において、前記ダイヤモンド膜の形成には、公知
の方法、たとえば、CVD法、PVD法、PCVD法、
あるいはこれらを組み合わせた方法なと、各種のタイヤ
モント膜気相合成法を利用することかてきる。In the present invention, the diamond film is formed by a known method, such as a CVD method, a PVD method, a PCVD method,
Alternatively, a combination of these can be achieved by using various tire mont film vapor phase synthesis methods.
これらの中でも1通常、EACVD方式を含めた各種の
熱フイラメント法(熱CVD法)、熟プラズマ法を含め
た各種の直流プラズマCVD法、熱プラズマ法を含めた
各種の高周波プラズマCVD法、ECR法あるいは右磁
場法を含めたマイクロ波プラズマCVD法などが好適に
使用することかてきる。Among these, 1. Normally, various thermal filament methods (thermal CVD methods) including EACVD methods, various direct current plasma CVD methods including mature plasma methods, various high frequency plasma CVD methods including thermal plasma methods, and ECR method. Alternatively, a microwave plasma CVD method including a right magnetic field method may be preferably used.
ダイヤモンド膜の形成のための反応条件としては、特に
制限はなく、cti記のそれぞれの気相合成法に通常用
いられる反応条件を適用することかてきる。There are no particular restrictions on the reaction conditions for forming the diamond film, and reaction conditions commonly used in each of the vapor phase synthesis methods described in CTI can be applied.
たとえば1反応圧力は、通常、I O−6〜+03To
rr、好ましくは、 10−’ 〜10:ITorrの
範囲内にするのか適当である。この反応圧力か1O−6
Torrよりも低いと、ダイヤモンド薄膜の形成速度か
遅くなることかある。一方、10’ Torrより高く
してもそれに相当する効果は奏されない。For example, one reaction pressure is usually IO-6~+03To
rr, preferably within the range of 10-' to 10:ITorr. This reaction pressure is 1O-6
If it is lower than Torr, the formation rate of the diamond thin film may be slowed down. On the other hand, even if it is made higher than 10' Torr, no corresponding effect will be achieved.
反応温度(iij記焼結体の表面温度)は、前記原料ガ
スの活性化手段等により異なるのて、−概に規定するこ
とはてきないか、通常、 300〜1.ZOO0C1好
ましくは、 500〜1,100℃の範囲内にするのか
適当である。この温度か300℃よりも低いと、結晶性
のダイヤモンド膜の形成か不充分となることかあり、一
方、 1,200°Cを超えると、形成されたダイヤモ
ンド膜のエツチングか生し易くなる。The reaction temperature (the surface temperature of the sintered body described in iii. ZOO0C1 is preferably within the range of 500 to 1,100°C. If this temperature is lower than 300°C, the formation of a crystalline diamond film may be insufficient, while if it exceeds 1,200°C, the formed diamond film is likely to be etched.
反応時間はダイヤモンド膜か所望の厚みとなるようにタ
イヤセンl−膜の形成速度に応して適宜に設定するのが
好ましい。The reaction time is preferably set appropriately depending on the formation rate of the Tiresen l-film so that the desired thickness of the diamond film is obtained.
以上のようにして本発明のダイヤセン1−被Ya部材を
製造することかてきる。As described above, the Yasen 1-Ya member of the present invention can be manufactured.
本発明のダイヤモンド被覆部材は、前述したように従来
のダイヤモンド(薄)膜被覆超硬合金と比べて、特にダ
イヤモンド11りとノ、(材である焼結体との密着性か
著しく優れている。As mentioned above, the diamond-coated member of the present invention has significantly superior adhesion to the sintered body, especially diamond 11, compared to conventional diamond (thin) film-coated cemented carbide. .
したかって、本3?!明のダイヤモンド被覆部材は、た
とえばハイド、トリルなどの切削工具、研磨工具、ダイ
ス、線引きダイス、カッター、エンドミル、タップ、ゲ
ージ、ボンディングツールのヘラ1〜等の超硬1几や耐
庁耗性工具、機械部品等として好適に利用することがて
きる。You want book 3? ! Ming's diamond-coated parts are suitable for cutting tools such as hides and trills, polishing tools, dies, wire drawing dies, cutters, end mills, taps, gauges, bonding tools such as spatulas 1 to 1, and wear-resistant tools. , can be suitably used as mechanical parts, etc.
[実施例]
(実施例1)
焼結体の原料として、粒径1.2μmのWC94屯呈%
と粒径0.6用mの5iC5屯量%と粒径0.5gmの
ZrO,1重h1%との混合物をHIP (熱間静水圧
焼結:加圧力2,000kg/cm2、加圧時間24時
間、加工時温度1.8110’C)により焼結しJIS
5PGN 422規格に定める焼結体を製造した
。[Example] (Example 1) As a raw material for the sintered body, WC94 with a particle size of 1.2 μm was used
A mixture of 5iC5 tonnage% with particle size 0.6 m and ZrO, 1 weight h1% with particle size 0.5 gm was HIPed (Hot isostatic pressure sintering: pressurizing force 2,000 kg/cm2, pressurizing time Sintered for 24 hours at processing temperature 1.8110'C) JIS
A sintered body specified in the 5PGN 422 standard was manufactured.
この焼結体を基材とし、その表面に下記の条件で公知の
マイクロ波プラズマCVD法により、厚み約2ルmのタ
イヤセン1〜脛を形成した。This sintered body was used as a base material, and tire sensors 1 to shins having a thickness of about 2 m were formed on the surface thereof by a known microwave plasma CVD method under the following conditions.
周波e : 2.45 GHz
出 力 400 W
基材温度:900 ℃
時 間 : 1 時間
圧 力 : 40 Torr原料混合ガ
ス(CO7容量%)。Frequency e: 2.45 GHz Output 400 W Base material temperature: 900°C Time: 1 hour Pressure: 40 Torr Raw material mixed gas (CO7% by volume).
CO流i 7 secm 、 H2W賃93 sccm
次に、こうして得られたダイヤモンド被覆部材を超硬工
具として用いて、Slを8重機%の割合て含有するアル
ミニウム合金を一ド記の条件て切削した。CO style i7 secm, H2W rate 93 sccm
Next, the thus obtained diamond-coated member was used as a cemented carbide tool to cut an aluminum alloy containing 8% Sl under the following conditions.
被削材 : 切削速度: 切削時間: 送 リ : 切り込み。Work material: Cutting speed: Cutting time: Sending: Notch.
加I液 ニ
アルミニウム合金
(AC4C−76)
800 m/sin;
to sin;
0.1 am/rev;
0.25 am;
水性エマルション油
その結果、切削時間か10分迄ては切削に用いたダイヤ
モンド被覆部材は、すくい面も逃げ面も全く摩耗してい
ないことか確認された。Additive I liquid Nialuminum alloy (AC4C-76) 800 m/sin; to sin; 0.1 am/rev; 0.25 am; water-based emulsion oil It was confirmed that the covering member had no wear on either the rake face or the flank face.
(実施例2〜6)
焼結部材の原ネ1として、それぞれ、[WC/5iC(
SiC粉末8重量%、SiCウィスカー2重u%)]、
[WC/S i、N、(In爪量% ) コ 、 [
WC/84 C(10重量%) コ 、 [WC/
S i * Nイ (5玉量%)/Y、、O,(2重
量%)コおよび[WC/5iC(5重量%) / T
1N(3爪針%)]を用いたほかは、実施例1と同様に
してダイヤモンド被覆部材を製造し、切削試験を行った
。(Examples 2 to 6) [WC/5iC(
8% by weight of SiC powder, 2% by weight of SiC whiskers)],
[WC/S i, N, (In nail amount%) Ko, [
WC/84 C (10% by weight), [WC/
S i *Ni (5 weight%) / Y, , O, (2 weight %) and [WC/5iC (5 weight %) / T
A diamond-coated member was manufactured in the same manner as in Example 1, except that 1N (3-claw needle %)] was used, and a cutting test was conducted.
その結果、切削時間か10分迄ではいずれのダイヤモン
ド被覆部材においても、ずくい【njも逃げ面も全く摩
耗していないことか確認された。As a result, it was confirmed that there was no wear on the flanks or flanks of any of the diamond-coated members within the cutting time of 10 minutes.
(実施例7〜I3、比較例1〜2)
焼結体の原料として第1表に示す組成の混合物を用いた
こと以外は、実施例1と同様にして焼結体を製造した。(Examples 7 to I3, Comparative Examples 1 to 2) Sintered bodies were produced in the same manner as in Example 1, except that a mixture having the composition shown in Table 1 was used as the raw material for the sintered body.
次に、この焼結体を基材とし、その表面に下記の条件て
公知のマイクロ波プラズマCVD法により、厚み約12
gmのダイヤモンド膜を形成した。Next, using this sintered body as a base material, the surface was coated with a thickness of about 12 mm by a known microwave plasma CVD method under the following conditions.
A gm diamond film was formed.
周波数: 2.45 GHz
出 力 :400W
基材温度: 1000 ℃
時 間 ° 5 時間
圧 力 : 400 Torr原料混合
ガス(CO15容量%):
cod量15 sccm 、 H2M+Cl85次に、
こうして得られたダイヤモンド被YQ部材な超硬r几と
して用いて、Siを12重量%の割合て含有するアルミ
ニウム合金を下記の条件て切削した。Frequency: 2.45 GHz Output: 400W Base material temperature: 1000 °C Time ° 5 hours Pressure: 400 Torr Raw material mixed gas (CO15% by volume): COD amount 15 sccm, H2M + Cl85 Next,
Using the thus obtained diamond-covered YQ member as a carbide mill, an aluminum alloy containing 12% by weight of Si was cut under the following conditions.
被削材 アルミニウム合金
(AC8A−76)
切削速度: 50fl l/min;送 リ
0.1 mm/rev;切り込み
・ 0.25 ll1m;
上記ダイヤモンド被覆部材からダイヤモンド11りが2
q敲するまでの時間(切削時間)を測定したところ、第
1表に示すようになった。Work material Aluminum alloy (AC8A-76) Cutting speed: 50fl l/min; feed rate
0.1 mm/rev; Cutting depth: 0.25 ll1m; Diamond 11 from the above diamond-coated member is 2
The time required for milling (cutting time) was measured and the results are shown in Table 1.
なお、各実施例のダイヤモンド被YQ部材は、ダイヤモ
ンド膜か2q離しても刃先は溶着し難くかった。In addition, in the diamond-coated YQ members of each example, the cutting edge was difficult to weld even when the diamond film was separated by 2q.
(以下、余白)
[発明の効果]
本発明によると、ダイヤモンド膜を被覆する基材として
特定の成分からなる焼結体を用いているのて、焼結体と
ダイヤモンド膜との密着性を著しく4絢することかでき
、切削工具、超硬工具、耐摩耗性工具等に使用したとき
、高性俺と耐久性を発揮することのてきる寿命の長いダ
イヤモンド被覆部材を提供することかてきる。(Hereinafter, blank space) [Effects of the Invention] According to the present invention, since a sintered body made of specific components is used as a base material for coating a diamond film, the adhesion between the sintered body and the diamond film is significantly improved. 4. To provide a long-life diamond-coated member that can be used in cutting tools, carbide tools, wear-resistant tools, etc., and exhibits high strength and durability. .
!r−続補正書
特許出願人 出光石油化学株式会社
平成2年 3月14日
、、?′コ
特許庁長官 殿
1.11 73件の表示
平成1年特1作願第315935号
2 発明の名称
ダイヤモンド被覆部材
3 補正をする者
Js件との関係 特許出願人
住所 東京都千代[H区丸の白玉丁目1番1弓名
称 出光石油化学株式会社
代表者 水郷 睦
4 代理人
住所 東京都新宿区西新宿七丁目18番20号日
生ヒル6階
7 補正の内容
(1) 明細書の第13ベージ第6行に記・11の「
Li Co3.Naz CO:l l Jを「Li2
C0:l 、Naz CO3、Jに補正する。! r-Continued Amendment Patent Applicant Idemitsu Petrochemical Co., Ltd. March 14, 1990,...? 'Mr. Commissioner of the Patent Office
1.11 Display of 73 items 1999 Special Patent Application No. 315935 2 Name of the invention Diamond-coated member 3 Person making the amendment Relationship to Js Patent applicant Address Chiyo, Tokyo [1 Shiratama-chome, Maru, H-ku] 1 Name: Idemitsu Petrochemical Co., Ltd. Representative: Mutsumi Mizugo 4 Agent address: 6th floor, 7th floor, Hinase Hill, 7-18-20 Nishi-Shinjuku, Shinjuku-ku, Tokyo Contents of amendment (1) Stated on page 13, line 6 of the statement・11 “
LiCo3. Naz CO: l l J as “Li2
Corrected to C0:l, Naz CO3,J.
(2) 明細書の第17ベーシ第13行から同ページ
第14行に記載の「12時間以−ヒ、好ましくは、12
〜24時間」を[0,5時間以上、好ましくは、0,5
〜24時間」に補正する。(2) “More than 12 hours, preferably 12
~24 hours'' to [0.5 hours or more, preferably 0.5 hours
~24 hours”.
(3) 明細−)の第29ページ第8行に記載の[4
00T orr Jをr 40T orr Jに補正す
る。(3) [4] stated on page 29, line 8 of the specification-)
Correct 00T orr J to r 40T orr J.
(4) 明細書の第3Iベージに記載の第1表を別紙
の第1表に差し替える。(4) Table 1 described on page 3 of the specification shall be replaced with Table 1 of the attached sheet.
以 上that's all
Claims (2)
ウ素の炭化物または窒化物の少なくとも一種とから得ら
れる焼結体の表面に、気相合成法で形成されたダイヤモ
ンド膜を有することを特徴とするダイヤモンド被覆部材
。(1) A diamond film formed by a vapor phase synthesis method is provided on the surface of a sintered body obtained from (A) carbide tank tin and (B) at least one type of carbide or nitride of silicon or boron. diamond-coated parts.
ウ素の炭化物または窒化物の少なくとも一種と、(C)
周期表 I a、IIa、IIIa、IVa、Va、IIIb、IVb
族金属または稀土類元素の炭化物、酸化物、窒化物、炭
窒化物、炭酸塩、ホウ化物または有機化合物の少なくと
も一種とから得られる焼結体の表面に、気相合成法によ
り形成されたダイヤモンド膜を有することを特徴とする
ダイヤモンド被覆部材。(2) (A) tungsten carbide; (B) at least one carbide or nitride of silicon or boron; and (C)
Periodic Table I a, IIa, IIIa, IVa, Va, IIIb, IVb
Diamond formed by vapor phase synthesis on the surface of a sintered body obtained from at least one of carbides, oxides, nitrides, carbonitrides, carbonates, borides, or organic compounds of group metals or rare earth elements. A diamond-coated member characterized by having a film.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/459,626 US4990403A (en) | 1989-01-20 | 1990-01-02 | Diamond coated sintered body |
KR1019900000482A KR930010199B1 (en) | 1989-01-20 | 1990-01-16 | Diamond coating member and manufacturing method thereof |
EP90101105A EP0379220A1 (en) | 1989-01-20 | 1990-01-19 | Diamond coated sintered body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1157289 | 1989-01-20 | ||
JP1-11572 | 1989-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02275788A true JPH02275788A (en) | 1990-11-09 |
Family
ID=11781637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1315935A Pending JPH02275788A (en) | 1989-01-20 | 1989-12-05 | Part material covered with diamond |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPH02275788A (en) |
KR (1) | KR930010199B1 (en) |
CA (1) | CA2008185A1 (en) |
DD (1) | DD296877A5 (en) |
RU (1) | RU2018411C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992014689A1 (en) * | 1991-02-18 | 1992-09-03 | Sumitomo Electric Industries, Ltd. | Diamond-clad hard material, throwaway tip, and method of making said material and tip |
-
1989
- 1989-12-05 JP JP1315935A patent/JPH02275788A/en active Pending
-
1990
- 1990-01-16 KR KR1019900000482A patent/KR930010199B1/en not_active IP Right Cessation
- 1990-01-17 DD DD90337160A patent/DD296877A5/en not_active IP Right Cessation
- 1990-01-19 CA CA002008185A patent/CA2008185A1/en not_active Abandoned
- 1990-01-19 RU SU904742938A patent/RU2018411C1/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992014689A1 (en) * | 1991-02-18 | 1992-09-03 | Sumitomo Electric Industries, Ltd. | Diamond-clad hard material, throwaway tip, and method of making said material and tip |
Also Published As
Publication number | Publication date |
---|---|
DD296877A5 (en) | 1991-12-19 |
RU2018411C1 (en) | 1994-08-30 |
KR930010199B1 (en) | 1993-10-15 |
CA2008185A1 (en) | 1990-07-20 |
KR900011535A (en) | 1990-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4990403A (en) | Diamond coated sintered body | |
JP5460790B2 (en) | Surface covering member and cutting tool | |
US8293359B2 (en) | Multilayer CVD-coating and tool with such a coating | |
CN103764322B (en) | Cutting element | |
WO2013081047A1 (en) | Coated tool | |
JP2012144766A (en) | Covering member | |
JP3214891B2 (en) | Diamond coated members | |
JP6162484B2 (en) | Surface covering member | |
JPH0583634B2 (en) | ||
JPH02275788A (en) | Part material covered with diamond | |
JP4849234B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP2005153098A (en) | Surface coated cutting tool | |
JPS6312940B2 (en) | ||
JPH0762541A (en) | Wear resistant material | |
JP4936742B2 (en) | Surface coating tools and cutting tools | |
JPH05209276A (en) | Manufacture of diamond coated member | |
JP4484500B2 (en) | Surface coated cutting tool | |
JPS63306805A (en) | diamond coated cutting tools | |
JP3167371B2 (en) | Peel-resistant diamond-coated sintered alloy and method for producing the same | |
JPH0517231A (en) | Composite sintered body, cutting tool and diamond coated member using same | |
JPS59170264A (en) | Surface coated super hard alloy parts for cutting tools | |
JPH0234733B2 (en) | ||
JP3167374B2 (en) | High adhesion diamond coated sintered alloy | |
JP2648718B2 (en) | Manufacturing method of coated cemented carbide tool | |
JP3068242B2 (en) | Manufacturing method of diamond coated member |