JPH02269923A - Constant temperature type heat flow flux sensor - Google Patents
Constant temperature type heat flow flux sensorInfo
- Publication number
- JPH02269923A JPH02269923A JP9224989A JP9224989A JPH02269923A JP H02269923 A JPH02269923 A JP H02269923A JP 9224989 A JP9224989 A JP 9224989A JP 9224989 A JP9224989 A JP 9224989A JP H02269923 A JPH02269923 A JP H02269923A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- substrate
- sensor
- thermal conductivity
- low thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000919 ceramic Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 11
- 239000010408 film Substances 0.000 claims abstract description 9
- 230000001681 protective effect Effects 0.000 claims abstract description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims abstract description 5
- 239000010409 thin film Substances 0.000 claims abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000012546 transfer Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 235000006693 Cassia laevigata Nutrition 0.000 description 2
- 241000522641 Senna Species 0.000 description 2
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229940124513 senna glycoside Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は定温度型熱流束センサに関し、詳しくは流!1
lIl熱交換器における伝熱機構を解明するのに使用す
るセンサに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a constant temperature heat flux sensor. 1
This invention relates to a sensor used to elucidate the heat transfer mechanism in an II heat exchanger.
(従来の技術とその問題点)
流0層熱交l!A器は層内および層・伝熱面間の優れた
熱輸送特性のため、気体を熱媒体とする熱交換器の高性
能伝熱促進法として有効である。(Conventional technology and its problems) Flow zero layer heat exchangel! Because of its excellent heat transport properties within layers and between layers and heat transfer surfaces, the A device is effective as a high-performance heat transfer promotion method for heat exchangers that use gas as a heat medium.
一方、流動層は、本来、気泡の生成、通過、気泡と粒子
の混合などによる非定常的特性を有し、その現象は複雑
であるため、伝熱特性の本質に迫る研究は不十分であり
、伝熱機構の究明には非定常伝熱特性の解明が重要であ
る。即ち、流動層が気体や液体のようにセンナに対して
ダメージを与える程度がほとんど無い場合の測定用セン
サの開発は若干の前例が見られるが、流動層が固−気系
のように粒子がセンサに対して衝突を繰り返したりする
ような場合の測定用センサの開発は前例が無いものであ
る。On the other hand, fluidized beds inherently have unsteady characteristics due to the generation and passage of bubbles, the mixing of bubbles and particles, etc., and the phenomena are complex, so there is insufficient research into the essence of heat transfer characteristics. In order to investigate the heat transfer mechanism, it is important to elucidate the unsteady heat transfer characteristics. In other words, there are some precedents for the development of sensors for measurement when the fluidized bed is a gas or liquid, which causes almost no damage to senna, but when the fluidized bed is a solid-gas system, where particles are There is no precedent for developing a measurement sensor that can repeatedly collide with the sensor.
尚、気体や液体用の測定用センサを固−気系の流動層に
使用した場合は、流動層とセンサとの衝突によるダメー
ジが大きく、安定して高精度の測定が出来ないといった
問題点を有する。Furthermore, when a sensor for measurement of gas or liquid is used in a solid-gas fluidized bed, there is a problem that the collision between the fluidized bed and the sensor causes significant damage, making stable and highly accurate measurements impossible. have
(発明の目的)
本発明は上述した如き従来の事情に鑑み、流動層が固−
気系の場合でも安定して高精度な測定が出来、且つ量産
性もあり、コストの低いセンサを提供することにある。(Object of the invention) In view of the above-mentioned conventional circumstances, the present invention has been developed in such a way that the fluidized bed is solid.
The object of the present invention is to provide a low-cost sensor that can perform stable and highly accurate measurements even in the case of gaseous systems, can be mass-produced, and is low-cost.
(−発明の構成)
上記目的を達成するために、本発明における定温度型熱
流束センサは、熱伝導率の低いセラミックの基板上に、
温度抵抗係数の大きい材料から成る低抗体を焼付けし、
その抵抗体の両側にリード線を接続すると共に、抵抗体
の外表面を保護膜で被覆してなるものである。(-Structure of the Invention) In order to achieve the above object, the constant temperature heat flux sensor of the present invention has a ceramic substrate with low thermal conductivity.
Baked low resistance made of material with large temperature resistance coefficient,
Lead wires are connected to both sides of the resistor, and the outer surface of the resistor is coated with a protective film.
上記基板はセンサが取付けられる伝導管からの熱伝導も
無視できないため、出来るだけ熱伝導率の低い材料を選
び、且つ基板の板厚は熱応答性の速さから出来るだけ薄
い方が好ましく、例えば薄< (0,21Wi)も加工
可能な高強度を持ち、熱伝導率も低いジルコニア系セラ
ミックが効果的に使用できる。Since the heat conduction from the conduction tube to which the sensor is attached cannot be ignored for the above board, it is preferable to choose a material with as low thermal conductivity as possible, and for the board thickness to be as thin as possible in view of the speed of thermal response. Zirconia-based ceramics can be effectively used because they have high strength, can be processed even if they are thin (0,21Wi), and have low thermal conductivity.
基板上に固着する抵抗体は、温度抵抗係数の大きい材料
が好ましく、例えばニッケル(NL>、プラチナ(Pt
)等が挙げられ、基板上に焼付けられて発熱体部が形成
される。The resistor fixed on the substrate is preferably made of a material with a large temperature resistance coefficient, such as nickel (NL>), platinum (Pt
), etc., and are baked onto the substrate to form a heating element.
上記抵抗体の外表面を被覆覆る保護膜は、流動層内の粒
子との衝突によって抵抗体が摩耗するのを防止するもの
で、ガラス又はセラミック等の無機薄膜を使用する。The protective film covering the outer surface of the resistor prevents the resistor from being worn out due to collisions with particles in the fluidized bed, and is made of an inorganic thin film such as glass or ceramic.
(作用)
上記構成によれば、センサはその抵抗体部分が保護膜で
被覆されているため、流動層の固体粒子が衝突しても抵
抗体部分は完全に保護され、長期にわたって抵抗値を一
定に保持して、安定した測定が可能となる。(Function) According to the above configuration, since the resistor part of the sensor is covered with a protective film, the resistor part is completely protected even if solid particles of the fluidized bed collide with it, and the resistance value remains constant over a long period of time. This enables stable measurements.
(実施例)
以下、本発明の実施例を図面に基づいて説明すると、図
中、1は熱伝導率の低いジルコニア系セラミックによっ
て形成した基板で、この基板1は厚さが200μmで、
幅2m、長さ14mの矩形状に形成され、この基板1上
面に抵抗体2が焼付けられ、その抵抗体2の左右両側に
リード線3.3′が接続されると共に、抵抗体2の外表
面に保護膜4がコーティングされている。(Example) Hereinafter, an example of the present invention will be described based on the drawings. In the figure, 1 is a substrate made of zirconia ceramic with low thermal conductivity, and this substrate 1 has a thickness of 200 μm.
It is formed into a rectangular shape with a width of 2 m and a length of 14 m, and a resistor 2 is printed on the upper surface of the substrate 1. Lead wires 3 and 3' are connected to both the left and right sides of the resistor 2, and the outside of the resistor 2 is A protective film 4 is coated on the surface.
上記抵抗体2は温度抵抗係数の大きいニッケル(NL)
系を用い、硼化ニッケル(NLB)40重量%、硼珪酸
鉛系ガラス60重量%のベース1−を基板1上に印刷し
、焼成して形成する。The above resistor 2 is made of nickel (NL), which has a large temperature resistance coefficient.
A base 1- containing 40% by weight of nickel boride (NLB) and 60% by weight of lead borosilicate glass is printed on the substrate 1 using a base 1 and fired.
尚、抵抗体2を焼付ける前に、基板1の上面左右両側に
リード線3.3″を焼付け、そのリード線3,3′に側
部を重合接続させて抵抗体2ヶ焼付ける。Before baking the resistor 2, lead wires 3.3'' are baked on both left and right sides of the upper surface of the substrate 1, and the side portions are overlapped and connected to the lead wires 3 and 3', and the two resistors are baked.
上記リード線3.3′は、銀(All)733重丸。The lead wire 3.3' is made of silver (All) 733 layers.
パラジウム(Pd)188重丸、ガラス9重社%のペー
ストを基板1上面に印刷し、焼成して形成する。A paste containing 188% palladium (Pd) and 9% glass is printed on the upper surface of the substrate 1 and fired.
抵抗体2の外表面を被覆づる保r!lIl!4は、流動
層内の粒子による抵抗体2の摩耗を防止するもので、酸
化チタンTiQ230重a%とガラス70重量%のペー
ストを抵抗体2上面を覆うごとく印刷し、これを焼成し
て保護膜4が形成される。Cover the outer surface of resistor 2! lIl! 4 is to prevent wear of the resistor 2 due to particles in the fluidized bed, and a paste of titanium oxide TiQ230% by weight and glass 70% by weight is printed so as to cover the upper surface of the resistor 2, and this is baked to protect it. A membrane 4 is formed.
尚、上記保護14は上述した材料に限られるものではな
く、酸化アルミニウム(A#20s ) 、窒化アルミ
ニウム(A#N)窒化チタン(TiN )等の無IIR
I膜を用いることが出来る。The material of the protection 14 is not limited to the above-mentioned materials, but may include non-IIR materials such as aluminum oxide (A#20s), aluminum nitride (A#N), titanium nitride (TiN), etc.
I membrane can be used.
以上の如くして完成されるセンサはTCRの値が高<
(TCR=2x10’ ppm/’C) 、微小の温度
変化に伴なう抵抗値の変動を適確に測定することが出来
るものである。The sensor completed as described above has a high TCR value
(TCR = 2x10'ppm/'C), and can accurately measure fluctuations in resistance value due to minute temperature changes.
以上の如く構成したセンサによる非定常局所熱伝達率測
定は、定温度型の加熱電源によってセンサを一定温度(
約40℃)に保持し、円管壁温一定条件下で非定常局所
熱伝達率を測定する。即ち、センサ両端電圧に相当する
加熱電源の出力電圧を時系列信号として、サンプリング
周波数100112で約3X10’個のデータをコンピ
ュータに取り込み、非定常熱流束を求め、更に、層内代
表温度として円管直下数CMの点の値を用いることによ
り非定常熱伝達率を求めることが出来る。Unsteady local heat transfer coefficient measurement using the sensor configured as described above is performed by keeping the sensor at a constant temperature (
The unsteady local heat transfer coefficient is measured under the condition that the tube wall temperature is constant. That is, the output voltage of the heating power supply corresponding to the voltage across the sensor is used as a time series signal, and approximately 3 x 10' pieces of data are input into a computer at a sampling frequency of 100112 to determine the unsteady heat flux. The unsteady heat transfer coefficient can be determined by using the value of a point several CM directly below.
(発明の効率)
本発明のセンナは以上詳述した如く、熱伝導率の低いセ
ラミックの基板上に、温度抵抗係数の大きい材料からな
る抵抗体を焼付けし、その抵抗体の両側にリード線を接
続すると共に、抵抗体の外表面を保111uで被覆した
ものであるから、抵抗体は完全に保護され、流動層内の
粒子が衝突しても摩耗することはなく、長期にわたって
所定の抵抗値が維持される。(Efficiency of the Invention) As detailed above, the senna of the present invention is made by baking a resistor made of a material with a large temperature resistance coefficient onto a ceramic substrate with low thermal conductivity, and connecting lead wires on both sides of the resistor. At the same time, the outer surface of the resistor is coated with 111u, so the resistor is completely protected and will not be worn out even if particles in the fluidized bed collide with it, maintaining the specified resistance value over a long period of time. is maintained.
従って、流動層が固−気系の場合でも、安定して高精度
な測定が出来ると共に、量産も可能でコストの低減を計
ることが出来る。Therefore, even if the fluidized bed is a solid-gas system, stable and highly accurate measurements can be made, mass production is possible, and costs can be reduced.
依って固−気系の流Al1層熱交換器の伝熱曙構を解明
するのに役立つセンサを提供できる。Therefore, it is possible to provide a sensor useful for elucidating the heat transfer structure of a solid-gas flow Al single-layer heat exchanger.
図面は本発明に係るセンサの実圧例を示し、第1図は縦
断正面図、第2図は同一部切欠平面図、第3図はセンサ
製作を示すブロック図である。
図中、
1:基板 2:抵抗体
3.3’:リード線 4:保護膜The drawings show an example of the actual pressure of the sensor according to the present invention, and FIG. 1 is a vertical sectional front view, FIG. 2 is a partially cutaway plan view of the same, and FIG. 3 is a block diagram showing sensor fabrication. In the figure, 1: Substrate 2: Resistor 3.3': Lead wire 4: Protective film
Claims (2)
係数の大きい材料からなる抵抗体を焼付けし、その抵抗
体の両側にリード線を接続すると共に、抵抗体の外表面
を保護膜で被覆したことを特徴とする定温度型熱流束セ
ンサ。(1) A resistor made of a material with a high temperature resistance coefficient is baked onto a ceramic substrate with low thermal conductivity, and lead wires are connected to both sides of the resistor, and the outer surface of the resistor is covered with a protective film. A constant temperature heat flux sensor characterized by being coated.
その基板上にニッケル系の抵抗体が焼付けられ、その表
面をガラス又はセラミック等の無機薄膜からなる保護膜
で被覆した請求項(1)記載の定温度型熱流束センサ。(2) the substrate is made of zirconia ceramic;
2. A constant temperature heat flux sensor according to claim 1, wherein a nickel-based resistor is baked onto the substrate, and the surface thereof is covered with a protective film made of an inorganic thin film such as glass or ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9224989A JPH02269923A (en) | 1989-04-11 | 1989-04-11 | Constant temperature type heat flow flux sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9224989A JPH02269923A (en) | 1989-04-11 | 1989-04-11 | Constant temperature type heat flow flux sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02269923A true JPH02269923A (en) | 1990-11-05 |
Family
ID=14049152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9224989A Pending JPH02269923A (en) | 1989-04-11 | 1989-04-11 | Constant temperature type heat flow flux sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02269923A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110274138A1 (en) * | 2009-01-19 | 2011-11-10 | Neosens | Microsensor produced in microsystem technologies for the measurement and/or detection of fouling |
EP1255972B2 (en) † | 2000-04-28 | 2012-09-05 | Heinrich Zitzmann | Temperature sensor and a method for bonding a temperature sensor |
CN106323493A (en) * | 2016-08-10 | 2017-01-11 | 清华大学 | Temperature field and heat flow density field measurement integrated device and manufacturing method therefor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62197366A (en) * | 1986-02-25 | 1987-09-01 | 住友セメント株式会社 | Heat insulator |
JPS63236934A (en) * | 1987-03-26 | 1988-10-03 | Yamatake Honeywell Co Ltd | Plate temperature sensor |
JPS63269502A (en) * | 1987-04-27 | 1988-11-07 | Matsushita Electric Ind Co Ltd | Thin-film platinum temperature sensor |
-
1989
- 1989-04-11 JP JP9224989A patent/JPH02269923A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62197366A (en) * | 1986-02-25 | 1987-09-01 | 住友セメント株式会社 | Heat insulator |
JPS63236934A (en) * | 1987-03-26 | 1988-10-03 | Yamatake Honeywell Co Ltd | Plate temperature sensor |
JPS63269502A (en) * | 1987-04-27 | 1988-11-07 | Matsushita Electric Ind Co Ltd | Thin-film platinum temperature sensor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1255972B2 (en) † | 2000-04-28 | 2012-09-05 | Heinrich Zitzmann | Temperature sensor and a method for bonding a temperature sensor |
US20110274138A1 (en) * | 2009-01-19 | 2011-11-10 | Neosens | Microsensor produced in microsystem technologies for the measurement and/or detection of fouling |
US8746968B2 (en) * | 2009-01-19 | 2014-06-10 | Neosens | Microsensor produced in microsystem technologies for the measurement and/or detection of fouling |
CN106323493A (en) * | 2016-08-10 | 2017-01-11 | 清华大学 | Temperature field and heat flow density field measurement integrated device and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3996799A (en) | Device for measuring the flow velocity of a medium | |
JPS59136620A (en) | Measuring device for flow rate of fluid | |
JP5590460B2 (en) | Dew point measuring device and gas characteristic measuring device | |
JPH0349050B2 (en) | ||
JPH03272428A (en) | Pressure sensor | |
US5010315A (en) | Thermal radiation sensor | |
JPH02269923A (en) | Constant temperature type heat flow flux sensor | |
EP0069253B2 (en) | Thermal flow rate sensor | |
KR101020177B1 (en) | Temperature Sensor Using Thick Film Resistor | |
US6134958A (en) | Thermal anemometer aircraft airspeed gust component transducer | |
JP2529895B2 (en) | Flow sensor | |
Hayashi et al. | A study of a multi-layered thin film heat transfer gauge and a new method of measuring heat transfer rate with it | |
JPH0333215B2 (en) | ||
JPS6113121A (en) | Heat flow sensor | |
JPH11344369A (en) | Flow-rate detecting element and flow-rate sensor | |
JP2619735B2 (en) | Heat flow sensor | |
JPS61235725A (en) | Flow rate sensor | |
JPH0233903A (en) | Temperature measuring device | |
JPH04116464A (en) | Fluid velocity sensor | |
JP2793615B2 (en) | Infrared sensor | |
RU2125717C1 (en) | Thin-film resistance thermometer | |
JPH06249864A (en) | Wind speed sensor | |
JP3163558B2 (en) | Flow velocity detector | |
JP3282048B2 (en) | Heat removal atmosphere detection device and atmosphere sensor for heat removal atmosphere detection device | |
DORTH | Thick film heat flux sensor |