JP4484500B2 - Surface coated cutting tool - Google Patents
Surface coated cutting tool Download PDFInfo
- Publication number
- JP4484500B2 JP4484500B2 JP2003397311A JP2003397311A JP4484500B2 JP 4484500 B2 JP4484500 B2 JP 4484500B2 JP 2003397311 A JP2003397311 A JP 2003397311A JP 2003397311 A JP2003397311 A JP 2003397311A JP 4484500 B2 JP4484500 B2 JP 4484500B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- ticn
- carbon
- cutting
- ticn film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005520 cutting process Methods 0.000 title claims description 73
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 58
- 239000000463 material Substances 0.000 claims description 37
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 34
- 238000000576 coating method Methods 0.000 claims description 34
- 239000013078 crystal Substances 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 239000010408 film Substances 0.000 description 180
- 239000010410 layer Substances 0.000 description 34
- 239000007789 gas Substances 0.000 description 27
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 6
- 229910001141 Ductile iron Inorganic materials 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000012495 reaction gas Substances 0.000 description 5
- 229910001018 Cast iron Inorganic materials 0.000 description 4
- 229910001060 Gray iron Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000002173 cutting fluid Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、優れた耐チッピング性および耐摩耗性を有する硬質被覆膜を表面に被着形成した表面被覆切削工具に関し、特に金属の断続切削等の大きな衝撃が切刃にかかるような切削に際しても、安定して優れた耐欠損性および耐摩耗性を有する表面被覆切削工具に関する。 The present invention relates to a surface-coated cutting tool in which a hard coating film having excellent chipping resistance and wear resistance is formed on the surface, and in particular, when cutting such that a large impact such as intermittent cutting of metal is applied to the cutting edge. The present invention also relates to a surface-coated cutting tool having stable and excellent fracture resistance and wear resistance.
従来より、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の母材の表面に、TiC膜、TiN膜、TiCN膜およびAl2O3膜等の硬質被覆膜を複数層被着形成した表面被覆切削工具が多用されている。 Conventionally, cutting tools that are widely used for metal cutting have hard coatings such as TiC films, TiN films, TiCN films, and Al 2 O 3 films on the surface of base materials such as cemented carbides, cermets, and ceramics. A surface-coated cutting tool in which a plurality of coating films are formed is often used.
かかる表面被覆切削工具においては、最近の切削加工の高能率化に従って金属の重断続切削等の大きな衝撃が切刃にかかるような過酷な切削条件で使われるようになっており、従来の工具では硬質被覆膜が突発的に発生する大きな衝撃に耐えきれず、チッピングや硬質被覆膜の剥離によって母材が露出してしまい、これが引き金となって切刃に大きな欠損や異常摩耗が発生して工具寿命の長寿命化ができないという問題があった。 In such surface-coated cutting tools, in accordance with recent high-efficiency cutting, heavy impacts such as heavy interrupted cutting of metals are used under severe cutting conditions where the cutting blade is applied. In conventional tools, The hard coating cannot withstand the sudden impact that occurs suddenly, and the base material is exposed due to chipping or peeling of the hard coating. As a result, the tool life cannot be extended.
そこで、特許文献1には、筋状TiCN結晶(縦長成長TiCN結晶)からなるTiCN膜を設けるとともに、その間を粒状のTiN層で分割することにより層間剥離を抑制でき、工具の耐欠損性が向上すると記載されている。 Therefore, Patent Document 1 provides a TiCN film made of streak-like TiCN crystal (vertically grown TiCN crystal), and can divide between them by a granular TiN layer, thereby suppressing delamination and improving the fracture resistance of the tool. Then it is described.
また、特許文献2には、筋状TiCN結晶(縦長成長TiCN結晶)からなるTiCN膜の炭素Cと窒素Nとの比率を変えた構成とし、上層(Al2O3膜)側を窒素の含有量の多いTiCN膜、下層(母材)側を炭素の含有量の多いTiCN膜とすることにより、高速切削におけるチッピングの発生を低減できることが記載されている。
しかしながら、上記特許文献1に記載されたTiCN膜の構成によっても、重断続切削等の突発的に大きな衝撃がかかるような切削においては、依然としてTiCN膜とAl2O3膜との界面にてチッピングや硬質被覆膜の剥離が発生する場合があったり、逆に硬質被覆膜全体が剥離して母材が露出してしまい急激に摩耗が進行する場合もあり、いずれの場合にも工具寿命が短くなっていた。 However, depending on the configuration of the TiCN film described in Patent Document 1, in a sudden large impact is applied such cutting such heavy interrupted cutting, still chipping at the interface between TiCN film and the Al 2 O 3 film In some cases, the hard coating film may peel off, or the entire hard coating film may peel off and the base material may be exposed, resulting in rapid wear. Was getting shorter.
また、特許文献2のようにAl2O3膜側を窒素含有量の多いTiCN膜−下層を炭素含有量の多いTiCN膜にて構成した場合、高切込みや高送りなどの高速切削におけるチッピング性は全体的に向上する。しかしながら、被削材がねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)等の鋳物である場合や、鋼であっても被削材の性能バラツキによって部分的に硬かったり形状の異常があったりする場合には、チップの切刃に突発的に大きな衝撃がかかってTiCN膜も含めて被覆膜が剥離して母材が露出してしまい、急激に摩耗が進行するという問題があった。さらには、チップ間の膜厚のバラツキによって最も耐摩耗性と耐欠損性に大きな影響を与えるAl2O3膜の膜厚が薄くなると耐摩耗性の低下によって塑性変形を引き起こし、逆にAl2O3膜の膜厚が厚く成膜されたような場合には、被覆膜がTiCN膜も含めて剥離して母材が露出してしまい急激に摩耗が進行するという不具合が発生し、膜厚に対応する特性バラツキが顕著であった。 In addition, when the Al 2 O 3 film side is a TiCN film having a high nitrogen content and the lower layer is a TiCN film having a high carbon content as in Patent Document 2, chipping properties in high speed cutting such as high cutting and high feed Will improve overall. However, when the work material is cast iron such as gray cast iron (FC material) or ductile cast iron (FCD material), or even steel, the work material may be partially hard or abnormal in shape due to performance variations. In this case, there is a problem that a large impact is suddenly applied to the cutting edge of the chip, the coating film including the TiCN film is peeled off, the base material is exposed, and the wear progresses rapidly. Further, when the thickness of the Al 2 O 3 film greatly affects the most wear and fracture resistance due to variations in thickness between the chips is reduced to cause a plastic deformation by a decrease in wear resistance, Al 2 conversely When the O 3 film is formed to be thick, the coating film is peeled off including the TiCN film, and the base material is exposed to cause a problem that the wear proceeds rapidly. The characteristic variation corresponding to the thickness was remarkable.
従って、本発明は上記課題を解決するためになされたもので、その目的は、断続切削等の突発的に工具切刃に強い衝撃がかかるような過酷な切削条件においても、連続切削等の耐摩耗性が重視される切削条件においても、安定して母材−TiCN膜−Al2O3膜の層間でチッピングや剥離が発生することなく、ばらつきなく優れた耐欠損性および耐摩耗性を有する長寿命の切削工具を提供することにある。 Therefore, the present invention has been made to solve the above-mentioned problems, and its purpose is to withstand resistance to continuous cutting and the like even under severe cutting conditions such as intermittent cutting and sudden impact on the tool cutting edge. Even in cutting conditions where wearability is important, chipping and peeling do not occur stably between the base material-TiCN film-Al 2 O 3 film, and it has excellent fracture resistance and wear resistance without variation. It is to provide a long-life cutting tool.
本発明者は、上記課題に対し、母材表面にTiCN膜とAl2O3膜を順に設けた硬質被覆膜を具備する切削工具において耐摩耗性を損なわずに耐欠損性を高める方法について検討した。その結果、TiCN膜を母材との界面に対して垂直な方向に成長した筋状TiCN結晶とするとともに、上層(前記Al2O3膜)側に1.5≦C/N≦4である炭素冨化TiCN膜を、下層(母材)側に0.2≦C/N≦0.7である窒素冨化TiCN膜を配置する構成とした。これによって、連続切削においては母材−TiCN膜−Al2O3膜間で硬質被覆膜が剥離することなく高い耐摩耗性を発揮する。また、断続切削において、例え突発的に大きな衝撃が硬質被覆膜にかかったときでも、Al2O3膜が炭素冨化TiCN膜に対して最適な付着力を有するために、炭素冨化TiCN膜とAl2O3膜との界面にてAl2O3膜がわずかに剥離したりクラックを発生させたりすることによって衝撃を吸収することができる。そのために、Al2O3膜が広範囲にわたって剥離したり、硬質被覆膜全体がチッピングしたり剥離したりすることを防止できる。さらに、Al2O3膜が剥離した後に残存して露出する炭素冨化TiCN膜も高い耐摩耗性を有することから、例え試料間バラツキによってAl2O3膜の膜厚が厚くなって硬質被覆膜の耐欠損性が低下したり、Al2O3膜の膜厚が薄くなって硬質被覆膜の耐摩耗性が低下した場合でも、塑性変形することなく、残ったTiCN膜がカバーして安定した耐摩耗性および耐欠損性を発揮することを知見した。 In order to solve the above-mentioned problems, the present inventor is a method for improving the fracture resistance without impairing the wear resistance in a cutting tool having a hard coating film in which a TiCN film and an Al 2 O 3 film are sequentially provided on the surface of a base material. investigated. As a result, the TiCN film is a streak TiCN crystal grown in a direction perpendicular to the interface with the base material, and 1.5 ≦ C / N ≦ 4 on the upper layer (the Al 2 O 3 film) side. The carbon-nitrided TiCN film was configured such that a nitrogen-nitrided TiCN film satisfying 0.2 ≦ C / N ≦ 0.7 was disposed on the lower layer (base material) side. Thereby, in continuous cutting, high wear resistance is exhibited without the hard coating film being peeled between the base material-TiCN film-Al 2 O 3 film. Further, in intermittent cutting, even if a sudden large impact is applied to the hard coating film, the Al 2 O 3 film has an optimum adhesion to the carbon-nitrided TiCN film, so that the carbon-nitrided TiCN it is possible to absorb the impact by the Al 2 O 3 film is or generating cracks or slightly peeled at the interface between the film and the Al 2 O 3 film. Therefore, it is possible to prevent the Al 2 O 3 film from peeling over a wide range, and the entire hard coating film from being chipped or peeled off. Furthermore, since the carbon-nitrided TiCN film that remains exposed after the Al 2 O 3 film is peeled off also has high wear resistance, the film thickness of the Al 2 O 3 film becomes thick due to, for example, variation between samples. Even if the chipping resistance of the covering film is reduced or the wear resistance of the hard coating film is reduced due to the thin film thickness of the Al 2 O 3 film, the remaining TiCN film is covered without plastic deformation. It was found that it exhibits stable wear resistance and fracture resistance.
上記効果は、ねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)のような高硬度黒鉛粒子が分散した鋳鉄等の金属の重断続切削等のような工具切刃に強い衝撃がかかる過酷な切削条件や、連続切削条件、さらにはこれら断続切削と連続切削とを組み合わせた複合切削条件において得に有効であり、優れた耐摩耗性および耐欠損性を安定して有する切削工具が得られるものである。 The above-mentioned effects are severe cutting in which a strong impact is applied to the tool cutting edge such as heavy interrupted cutting of metal such as cast iron in which high-hardness graphite particles are dispersed, such as gray cast iron (FC material) and ductile cast iron (FCD material). It is effective in the conditions, continuous cutting conditions, and combined cutting conditions that combine these intermittent cutting and continuous cutting, and it is possible to obtain a cutting tool that stably has excellent wear resistance and fracture resistance. is there.
すなわち、本発明の表面被覆切削工具は、硬質合金からなる母材の表面に、少なくともTiCN膜とAl2O3膜とを順次被着形成した硬質被覆膜を具備し、前記TiCN膜が、縦断面で見て、前記母材との界面に対して垂直な方向に成長した筋状TiCN結晶からなるとともに、前記TiCN膜の炭素Cと窒素Nの構成比C/Nが、前記Al2O3膜側の最上層に位置して1.5≦C/N≦4である炭素冨化TiCN膜と、該炭素冨化TiCN膜の下層に位置して該炭素冨化TiCN膜との界面が不連続な組織からなり0.2≦C/N≦0.7である窒素冨化TiCN膜と、の構成比C/Nの異なる2層以上にて構成し、かつX線回折パターンにおいて回折角2θ=60.4°〜61.5°の範囲内に前記TiCN膜のピークが2本以上存在するとともに、前記窒素冨化TiCN膜の膜厚みtNに対する炭素冨化TiCN膜の膜厚みtCの比tC/tNが0.8〜1.2であり、さらに前記TiCN膜において、前記炭素冨化TiCN膜中の筋状TiCN結晶の平均結晶幅が0.5〜1μmで前記窒素冨化TiCN膜中の筋状TiCN結晶の平均結晶幅より大きいことを特徴とするものである。 That is, the surface-coated cutting tool of the present invention comprises a hard coating film in which at least a TiCN film and an Al 2 O 3 film are sequentially deposited on the surface of a base material made of a hard alloy, and the TiCN film is When viewed in a vertical cross section, it is composed of streak TiCN crystals grown in a direction perpendicular to the interface with the base material, and the composition ratio C / N of carbon C and nitrogen N of the TiCN film is Al 2 O. 3 and the carbon enriched TiCN film is located on the uppermost layer of the film side is 1.5 ≦ C / N ≦ 4, located in the lower layer of the carbon MotoTomi of TiCN film interface between the carbon MotoTomi of TiCN film It is composed of two or more layers having different composition ratios C / N and a nitrogen angled TiCN film having a discontinuous structure and 0.2 ≦ C / N ≦ 0.7, and a diffraction angle in an X-ray diffraction pattern Two or more peaks of the TiCN film in the range of 2θ = 60.4 ° to 61.5 ° While standing, the ratio t C / t N of film thickness t C carbon enriched TiCN film to film thickness t N of the nitrogen enriched TiCN film is 0.8 to 1.2, in yet a TiCN layer, The average crystal width of the streaked TiCN crystal in the carbon-trapped TiCN film is 0.5 to 1 μm, which is larger than the average crystal width of the streaked TiCN crystal in the nitrogen-trapped TiCN film.
ここで、炭素冨化TiCN膜とAl2O3膜の間にTi(CxNyOz)(x+y+z=1,0≦x≦1、0≦y≦1、0<z≦1)の中間膜が存在することが、炭素冨化TiCN膜とAl2O3膜の界面での付着力を最適化させることができるとともに、Al2O3膜中のAl2O3の結晶構造をα−Al2O3としやすいため、硬質被覆膜全体としての耐摩耗性および耐欠損性を高めるために望ましい。なお、数種類あるAl2O3の結晶構造のなかで、α−Al2O3は高温で安定であり高温特性に優れるという長所を持つ。 Here, T i (C x N y O z ) ( x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 <z ≦ 1) between the carbon-nitrided TiCN film and the Al 2 O 3 film. of the intermediate layer is present, it is possible to optimize the adhesion at the interface of the carbon enrichment TiCN film and the Al 2 O 3 film, the crystal structure of Al 2 O 3 in the Al 2 O 3 film Since it is easy to use α-Al 2 O 3 , it is desirable for improving the wear resistance and fracture resistance of the hard coating film as a whole. Incidentally, among the crystal structures of several certain Al 2 O 3, α-Al 2 O 3 has the advantage of excellent high temperature characteristics are stable at high temperatures.
また、前記Al2O3膜の厚みが1〜10μm、TiCN膜の総厚みが3〜15μmであることが、硬質皮膜全体として耐摩耗性および耐欠損性のバランスを最適化するために望ましい。 In addition, it is desirable that the thickness of the Al 2 O 3 film is 1 to 10 μm and the total thickness of the TiCN film is 3 to 15 μm in order to optimize the balance of wear resistance and fracture resistance as the entire hard film.
さらに、前記窒素冨化TiCN膜の厚みtNに対する炭素冨化TiCN膜の厚みtCがtC/tNの比率で0.8〜1.2であることが、耐摩耗、耐欠損性の性能のバランスを最適化するために重要である。 Further, the thickness t C of the carbon-nitrided TiCN film with respect to the thickness t N of the nitrogen-nitrided TiCN film is 0.8 to 1.2 in the ratio of t C / t N. It is important to optimize the balance of performance.
さらには、前記TiCN膜が、前記炭素冨化TiCN膜中の筋状TiCN結晶の平均結晶幅が前記窒素冨化TiCN膜中の筋状TiCN結晶の平均結晶幅より大きいことが、膜界面での付着力を向上させるために重要である。 Furthermore, the TiCN film has an average crystal width of the streaked TiCN crystal in the carbon-trapped TiCN film larger than the average crystal width of the streaked TiCN crystal in the nitrogen-trapped TiCN film. It is important for improving adhesion.
上記本発明の表面被覆切削工具は、母材表面にTiCN膜とAl2O3膜を順に設けた硬質被覆膜において、TiCN膜を母材との界面に対して垂直な方向に成長した筋状TiCN結晶とするとともに、前記Al2O3膜側に1.5≦C/N≦4である炭素冨化TiCN膜を、下層に0.2≦C/N≦0.7である窒素冨化TiCN膜を配することによって、連続切削において母材−TiCN膜−Al2O3膜間で硬質被覆膜が剥離することなく高い耐摩耗性を発揮できる。また、断続切削において、例え突発的に大きな衝撃が硬質被覆膜にかかったときでも、炭素冨化TiCN膜とAl2O3膜との界面にてAl2O3膜がわずかに剥離したりクラックを発生させたりすることによって衝撃を吸収して、Al2O3層が広範囲にわたって剥離したり、硬質被覆膜全体がチッピングしたり剥離したりすることを防止できる。さらに、Al2O3膜が剥離した後に残存した炭素冨化TiCN膜も高い耐摩耗性を有することから、例え試料間バラツキによってAl2O3膜の膜厚が厚くなって硬質被覆膜の耐欠損性が低下したり、Al2O3膜の膜厚が薄くなって硬質被覆膜の耐摩耗性が低下した場合でも、残ったTiCN膜がカバーして安定した耐摩耗性および耐欠損性を発揮する。 The surface-coated cutting tool of the present invention is a hard coating film in which a TiCN film and an Al 2 O 3 film are sequentially provided on the surface of a base material, and the TiCN film grows in a direction perpendicular to the interface with the base material. A carbon nitride TiCN film having 1.5 ≦ C / N ≦ 4 on the Al 2 O 3 film side and a nitrogen film having 0.2 ≦ C / N ≦ 0.7 on the lower layer. By providing the TiCN film, high wear resistance can be exhibited without peeling the hard coating film between the base material-TiCN film-Al 2 O 3 film in continuous cutting. Further, in the intermittent cutting, even when sudden large shocks even is applied to the hard coating, peeled off the Al 2 O 3 film is slightly at the interface between the carbon enriched TiCN film and the Al 2 O 3 film By generating cracks, the impact can be absorbed and the Al 2 O 3 layer can be prevented from peeling over a wide range, and the entire hard coating film can be prevented from chipping and peeling. Further, since the carbon-nitrided TiCN film remaining after the Al 2 O 3 film is peeled off also has high wear resistance, the thickness of the Al 2 O 3 film is increased due to variations between samples, and the hard coating film Even if the fracture resistance is reduced or the wear resistance of the hard coating film is reduced due to the thin film thickness of the Al 2 O 3 film, the remaining TiCN film covers and provides stable wear resistance and fracture resistance. Demonstrate sex.
特に、本発明の上記構成は、ねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)のような高硬度黒鉛粒子が分散した鋳鉄等の金属の重断続切削等のような工具切刃に強い衝撃がかかる過酷な切削条件や、連続切削条件、さらにはこれら断続切削と連続切削とを組み合わせた複合切削条件において、優れた耐摩耗性および耐欠損性を発揮するものである。 In particular, the above configuration of the present invention has a strong impact on tool cutting edges such as heavy interrupted cutting of metals such as cast iron in which high-hardness graphite particles such as gray cast iron (FC material) and ductile cast iron (FCD material) are dispersed. In such severe cutting conditions, continuous cutting conditions, and combined cutting conditions in which these intermittent cutting and continuous cutting are combined, excellent wear resistance and fracture resistance are exhibited.
本発明の表面被覆切削工具の一例について説明する。 An example of the surface-coated cutting tool of the present invention will be described.
本発明の表面被覆切削工具(以下、単に工具と略す。)は、炭化タングステン(WC)と、所望により周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)の鉄属金属からなる結合相にて結合させた超硬合金、または炭化チタン(TiC)や炭窒化チタン(TiCN)を含んで周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)の鉄属金属から成る結合相にて結合させたサーメット、さらには、ダイヤモンド質焼結体、立方晶窒化硼素(cBN)質焼結体等の硬質合金からなる母材の表面に硬質被覆膜3を被着形成したものである。 The surface-coated cutting tool of the present invention (hereinafter simply abbreviated as a tool) is made of tungsten carbide (WC) and, optionally, a group 4a, 5a, 6a group metal carbide, nitride, carbonitride. A cemented carbide in which at least one selected hard phase is bonded with a binder phase composed of an iron group metal of cobalt (Co) and / or nickel (Ni), or titanium carbide (TiC) or titanium carbonitride (TiCN) And a hard phase composed of at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals of the periodic table, including cobalt (Co) and / or nickel (Ni) iron A hard coating film 3 is formed on the surface of a base material made of a hard alloy such as a cermet bonded with a binder phase made of a metal, a diamond sintered body, a cubic boron nitride (cBN) sintered body. Deposition type One in which the.
本発明によれば、硬質被覆膜として、少なくとも炭窒化チタン(TiCN)層とアルミナ(Al2O3)層とを順次被着形成した構成からなり、TiCN膜が母材との界面に対して垂直な方向に成長した筋状TiCN結晶からなるとともに、TiCN膜の炭素Cと窒素Nの構成比C/Nが、前記Al2O3膜側の最上層に位置する1.5≦C/N≦4である炭素冨化TiCN膜と、該炭素冨化TiCN膜の下層に位置する0.2≦C/N≦0.7である窒素冨化TiCN膜と、の構成比C/Nの異なる2層以上にて構成したことが大きな特徴である。なお、TiCN膜の炭素Cと窒素NとのC/N比は、被覆膜の破断面もしくは破断面を鏡面加工した加工面についてオージェ電子分光分析器を用いて測定面からの深さが1μmの位置にて測定する。 According to the present invention, the hard coating film has a structure in which at least a titanium carbonitride (TiCN) layer and an alumina (Al 2 O 3 ) layer are sequentially deposited, and the TiCN film is formed on the interface with the base material. And the composition ratio C / N of carbon C and nitrogen N of the TiCN film is 1.5 ≦ C / position located in the uppermost layer on the Al 2 O 3 film side. The composition ratio C / N of the carbon-nitrided TiCN film with N ≦ 4 and the nitrogen-nitrided TiCN film with 0.2 ≦ C / N ≦ 0.7 located under the carbon-nitrided TiCN film A major feature is that it is composed of two or more different layers. The C / N ratio of carbon C and nitrogen N in the TiCN film is such that the fracture surface of the coating film or the processed surface obtained by mirror machining of the fracture surface is 1 μm in depth from the measurement surface using an Auger electron spectrometer. Measure at the position.
上記構成によって、母材とTiCN膜(炭素冨化TiCN膜と窒素冨化TiCN膜)とAl2O3層間の層間密着性を向上させ、かつAl2O3層の密着力を適正な範囲に制御することができ、連続切削時には硬質被覆膜が剥離することなく優れた耐摩耗性を発揮し、断続切削時には例え突発的に大きな衝撃が被覆膜にかかったときでもAl2O3層が微小剥離やクラックの生成等によって衝撃を吸収できる。それにより、Al2O3層が広範囲にわたって剥離したり、硬質被覆膜全体がチッピングしたり剥離したりすることを防止できる。さらに、その後、Al2O3層が剥離した後にも残存し露出した炭素冨化TiCN膜が高い耐摩耗性を備えるので、急激に摩耗が進行することなく、安定した耐摩耗性および耐欠損性を有する工具1が得られる。 With the above configuration, the adhesion between the base material, the TiCN film (carbon-enriched TiCN film and nitrogen-enriched TiCN film) and the Al 2 O 3 layer is improved, and the adhesion of the Al 2 O 3 layer is within an appropriate range. It can be controlled, exhibits excellent wear resistance without peeling off the hard coating film during continuous cutting, and Al 2 O 3 layer even when a large impact is suddenly applied to the coating film during intermittent cutting However, the impact can be absorbed by fine peeling or generation of cracks. Thereby, it is possible to prevent the Al 2 O 3 layer from being peeled over a wide range, and the entire hard coating film from being chipped or peeled off. Furthermore, since the carbon-nitrided TiCN film that remains and is exposed after the Al 2 O 3 layer is peeled off has high wear resistance, stable wear resistance and fracture resistance without abrupt wear progress. Is obtained.
なお、本発明のTiCN膜(炭素冨化TiCN膜、窒素冨化TiCN膜)は、硬質被覆膜の厚み方向(母材との界面に対して垂直な方向)の結晶長さ/平均結晶幅=アスペクト比が2以上の筋状TiCN結晶からなることが望ましく、縦断面組織にて観察したとき、粒状TiCN結晶が30面積%以下の割合で混合した混晶であってもよい。 The TiCN film (carbon-enriched TiCN film, nitrogen-enriched TiCN film) of the present invention has a crystal length / average crystal width in the thickness direction of the hard coating film (direction perpendicular to the interface with the base material). = A streaked TiCN crystal having an aspect ratio of 2 or more is desirable, and when observed in a longitudinal cross-sectional structure, it may be a mixed crystal in which granular TiCN crystals are mixed at a ratio of 30 area% or less.
また、窒素冨化TiCN膜の厚みtNに対する炭素冨化TiCN膜の厚みtCがtC/tNの比率で0.8〜1.2であることが、耐摩耗、耐欠損性の性能のバランスを最適化するために重要である。 Further, the thickness t C of the carbon-nitrided TiCN film with respect to the thickness t N of the nitrogen-nitrided TiCN film is 0.8 to 1.2 in the ratio of t C / t N , so that the performance of wear resistance and fracture resistance is obtained. It is important to optimize the balance.
さらに、TiCN膜とAl2O3膜以外に、TiN膜、TiC膜、TiCNO膜、TiCO膜、TiNO膜の群から選ばれる少なくとも1層が含まれていてもよくこれによって、母材の成分の拡散防止、硬質被覆膜の各層間密着力の向上、工具表面を明るい色にして使用の有無を識別する等の効果をもたせることもできる。さらに、TiCN膜、Al2O3膜の組織、結晶構造を制御することも可能である。 Further, in addition to the TiCN film and the Al 2 O 3 film, at least one layer selected from the group of a TiN film, a TiC film, a TiCNO film, a TiCO film, and a TiNO film may be included. It is also possible to provide effects such as prevention of diffusion, improvement of adhesion between the layers of the hard coating film, and the presence or absence of use by making the tool surface a bright color. Further, the structure and crystal structure of the TiCN film and the Al 2 O 3 film can be controlled.
具体的には、TiCN膜と母材の間に、付着力向上および母材成分の拡散による耐摩耗性の低下を防ぐため窒化チタン(TiN)層(最下層)を被覆することが望ましい。また、TiN層の層厚は0.1〜2μmの範囲であることが付着力の低下を防ぐ点で望ましい。 Specifically, it is desirable to coat a titanium nitride (TiN) layer (lowermost layer) between the TiCN film and the base material in order to prevent adhesion degradation and wear resistance degradation due to diffusion of base material components. Further, it is desirable that the thickness of the TiN layer is in the range of 0.1 to 2 μm from the viewpoint of preventing a decrease in adhesive force.
また、Al2O3膜の上層に、硬質被覆膜の表面層としてTiN層(表層)を形成することによって、工具が金色を呈するため、工具1を使用したときに表層が摩耗して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できるため望ましい。 In addition, by forming a TiN layer (surface layer) as the surface layer of the hard coating film on the upper layer of the Al 2 O 3 film, the tool exhibits a gold color, so that the surface layer is worn when the tool 1 is used. It is desirable because it is easy to determine whether or not it has been completed, and the progress of wear can be easily confirmed.
一方、本発明に使用されるAl2O3膜としては、結晶構造がα型であることが望ましい。しかし、α型結晶構造をもつAl2O3は優れた耐摩耗性を持つが、TiCN膜4との付着力は極端に弱くなりやすい。そこで、Al2O3膜の下層に位置する炭素冨化TiCN膜の平均粒子幅は0.5〜1μmとすることが重要である。 On the other hand, it is desirable that the Al 2 O 3 film used in the present invention has an α-type crystal structure. However, Al 2 O 3 having an α-type crystal structure has excellent wear resistance, but the adhesion to the TiCN film 4 tends to become extremely weak. Therefore, it is important that the average particle width of the carbon-nitrided TiCN film located under the Al 2 O 3 film is 0.5 to 1 μm.
なお、Al2O3膜をα型結晶構造とする場合には、TiCN膜とAl2O3膜との間に0.2μm以下のTiCO層、TiNO層またはTiCNO層のいずれかよりなる中間層を介装することにより安定してα型結晶構造を成長させることができる。 When the Al 2 O 3 film has an α-type crystal structure, an intermediate layer made of any one of a TiCO layer, a TiNO layer, or a TiCNO layer having a thickness of 0.2 μm or less is provided between the TiCN film and the Al 2 O 3 film. By interposing, α-type crystal structure can be stably grown.
また、Al2O3膜の層厚が1〜10μm、特に3〜8μm、さらに3.5〜7μmであり、かつTiCN膜4の総膜厚が3〜15μm、特に5〜10μmあることが耐摩耗性、特に鋳鉄に対する耐摩耗性および耐溶着性を維持しつつ、膜剥離を防止して耐欠損性を高めることができる点で望ましい。 The Al 2 O 3 film has a layer thickness of 1 to 10 μm, particularly 3 to 8 μm, more preferably 3.5 to 7 μm, and the TiCN film 4 has a total film thickness of 3 to 15 μm, particularly 5 to 10 μm. It is desirable in that the film can be prevented from peeling and the fracture resistance can be improved while maintaining the wear resistance, particularly the wear resistance and welding resistance to cast iron.
(製造方法)
上述した表面被覆切削工具を製造するには、まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる母材を作製する。
(Production method)
In order to manufacture the surface-coated cutting tool described above, first, metal powder, carbon powder, or the like is appropriately added to inorganic powder such as metal carbide, nitride, carbonitride, oxide, etc. that can be formed by firing the hard alloy described above. Addition, mixing, molding into a predetermined tool shape by a known molding method such as press molding, cast molding, extrusion molding, cold isostatic pressing, etc., followed by firing in a vacuum or non-oxidizing atmosphere The base material which consists of the hard alloy mentioned above is produced.
次に、上記母材2の表面を所望によって研磨加工した後、その表面に例えば化学気相蒸着(CVD)法によって硬質被覆膜を成膜する。筋状TiCN膜4の成膜条件は、例えば、反応ガス組成として、体積%でTiCl4ガスを0.1〜10体積%、N2ガスを0〜80体積%、CH4ガスを0〜0.1体積%、CH3CNガスを0.1〜3体積%、残りがH2ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaにて成膜する。 Next, after polishing the surface of the base material 2 as desired, a hard coating film is formed on the surface by, for example, chemical vapor deposition (CVD). The film-forming conditions of the streaky TiCN film 4 are, for example, as a reaction gas composition, 0.1% by volume to 10% by volume of TiCl 4 gas, 0 to 80% by volume of N 2 gas, and 0 to 0 of CH 4 gas. 0.1% by volume, CH 3 CN gas is 0.1-3% by volume, and the remaining gas mixture is H 2 gas, and the mixture is introduced into the reaction chamber, and the chamber is heated to 800-1100 ° C. and 5-85 kPa. To form a film.
ここで、本発明では、TiCN膜のC/N比を変えるために、反応ガスの量を変える。TiCN膜の構成比1.5≦C/N≦4の炭素冨化TiCN膜を成膜するには、CH3CNガスを0.9〜3.0体積%にし、N2ガスを30〜40体積%にする。構成比0.2≦C/N≦0.7の窒素冨化TiCN膜を成膜するには、CH3CNガスを0.1〜0.7体積%、N2ガスを35〜45体積%にすることで調整可能である。 Here, in the present invention, the amount of reaction gas is changed in order to change the C / N ratio of the TiCN film. In order to form a carbon-enriched TiCN film having a composition ratio of 1.5 ≦ C / N ≦ 4 of the TiCN film, the CH 3 CN gas is adjusted to 0.9 to 3.0% by volume, and the N 2 gas is changed to 30 to 40%. Volume percent. In order to form a nitrogen enriched TiCN film having a composition ratio of 0.2 ≦ C / N ≦ 0.7, 0.1 to 0.7% by volume of CH 3 CN gas and 35 to 45% by volume of N 2 gas are used. It is possible to adjust it.
ここで、上記成膜条件のうち、反応ガス中のCH3CNガスの割合が0.1体積%より少ないと筋状TiCN結晶に成長させることができず粒状結晶となる。また、上記反応ガス流量が上記範囲を外れるとTiCN膜のC/N比が本発明の範囲から外れる傾向にある。さらに、TiCN膜を成膜する際の成膜温度を850℃〜1050℃の範囲で調整することによりTiCN膜中の筋状TiCN粒子の結晶幅を変えることができる。 Here, if the proportion of the CH 3 CN gas in the reaction gas is less than 0.1% by volume among the above film forming conditions, it cannot be grown into a streak TiCN crystal and becomes a granular crystal. Further, when the reaction gas flow rate is out of the above range, the C / N ratio of the TiCN film tends to be out of the range of the present invention. Furthermore, the crystal width of the streak-like TiCN particles in the TiCN film can be changed by adjusting the film forming temperature when forming the TiCN film in the range of 850 ° C. to 1050 ° C.
そして、本発明によれば、引き続き、Al2O3膜を成膜する。Al2O3膜の成膜方法としては、AlCl3ガスを3〜20体積%、HClガスを0.5〜3.5体積%、CO2ガスを0.01〜5.0体積%、H2Sガスを0〜0.01体積%、残りがH2ガスからなる混合ガスを用い、900〜1100℃、5〜10kPaとするにより成膜できる。 Then, according to the present invention, an Al 2 O 3 film is continuously formed. As a method for forming the Al 2 O 3 film, 3 to 20% by volume of AlCl 3 gas, 0.5 to 3.5% by volume of HCl gas, 0.01 to 5.0% by volume of CO 2 gas, H the 2 S gas 0-0.01% by volume, using a mixed gas balance being H 2 gas, 900 to 1100 ° C., can be more deposited the 5~10KPa.
また、TiN膜を成膜するには、反応ガス組成としてTiCl4ガスを0.1〜10体積%、N2ガスを0〜60体積%、残りがH2ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。 In addition, in order to form a TiN film, a mixed gas composed of 0.1 to 10% by volume of TiCl 4 gas, 0 to 60% by volume of N 2 gas, and the remainder of H 2 gas as the reaction gas composition is sequentially adjusted. And introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 5 to 85 kPa.
さらに、TiCNO膜、TiCO膜、TiNO膜を成膜するには、TiCl4ガスを0.1〜3体積%、CH4ガスを0〜10体積%、CO2ガスを0.01〜5体積%、N2ガスを0〜60体積%、残りがH2ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。 Furthermore, in order to form a TiCNO film, a TiCO film, and a TiNO film, the TiCl 4 gas is 0.1 to 3% by volume, the CH 4 gas is 0 to 10% by volume, and the CO 2 gas is 0.01 to 5% by volume. Then, a mixed gas composed of 0 to 60% by volume of N 2 gas and the remaining H 2 gas is sequentially adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 5 to 85 kPa.
平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%、平均粒径2.0μmの炭化チタン(TiC)粉末を0.5質量%、TaC粉末を5質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMA120412)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。 6% by mass of metal cobalt (Co) powder with an average particle size of 1.2 μm and 0% of titanium carbide (TiC) powder with an average particle size of 2.0 μm with respect to tungsten carbide (WC) powder with an average particle size of 1.5 μm. .5% by mass, TaC powder was added and mixed at a rate of 5% by mass, formed into a cutting tool shape (CNMA120204) by press molding, and then subjected to binder removal treatment at 1500 ° C. in a vacuum of 0.01 Pa. A cemented carbide was prepared by firing for 1 hour.
そして、上記超硬合金に対して、CVD法により表1に示す条件で各種の硬質被覆膜を形成して表2に示す多層膜構成からなる試料No.1〜10の表面被覆切削工具を作製した。
そして、この切削工具を用いて下記の条件により、連続切削試験および断続切削試験を行い、耐摩耗性および耐欠損性を評価した。 Then, using this cutting tool, a continuous cutting test and an intermittent cutting test were performed under the following conditions to evaluate the wear resistance and fracture resistance.
(連続切削試験)
被削材 :ダクタイル鋳鉄スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:250m/分
送り速度:0.35mm/rev
切り込み:2mm
切削時間:25分
その他 :水溶性切削液使用
評価項目:顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
(断続試験)
被削材 :ダクタイル鋳鉄4本溝付スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:200m/分
送り速度:0.35mm/rev
切り込み:2mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数(試料10個を評価した際の最小値)
Work Material: Ductile Cast Iron Sleeve Material (FCD700)
Tool shape: CNMA120204
Cutting speed: 250 m / min Feeding speed: 0.35 mm / rev
Cutting depth: 2mm
Cutting time: 25 minutes Others: Use of water-soluble cutting fluid Evaluation item: Observe the cutting edge with a microscope and measure the amount of flank wear and tip wear (intermittent test)
Work material: Ductile cast iron 4 grooved sleeve material (FCD700)
Tool shape: CNMA120204
Cutting speed: 200 m / min Feed speed: 0.35 mm / rev
Cutting depth: 2mm
Others: Use of water-soluble cutting fluid Evaluation item: Number of impacts leading to defects (minimum value when 10 samples are evaluated)
表2、3より、TiCN膜を1層のみ成膜したNo.7では、耐欠損性が低いものであった。 From Tables 2 and 3, No. 1 in which only one TiCN film was formed. In No. 7, the chipping resistance was low.
また、母材側からC/N比が3の炭素冨化TiCN膜、C/N比が0.45の窒素冨化TiCN膜、Al2O3膜の順に成膜した構成のNo.8では、Al2O3膜が剥離する際にTiCN膜ごと剥離して母材が露出してしまい、早期に剥離やチッピングが生じて、連続切削、断続切削ともに本発明品よりも劣る結果となった。 Further, No. from the base material side carbon enrichment TiCN film of C / N ratio is 3, the C / N ratio of 0.45 nitrogen enriched TiCN film, the structure was formed in the order of the Al 2 O 3 film No. 8, when the Al 2 O 3 film is peeled off, the TiCN film is peeled off and the base material is exposed, and peeling and chipping occur at an early stage, and both continuous cutting and intermittent cutting are inferior to the product of the present invention. became.
これに対して、本発明に従い、母材側から0.2≦C/N≦0.7である窒素冨化TiCN膜、1.5≦C/N≦4である炭素冨化TiCN膜、Al2O3膜と順次成膜した構成のNo.1〜6では連続切削においても断続切削においてもばらつきなく長寿命であり、安定して耐欠損性および耐摩耗性とも優れた切削性能を有するものであった。 In contrast, according to the present invention, from the base material side, a nitrogen-nitrided TiCN film satisfying 0.2 ≦ C / N ≦ 0.7, a carbon-nitrided TiCN film satisfying 1.5 ≦ C / N ≦ 4, Al No. 2 having a structure in which a 2 O 3 film and a film were sequentially formed. Nos. 1 to 6 had long life with no variation in both continuous cutting and intermittent cutting, and had stable cutting performance with excellent fracture resistance and wear resistance.
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003397311A JP4484500B2 (en) | 2003-11-27 | 2003-11-27 | Surface coated cutting tool |
US10/780,527 US7172807B2 (en) | 2003-02-17 | 2004-02-17 | Surface-coated member |
DE102004007653A DE102004007653A1 (en) | 2003-02-17 | 2004-02-17 | Surface coated part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003397311A JP4484500B2 (en) | 2003-11-27 | 2003-11-27 | Surface coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005153099A JP2005153099A (en) | 2005-06-16 |
JP4484500B2 true JP4484500B2 (en) | 2010-06-16 |
Family
ID=34722497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003397311A Expired - Fee Related JP4484500B2 (en) | 2003-02-17 | 2003-11-27 | Surface coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4484500B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6677876B2 (en) * | 2016-08-09 | 2020-04-08 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent welding chipping and peeling resistance |
JP6916472B2 (en) * | 2019-08-30 | 2021-08-11 | 株式会社タンガロイ | Cover cutting tool |
-
2003
- 2003-11-27 JP JP2003397311A patent/JP4484500B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005153099A (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4854359B2 (en) | Surface coated cutting tool | |
JP5710008B2 (en) | Cutting tools | |
EP3747575A1 (en) | Coated tool, and cutting tool comprising same | |
JP3250134B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance | |
JP4711714B2 (en) | Surface coated cutting tool | |
JP4351521B2 (en) | Surface coated cutting tool | |
JP3250414B2 (en) | Method for producing cutting tool coated with titanium carbonitride layer surface | |
JP3282592B2 (en) | Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting | |
JP2001239404A (en) | Cutting tool made of surface coated cemented carbide having good chipping resistance | |
JP6162484B2 (en) | Surface covering member | |
EP3747577A1 (en) | Coated tool, and cutting tool comprising same | |
JP3419140B2 (en) | Surface coated cutting tool | |
JP4484500B2 (en) | Surface coated cutting tool | |
JP4284144B2 (en) | Surface coated cutting tool | |
JP3087504B2 (en) | Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance | |
JPH10237650A (en) | Wc base cemented carbide and its production | |
JP3360565B2 (en) | Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance | |
JP4936742B2 (en) | Surface coating tools and cutting tools | |
JP4663248B2 (en) | Surface coated cutting tool | |
JPH0364469A (en) | Coated sintered hard alloy tool | |
JP3371796B2 (en) | Surface coated cemented carbide cutting tool with excellent fracture resistance | |
JP2002160106A (en) | Cutting tool made of surface coating cemented carbide having high surface lublicity against chip | |
JP3230373B2 (en) | Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer | |
JP3371823B2 (en) | Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer | |
JPH11267906A (en) | Surface-coated cutting tool made of cemented carbide having excellent in wear resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20091124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100223 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4484500 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |