JPH06249864A - Wind speed sensor - Google Patents
Wind speed sensorInfo
- Publication number
- JPH06249864A JPH06249864A JP5063504A JP6350493A JPH06249864A JP H06249864 A JPH06249864 A JP H06249864A JP 5063504 A JP5063504 A JP 5063504A JP 6350493 A JP6350493 A JP 6350493A JP H06249864 A JPH06249864 A JP H06249864A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- wind speed
- temperature
- ceramic substrate
- speed detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000000919 ceramic Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000007639 printing Methods 0.000 claims abstract description 9
- 238000007740 vapor deposition Methods 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims description 21
- 239000000853 adhesive Substances 0.000 claims description 10
- 230000001070 adhesive effect Effects 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052697 platinum Inorganic materials 0.000 abstract description 9
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 description 12
- 239000004593 Epoxy Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009258 tissue cross reactivity Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、定温度差法方式の風速
センサに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant temperature difference method wind speed sensor.
【0002】[0002]
【従来の技術】図5には定温度差法方式の一般的な風速
センサの基本回路が示されている。同図において、4辺
のブリッジ回路1の入力端2側にはトランジスタ3を介
して電源4が接続されており、ブリッジ回路1の他の入
力端5側はグランドに接続されている。そして、入力端
2と出力端6との間には抵抗器R1 が接続され、出力端
6とグランド間には風速検知用センサRHが接続されて
いる。また、入力端2と出力端8との間には抵抗器R2
が接続され、出力端8とグランド間には温度補償用セン
サRTが接続され、風速検知用センサRHのブリッジ辺
出力電圧VH と温度補償用センサRTのブリッジ辺出力
電圧VT との差がオペアンプ等の差動増幅器11によって
求められ、この差動出力が風速検知信号として出力され
る一方において、前記トランジスタ3のベースに加えら
れている。2. Description of the Related Art FIG. 5 shows a basic circuit of a general wind speed sensor of a constant temperature difference method. In the figure, the power source 4 is connected to the input end 2 side of the four sides of the bridge circuit 1 via the transistor 3, and the other input end 5 side of the bridge circuit 1 is connected to the ground. A resistor R 1 is connected between the input end 2 and the output end 6, and a wind speed detecting sensor RH is connected between the output end 6 and the ground. Further, a resistor R 2 is provided between the input end 2 and the output end 8.
Is connected, and the temperature compensating sensor RT is connected between the output terminal 8 and the ground. The difference between the bridge side output voltage V H of the wind speed detecting sensor RH and the bridge side output voltage V T of the temperature compensating sensor RT is The differential output obtained by a differential amplifier 11 such as an operational amplifier is output to the base of the transistor 3 while being output as a wind speed detection signal.
【0003】前記風速検知用センサRHと温度補償用セ
ンサRTはともに正の抵抗温度係数をもった白金の感温
抵抗素子によって構成されており、このセンサRH,R
Tの抵抗温度係数は一般の抵抗器に比べ、一桁以上大き
く、ばらつきの小さいほぼ同一の抵抗温度係数をもった
ものが使われている。また、抵抗器R2 と温度補償セン
サRTとの合成抵抗値は抵抗器R1 と風速検知用センサ
RHとの合成抵抗値よりも十分大きな値となっており、
これにより、電源4からの電流によって風速検知用セン
サRHは自己発熱してヒータとして機能し、一方、温度
補償用センサRTは自己発熱しない状態を保って気流の
温度を検出する機能を有し、この風速検知用センサRH
と温度補償用センサRTとの温度差が設定の一定温度差
となったときにブリッジ端子6,8の出力電圧が平衡状
態になるように各ブリッジ辺の抵抗値が設定されてい
る。The wind speed detecting sensor RH and the temperature compensating sensor RT are both composed of a platinum temperature sensitive resistance element having a positive temperature coefficient of resistance.
The resistance temperature coefficient of T is larger than that of a general resistor by one digit or more, and a resistance temperature coefficient of T that is substantially the same is used. The combined resistance value of the resistor R 2 and the temperature compensation sensor RT is sufficiently larger than the combined resistance value of the resistor R 1 and the wind speed detecting sensor RH.
As a result, the wind speed detecting sensor RH self-heats and functions as a heater by the current from the power source 4, while the temperature compensating sensor RT has a function of detecting the temperature of the airflow while keeping the self-heating state. This wind speed sensor RH
The resistance value of each bridge side is set such that the output voltages of the bridge terminals 6 and 8 are in a balanced state when the temperature difference between the temperature compensation sensor RT and the temperature compensation sensor RT becomes a set constant temperature difference.
【0004】この種の風速センサにおいて、気流が風速
検知用センサRHを通過すると、気流の風速の大きさに
応じて風速検知用センサRHの放熱量が変化し、抵抗値
が変化する。この抵抗値の変化により出力端子6の電圧
VH が変化する。このとき、気流の温度に対応する出力
端子8の電圧VT と前記VH の差が差動増幅器11で求め
られることにより、気流の温度変化の影響が取り除か
れ、この温度補償された差動増幅器11の差動出力が風速
検出信号として取り出される。その一方において、その
差動出力はトランジスタ3に加えられる結果、電源4か
らの電流が風速検知用センサRHに流れて気流による放
熱分だけ発熱駆動が行われ、風速検知用センサRHと温
度補償用センサRTとの温度差が常に一定になるように
制御されるものである。In this type of wind speed sensor, when the air flow passes through the wind speed detecting sensor RH, the heat radiation amount of the wind speed detecting sensor RH changes according to the magnitude of the wind speed of the air flow, and the resistance value changes. The voltage V H at the output terminal 6 changes due to the change in the resistance value. At this time, the difference between the voltage V T at the output terminal 8 corresponding to the temperature of the air flow and the V H is obtained by the differential amplifier 11, so that the influence of the temperature change of the air flow is removed, and the temperature-compensated differential signal is removed. The differential output of the amplifier 11 is taken out as a wind speed detection signal. On the other hand, as a result of the differential output being applied to the transistor 3, the current from the power source 4 flows to the wind speed detecting sensor RH and heat generation is performed by the amount of heat radiated by the air flow, and the wind speed detecting sensor RH and temperature compensation It is controlled so that the temperature difference from the sensor RT is always constant.
【0005】図3には自動車等に用いられる風速センサ
の構造図が示されている。この風速センサは筒状パイプ
7内にサンプリング管9を設け、このサンプリング管9
内に図5の基本回路に示される風速検知用センサRHと
温度補償用センサRTを設けたものである。この風速セ
ンサは風速検知用センサRHと温度補償用センサRTと
をサンプリング管9内の別々の位置にそれぞれ接続し、
さらに図示しない回路基板に設けた信号回路と両センサ
RH,RTを接続する等して組み立てるので、組み立て
作業が面倒であり、構造も複雑で大型となる。そのた
め、作業能率が悪く、高価になるという問題がある。FIG. 3 shows a structural diagram of a wind speed sensor used in an automobile or the like. This wind speed sensor is provided with a sampling pipe 9 in a tubular pipe 7, and the sampling pipe 9
A wind speed detecting sensor RH and a temperature compensating sensor RT shown in the basic circuit of FIG. 5 are provided therein. In this wind speed sensor, the wind speed detection sensor RH and the temperature compensation sensor RT are connected to different positions in the sampling tube 9, respectively.
Further, since the signal circuit provided on a circuit board (not shown) and both sensors RH and RT are connected for assembly, the assembly work is troublesome, and the structure is complicated and large. Therefore, there is a problem that the work efficiency is low and the cost is high.
【0006】出願人らは、前記課題を解消するものとし
て、図4に示すようにセンサRH,RTを基板上に形成
する方式の風速センサを提案している。この風速センサ
は、図5に示す回路をエポキシ基板14に実装するもの
で、このエポキシ基板14には図5に示す基本回路のブリ
ッジ回路1や差動増幅器11等を含む信号回路20のチップ
部品が半田等によって接続形成されている。また、別々
に作製された風速検知用センサRHと温度補償用センサ
RTがエポキシ基板14の端縁部から並んで突出してお
り、この状態で接着剤等によって基板14に接着され、両
センサRH,RTは近接配置されている。To solve the above problems, the applicants have proposed a wind speed sensor of the type in which the sensors RH and RT are formed on a substrate as shown in FIG. In this wind velocity sensor, the circuit shown in FIG. 5 is mounted on an epoxy board 14, and the epoxy board 14 is a chip part of a signal circuit 20 including the bridge circuit 1 of the basic circuit shown in FIG. Are formed by soldering or the like. Further, the separately prepared wind speed detecting sensor RH and the temperature compensating sensor RT are juxtaposed side by side from the edge portion of the epoxy substrate 14, and in this state, they are adhered to the substrate 14 by an adhesive or the like, and both sensors RH, RTs are closely arranged.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前記提
案例の風速センサは風速検知用センサRHと温度補償用
センサRTはそれぞれ別々に作製されるため、その作製
条件を同一に制御するのが難しく、どうしてもRHとR
Tとの抵抗温度係数(TCR)にばらつきを生じ、RH
とRTのTCRが同一にならないという問題がある。そ
のため、環境温度が変化するとセンサ出力(風速検出信
号)が変化するので、精度よく風速を検出できないとい
う問題がある。However, since the wind speed sensor RH and the temperature compensating sensor RT are separately manufactured in the wind speed sensor of the above-mentioned proposed example, it is difficult to control the manufacturing conditions to be the same. By all means RH and R
Variation in the temperature coefficient of resistance (TCR) with T
There is a problem that the TCRs of RT and RT are not the same. Therefore, since the sensor output (wind speed detection signal) changes when the environmental temperature changes, there is a problem that the wind speed cannot be detected accurately.
【0008】また、センサRHとセンサRTは近接配置
されているので、センサRTはセンサRHの熱を受け易
いという問題があり、そのために温度補償用センサRT
の温度がそれら外部からの伝達熱に左右されて気流の温
度を正確に検知することができず、温度補償機能を十分
に発揮できないという問題があった。Further, since the sensor RH and the sensor RT are arranged close to each other, there is a problem that the sensor RT is likely to receive the heat of the sensor RH. Therefore, the temperature compensating sensor RT is provided.
There is a problem in that the temperature of the air flow cannot be accurately detected due to the heat transferred from the outside and the temperature compensation function cannot be fully exerted.
【0009】本発明は上記課題を解決するためになされ
たものであり、その目的は、風速検知用センサから温度
補償用センサに熱が殆ど伝達することなく、かつ、環境
温度が変化しても精度よく風速を検知できる風速センサ
を提供するものである。The present invention has been made to solve the above-mentioned problems, and an object thereof is to transfer almost no heat from the wind speed detecting sensor to the temperature compensating sensor and to change the environmental temperature. The present invention provides a wind speed sensor capable of detecting wind speed with high accuracy.
【0010】[0010]
【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明の風速センサは同一セラミック基板の一端側に風速
検知用センサを、他端側に温度補償用センサをそれぞれ
抵抗素子材料の印刷、スパッタ又は蒸着によってセラミ
ック基板上に直接形成し、両センサ間のセラミック基板
面にはハイブリッドICの信号回路部が直接形成されて
いることを特徴として構成されている。In order to achieve the above object, the present invention is constructed as follows. That is, in the wind speed sensor of the present invention, a wind speed detection sensor is formed on one end side of the same ceramic substrate, and a temperature compensation sensor is formed on the other end side thereof directly on the ceramic substrate by printing, sputtering or vapor deposition of a resistance element material. The signal circuit section of the hybrid IC is directly formed on the ceramic substrate surface between the sensors.
【0011】また、本発明の風速センサは同一の回路基
板の一端側に風速検出用センサを、他端側に温度補償用
センサを、両センサ間の基板面には信号回路部がそれぞ
れ形成され、この回路基板の表裏両面側は導体ケースに
よって覆われ、回路基板と導体ケースは熱伝導性接着剤
によって固定されていることを特徴として構成されてい
る。Further, in the wind speed sensor of the present invention, a wind speed detecting sensor is formed on one end side of the same circuit board, a temperature compensating sensor is formed on the other end side, and a signal circuit section is formed on the board surface between both sensors. The front and back surfaces of this circuit board are covered with a conductor case, and the circuit board and the conductor case are fixed by a heat conductive adhesive.
【0012】[0012]
【作用】風速センサの電源をオンして回路動作が行われ
ると、風速検知用センサが発熱する。風速検知用センサ
はセラミック基板の一端側に位置し、温度補償用センサ
は他端側に位置して近接していないため、両者の距離を
自由に設定することにより風速検知用センサの熱は減衰
して、温度補償用センサにその熱を加えない。これによ
り、温度補償用センサは温度補償としての機能を十分発
揮することができる。また、風速検知用センサと温度補
償用センサを同一セラミック基板上に同一条件で作製で
きるので、両センサの抵抗温度係数はほぼ同一となり、
風速センサとしての製品間温度特性ばらつきを小さくす
ることができる。When the power of the wind speed sensor is turned on and the circuit operation is performed, the wind speed detection sensor generates heat. The wind speed detection sensor is located on one end side of the ceramic substrate and the temperature compensation sensor is located on the other end side and is not in close proximity, so the heat of the wind speed detection sensor is attenuated by freely setting the distance between them. Then, the heat is not applied to the temperature compensation sensor. As a result, the temperature compensating sensor can sufficiently exhibit the function of temperature compensation. Further, since the wind speed detection sensor and the temperature compensation sensor can be manufactured on the same ceramic substrate under the same conditions, the temperature coefficient of resistance of both sensors becomes almost the same,
It is possible to reduce variations in temperature characteristics between products as wind speed sensors.
【0013】[0013]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、本実施例の説明において提案例と同一の名
称部分には同一符号を付し、その詳細な重複説明は省略
する。図1には第1の実施例の風速センサの要部構成が
示されている。Embodiments of the present invention will be described below with reference to the drawings. In the description of the present embodiment, the same reference numerals will be given to the same names as those in the proposed example, and detailed description thereof will be omitted. FIG. 1 shows the main configuration of the wind speed sensor of the first embodiment.
【0014】本実施例の特徴的なことは、アルミナから
なる同一セラミック基板10に風速検知用センサRHと温
度補償用センサRTおよび両センサRH,RT間にハイ
ブリッドICの信号回路部20を印刷、スパッタ又は蒸着
によって直接形成したことである。The characteristic of this embodiment is that the signal circuit section 20 of the hybrid IC is printed on the same ceramic substrate 10 made of alumina, between the wind speed detecting sensor RH and the temperature compensating sensor RT, and both sensors RH and RT. That is, it was formed directly by sputtering or vapor deposition.
【0015】この実施例では、矩形状のアルミナからな
るセラミック基板10の一端側と他端側に白金材料を印刷
又は蒸着あるいはスパッタ等の同一製造条件によって風
速検知用センサRH用の白金膜16と温度補償用RT用の
白金膜16を同時に形成する。次いで、両白金膜16をレー
ザー処理又はエッチング処理して抵抗回路パターンを形
成し、一方側を風速検知用センサRHとし、他端側を温
度補償用センサRTとして形成する。通常、RTの抵抗
値はRHの抵抗値の10倍以上とする。また、RHとRT
は白金材料を同一製造条件で蒸着又はスパッタ等により
形成するので、RHとRTの抵抗温度係数(TCR)は
ほぼ同一となる。In this embodiment, the platinum film 16 for the wind speed detecting sensor RH is formed on the one end side and the other end side of the rectangular ceramic substrate 10 by the same manufacturing conditions such as printing, vapor deposition or sputtering. A platinum film 16 for RT for temperature compensation is simultaneously formed. Next, both platinum films 16 are subjected to laser treatment or etching treatment to form a resistance circuit pattern, one side is formed as a wind speed detecting sensor RH, and the other end side is formed as a temperature compensating sensor RT. Usually, the resistance value of RT is 10 times or more the resistance value of RH. Also, RH and RT
Since the platinum material is formed by vapor deposition or sputtering under the same manufacturing conditions, the temperature coefficient of resistance (TCR) of RH and RT is almost the same.
【0016】次いで、両センサRH,RT間のセラミッ
ク基板10面上にハイブリッドICの信号回路部20を印刷
等によって形成し、風速センサ21を形成する。Next, the signal circuit section 20 of the hybrid IC is formed by printing or the like on the surface of the ceramic substrate 10 between the sensors RH and RT to form the wind speed sensor 21.
【0017】第1の実施例によれば、セラミック基板10
の一端側には風速検知用センサRHを、他端側には温度
補償用センサを同一製造条件で形成するので、両センサ
RH,RTの抵抗温度係数はほぼ同一となる。According to the first embodiment, the ceramic substrate 10
Since the wind speed detecting sensor RH is formed on one end side and the temperature compensating sensor is formed on the other end side under the same manufacturing conditions, the resistance temperature coefficients of both sensors RH and RT are substantially the same.
【0018】このように、風速検知用センサRHと温度
補償用センサRTの抵抗温度係数(TCR)が同一と見
なせるため、回路形成や回路の取り扱い等が容易とな
る。すなわち、RHとRTの抵抗温度係数(TCR)を
共にαとすると、 RHR =RH0 (1+αTH )・・・・・(1) RTR =RT0 (1+αTA )・・・・・(2) となる。ここにRHR はRHの抵抗値、RTR はRTの
抵抗値、RH0 は0℃におけるRHの抵抗値、RT0 は
0℃におけるRTの抵抗値、TH はRHの温度、TA は
RTの温度(測定する気流の温度)である。一方、RH
の発熱体から単位時間に失われる熱量Pは次式で示され
る。 P=(A+B√v)(TH −TA )・・・・・(3) 但し、A,Bは定数、vは気体の流速を示す。ここで、
PはRHの発熱量に等しいからRHを流れる電流をIと
すると、 I2 RHR =(A+B√v)(TH −TA )・・・・・(4) V0 をセンサ出力電圧とすると、ブリッジ回路の平衡条
件から、 R1 RTR =R2 RHR ・・・・・(5) I=RTR V0 /RHR (R2 +RTR )・・・・・(6) (4),(6)式より、 V0 =(R2 +RTR ){RHR (A+B√v)(TH −TA )}1/2 ・・・・・(7) (1),(2),(3),(7)式より、 V0 =(R2 +RTR ){R1 (R1 /RH0 −R2 /RT0 )(A+B√v) /α}1/2 /R2 ・・・・・(8) ここでRT0 =R2 とすると(8)式は次のようにな
る。 V0 =(1+(α/2・TA ))(C+D√v)1/2 ・・・・・(9) 但し、C,Dは定数 したがって、センサ出力電圧V0 はα/2のTCRをも
つことが判る。この場合、センサとしての温度特性をフ
ラットなものとするためには−α/2のTCRをもつ回
路を図5の基本回路の出力側(Vout)17の位置に付
加するか、あるいは、出力の温度特性を小さくするよう
な−α/2のTCRをもつ抵抗を例えばRT側の12の位
置に挿入すればよい。このように、RHとRTのTCR
が同一であることが電気回路設計を極めて容易にするも
のである。As described above, since the temperature coefficient of resistance (TCR) of the wind speed detecting sensor RH and the temperature compensating sensor RT can be regarded as the same, the circuit formation and the handling of the circuit are facilitated. That is, when the α both temperature coefficient of resistance RH and RT (TCR), RH R = RH 0 (1 + αT H) ····· (1) RT R = RT 0 (1 + αT A) ····· ( 2) Resistance of RH RH R here, RT R is the resistance value of RT, RH 0 is the resistance value of RH at 0 ° C., RT 0 is the resistance value of RT at 0 ° C., T H is RH temperature, T A is It is the temperature of RT (the temperature of the airflow to be measured). On the other hand, RH
The amount of heat P that is lost from the heating element of (1) in a unit time is expressed by the following equation. P = (A + B√v) ( T H -T A) ····· (3) where, A, B are constants, v indicates the flow velocity of the gas. here,
P is when the current through RH and I equal to the calorific value of RH, the I 2 RH R = (A + B√v) (T H -T A) ····· (4) a V 0 sensor output voltage Then, from the equilibrium condition of the bridge circuit, R 1 RT R = R 2 RH R (5) I = RT R V 0 / RH R (R 2 + RT R ) (6) ( 4), (from 6), V 0 = (R 2 + RT R) {RH R (A + B√v) (T H -T A)} 1/2 ····· (7) (1), ( 2), (3), and (7), V 0 = (R 2 + RT R ) {R 1 (R 1 / RH 0 −R 2 / RT 0 ) (A + B√v) / α} 1/2 / R 2 (8) Here, if RT 0 = R 2 , then equation (8) is as follows. V 0 = (1+ (α / 2 · T A )) (C + D√v) 1/2 (9) However, C and D are constants. Therefore, the sensor output voltage V 0 is a TCR of α / 2. It turns out that In this case, in order to make the temperature characteristic of the sensor flat, a circuit having a TCR of -α / 2 is added to the position of the output side (Vout) 17 of the basic circuit of FIG. A resistor having a −CR / 2 TCR for reducing the temperature characteristic may be inserted at, for example, 12 positions on the RT side. Thus, RH and RT TCR
The fact that they are the same makes it extremely easy to design an electric circuit.
【0019】また、両センサRH,RT間のセラミック
基板上10面上にハイブリッドICの信号回路部20を印刷
等によって形成し、両センサRH,RTも印刷、スパッ
タ又は蒸着によって形成したので、提案例のように両セ
ンサRH,RTや信号回路部20をエポキシ基板14にいち
いち接着剤や半田等によって取り付ける面倒な作業が不
要となり、作業が極めて簡単で、かつ、製造上のばらつ
きのない均一な製品を作製することができ、作業能率を
大幅にアップするとともに大幅なコストダウンが可能と
なる。Further, the signal circuit section 20 of the hybrid IC is formed on the surface of the ceramic substrate 10 between the two sensors RH and RT by printing or the like, and both the sensors RH and RT are also formed by printing, sputtering or vapor deposition. As in the example, both the sensors RH, RT and the signal circuit section 20 are not required to be attached to the epoxy substrate 14 by using adhesive or solder, and the troublesome work becomes unnecessary, and the work is extremely simple and uniform in manufacturing. A product can be manufactured, and the work efficiency can be significantly improved and the cost can be significantly reduced.
【0020】さらに、セラミック基板の両端側にRHお
よびRTを設けたので、RHとRTとの間の距離を自由
に設定することができ、RHからRTへの熱伝導の心配
がなく、精度の高い風速センサを得ることができる。Furthermore, since RH and RT are provided on both ends of the ceramic substrate, the distance between RH and RT can be freely set, and there is no concern of heat conduction from RH to RT, and accuracy is improved. A high wind speed sensor can be obtained.
【0021】図2には第2の実施例の風速センサが示さ
れている。この風速センサは図1に示す第1の実施例の
風速センサ21のセラミック基板10の表裏両面を例えば、
アルミニウム等の導体ケース15で覆ったもので、この導
体ケース15には貫通窓A,B,Cが設けられ、風速セン
サ21のグランド側と導体ケース15とを導通状態で熱伝導
性接着剤18により接着固定している。なお、この熱伝導
性接着剤18は導電性を有することが望ましい。FIG. 2 shows the wind speed sensor of the second embodiment. This wind speed sensor has both front and back surfaces of the ceramic substrate 10 of the wind speed sensor 21 of the first embodiment shown in FIG.
It is covered with a conductor case 15 made of aluminum or the like. Through holes A, B and C are provided in the conductor case 15, and the ground side of the wind speed sensor 21 and the conductor case 15 are in a conductive state with a heat conductive adhesive 18 It is fixed by adhesion. The heat conductive adhesive 18 preferably has conductivity.
【0022】この第2の実施例では、第1の実施例の風
速センサ21をアルミニウム等の導体ケース15で覆い、風
速センサ21のグランド側を導体ケース15に導通状態で熱
伝導性接着剤18で接着固定するので、風速検知用センサ
RHや信号回路部20で発生した熱は熱伝導性接着剤18を
介して導体ケース15に伝達され、導体ケース15の放熱効
果(アルミニウムケースの熱伝導率はアルミナの10倍以
上)によって放散し、温度補償用センサRTへの熱の回
り込みを最小限に抑制することができる。In the second embodiment, the wind speed sensor 21 of the first embodiment is covered with a conductor case 15 made of aluminum or the like, and the ground side of the wind speed sensor 21 is electrically connected to the conductor case 15 so that the heat conductive adhesive 18 The heat generated in the wind speed detecting sensor RH and the signal circuit section 20 is transferred to the conductor case 15 via the heat conductive adhesive 18, and the heat dissipation effect of the conductor case 15 (the heat conductivity of the aluminum case) is fixed. Is more than 10 times as much as that of alumina), and it is possible to suppress heat from flowing into the temperature compensating sensor RT to a minimum.
【0023】また、導体ケース15とセラミック基板10の
回路のグランド側とを導通状態で接続するので、導体ケ
ース15は電気的にグランドとなるため、風速検知用セン
サRHと温度補償用センサRTおよび信号回路部20を外
部から電気的に遮蔽することができ、外部からのノイズ
の影響を抑制することができる。Further, since the conductor case 15 and the ground side of the circuit of the ceramic substrate 10 are connected in a conductive state, the conductor case 15 serves as an electrical ground, so that the wind speed detection sensor RH and the temperature compensation sensor RT and The signal circuit unit 20 can be electrically shielded from the outside, and the influence of noise from the outside can be suppressed.
【0024】本発明は上記実施例に限定されることはな
く、様々な実施の態様を採り得る。例えば、上記実施例
では、回路基板にアルミナのセラミック基板10を用いた
が、アルミナ基板の替りにジルコニア等のセラミック基
板を用いてもよい。The present invention is not limited to the above-mentioned embodiments, and various embodiments can be adopted. For example, in the above embodiment, the alumina ceramic substrate 10 is used as the circuit substrate, but a ceramic substrate such as zirconia may be used instead of the alumina substrate.
【0025】また、セラミック基板10の替りにエポキシ
基板14を用いてもよい。この場合も、基板14の一端側に
RHを、他端側にRTを固定するので、提案例に比べて
RHの熱はRTに伝達しにくく、RTの温度補償として
の機能は改善される。このものを第2の実施例の如く、
導体ケース15で被覆遮蔽すれば、RTおよび信号回路部
20の熱は導体ケース15によって放熱されてRTに殆ど伝
達せず、提案例に比べRTの温度補償機能はさらに改善
され、また、遮蔽効果により外部からのノイズの影響を
抑制できる。ただ、本実施例のようにセラミック基板10
を用いることにより、RHやRTのTCRをほぼ同一に
することができ、かつ、放熱効果も抜群によいので、セ
ンサとしての性能はさらに大幅に向上する。An epoxy substrate 14 may be used instead of the ceramic substrate 10. Also in this case, since the RH is fixed to one end of the substrate 14 and the RT is fixed to the other end, the heat of the RH is less likely to be transferred to the RT as compared with the proposed example, and the function of the RT for temperature compensation is improved. This is the same as the second embodiment.
RT and signal circuit section if covered and shielded by the conductor case 15.
The heat of 20 is dissipated by the conductor case 15 and hardly transmitted to the RT, the temperature compensation function of the RT is further improved as compared with the proposed example, and the effect of noise from the outside can be suppressed by the shielding effect. However, as in this embodiment, the ceramic substrate 10
By using, the TCRs of RH and RT can be made almost the same, and the heat dissipation effect is also excellent, so the performance as a sensor is further greatly improved.
【0026】さらに、第2の実施例の導体ケース15には
アルミニウムケースを用いたが、例えば、鉄や銅等の金
属ケースでもよく、放熱効果の大きい材料ならば、その
ケース材料を問わない。Further, although the aluminum case is used as the conductor case 15 of the second embodiment, for example, a metal case such as iron or copper may be used, and the case material may be any material as long as it has a large heat dissipation effect.
【0027】さらにまた、上記実施例では、センサ材料
としての白金材料を用いたが、白金材料以外の抵抗素子
材料を用いることもできる。Furthermore, although the platinum material is used as the sensor material in the above embodiment, a resistance element material other than the platinum material can be used.
【0028】[0028]
【発明の効果】本発明は同一セラミック基板の一端側に
風速検知用センサを、他端側に温度補償用センサをそれ
ぞれ印刷、スパッタ又は蒸着によってセラミック基板上
に直接形成したので、風速検知用センサと温度補償セン
サとの抵抗温度係数をほぼ同一とすることができるた
め、温度補償機能を十分に発揮することができ、精度の
高い風速センサを作製することができる。According to the present invention, the wind velocity detecting sensor is formed on one end side of the same ceramic substrate and the temperature compensating sensor is formed on the other end side thereof directly on the ceramic substrate by printing, sputtering or vapor deposition. Since the temperature coefficient of resistance of the temperature compensation sensor can be made substantially the same as that of the temperature compensation sensor, the temperature compensation function can be sufficiently exerted and a highly accurate wind speed sensor can be manufactured.
【0029】また、風速検知用センサと温度補償用セン
サおよびハイブリッドICの信号回路をセラミック基板
上に形成したので、作業が簡単で、かつ、ばらつきのな
い均一な小型の風速センサを作製することが可能とな
り、作業能率の大幅アップと製造コストの大幅ダウンを
達成することができる。Further, since the wind speed detecting sensor, the temperature compensating sensor, and the signal circuit of the hybrid IC are formed on the ceramic substrate, the work is easy and a uniform small wind speed sensor with no variation can be manufactured. As a result, it is possible to significantly improve the work efficiency and the manufacturing cost.
【0030】さらに、同一セラミック基板の一端側に風
速検知用センサを、他端側に温度補償用センサを設けた
ので、両センサ間は近接することがなく、風速検知用セ
ンサの熱が温度補償用センサに影響を与えることが少な
い。しかも、回路基板の表裏両面を導体ケースで覆い、
回路基板と導体ケースとを導通状態で熱伝導性接着剤に
よって固定したので、風速検知用センサやハイブリッド
IC等の信号回路部の熱が導体ケースによって放熱さ
れ、温度補償用センサへ回り込むことが少なくなり、温
度補償用センサは温度補償機能を十分に発揮することが
できる。Further, since the wind speed detecting sensor is provided on one end side of the same ceramic substrate and the temperature compensating sensor is provided on the other end side thereof, the two sensors are not close to each other, and the heat of the wind speed detecting sensor compensates for the temperature. There is little influence on the sensor for use. Moreover, the front and back sides of the circuit board are covered with conductor cases,
Since the circuit board and the conductor case are fixed in a conductive state by a heat conductive adhesive, the heat of the signal circuit part such as the sensor for wind speed detection and the hybrid IC is radiated by the conductor case and does not easily go around to the temperature compensation sensor. Therefore, the temperature compensation sensor can sufficiently exert the temperature compensation function.
【0031】さらにまた、回路基板のグランド側と導体
ケースとを導通状態で接続したので、外部からのノイズ
の影響を抑制することができる。Furthermore, since the ground side of the circuit board and the conductor case are connected in a conductive state, the influence of noise from the outside can be suppressed.
【図1】第1の実施例に係わる風速センサの要部構成の
説明図である。FIG. 1 is an explanatory diagram of a main part configuration of a wind speed sensor according to a first embodiment.
【図2】第2の実施例の風速センサの説明図である。FIG. 2 is an explanatory diagram of a wind speed sensor according to a second embodiment.
【図3】自動車等に用いられる従来の風速センサの構造
図である。FIG. 3 is a structural diagram of a conventional wind speed sensor used in an automobile or the like.
【図4】従来の風速センサの説明図である。FIG. 4 is an explanatory diagram of a conventional wind speed sensor.
【図5】風速センサの基本回路図である。FIG. 5 is a basic circuit diagram of a wind speed sensor.
10 セラミック基板 14 エポキシ基板 15 導体ケース 16 白金膜 18 熱伝導性接着剤 20 信号回路部 RH 風速検知用センサ RT 温度補償用センサ 10 Ceramic substrate 14 Epoxy substrate 15 Conductor case 16 Platinum film 18 Thermally conductive adhesive 20 Signal circuit part RH Wind velocity detection sensor RT Temperature compensation sensor
Claims (2)
用センサを、他端側に温度補償用センサをそれぞれ抵抗
素子材料の印刷又は蒸着によってセラミック基板上に直
接形成し、両センサ間のセラミック基板面にはハイブリ
ッドICの信号回路部が直接形成されている風速セン
サ。1. A wind speed detecting sensor is formed on one end of the same ceramic substrate, and a temperature compensating sensor is formed on the other end of the same ceramic substrate directly on the ceramic substrate by printing or vapor deposition of a resistance element material. A wind speed sensor in which the signal circuit of the hybrid IC is directly formed on the surface.
ンサを、他端側に温度補償用センサを、両センサ間の基
板面には信号回路部がそれぞれ形成され、この回路基板
の表裏両面側は導体ケースによって覆われ、回路基板と
導体ケースは熱伝導性接着剤によって固定されている風
速センサ。2. A wind speed detecting sensor is provided on one end side of the same circuit board, a temperature compensating sensor is provided on the other end side thereof, and a signal circuit section is formed on a board surface between both sensors. Both sides are covered with a conductor case, and the circuit board and conductor case are fixed with a heat conductive adhesive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5063504A JPH06249864A (en) | 1993-02-25 | 1993-02-25 | Wind speed sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5063504A JPH06249864A (en) | 1993-02-25 | 1993-02-25 | Wind speed sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06249864A true JPH06249864A (en) | 1994-09-09 |
Family
ID=13231135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5063504A Pending JPH06249864A (en) | 1993-02-25 | 1993-02-25 | Wind speed sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06249864A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100460875C (en) * | 2007-05-11 | 2009-02-11 | 东南大学 | Two-dimensional wind speed and direction sensor with cross structure and its preparation method |
CN103018478A (en) * | 2012-12-03 | 2013-04-03 | 东南大学 | Thermal wind speed sensing device capable of performing zero compensation automatically and method for measuring wind speeds |
KR20160067129A (en) | 2013-09-27 | 2016-06-13 | 야수마사 하야시 | Manufacturing method for thermal flow velocity/flow rate sensor, and thermal flow velocity/flow rate sensor |
WO2020059822A1 (en) * | 2018-09-21 | 2020-03-26 | Koa株式会社 | Flow rate sensor device |
-
1993
- 1993-02-25 JP JP5063504A patent/JPH06249864A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100460875C (en) * | 2007-05-11 | 2009-02-11 | 东南大学 | Two-dimensional wind speed and direction sensor with cross structure and its preparation method |
CN103018478A (en) * | 2012-12-03 | 2013-04-03 | 东南大学 | Thermal wind speed sensing device capable of performing zero compensation automatically and method for measuring wind speeds |
CN103018478B (en) * | 2012-12-03 | 2014-09-10 | 东南大学 | Thermal wind speed sensing device capable of performing zero compensation automatically and method for measuring wind speeds |
KR20160067129A (en) | 2013-09-27 | 2016-06-13 | 야수마사 하야시 | Manufacturing method for thermal flow velocity/flow rate sensor, and thermal flow velocity/flow rate sensor |
WO2020059822A1 (en) * | 2018-09-21 | 2020-03-26 | Koa株式会社 | Flow rate sensor device |
JP2020051755A (en) * | 2018-09-21 | 2020-04-02 | Koa株式会社 | Flow rate sensor device |
CN112739990A (en) * | 2018-09-21 | 2021-04-30 | Koa株式会社 | Flow sensor device |
US11920966B2 (en) | 2018-09-21 | 2024-03-05 | Koa Corporation | Flow rate sensor device |
CN112739990B (en) * | 2018-09-21 | 2024-08-16 | Koa株式会社 | Flow sensor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0106455B1 (en) | Mass airflow sensor | |
KR960015065B1 (en) | Control and detection circuitry for mass air-flow sensors | |
US6209402B1 (en) | Measuring element, mass air flow meter therewith and compensating method for accurately measuring air flow | |
US6889544B2 (en) | Thermal type flow rate detector | |
JPH05508915A (en) | Thin film air flow sensor using temperature biased resistive element | |
JPH1123338A (en) | Thermosensitive flow-rate detecting element and flow-rate sensor using the same | |
EP1418408B1 (en) | Thermal flow sensor | |
JPH05264314A (en) | Air flow rate detector and engine control device using the same | |
US7426857B2 (en) | Flow detector element of thermosensible flow sensor | |
JP3133608B2 (en) | Thermal air flow detector | |
US6134960A (en) | Thermal-type flow sensor | |
US7617723B2 (en) | Thermal type flow rate measuring apparatus having decrease in coupling capacitance between wiring portions of detection element | |
US6684693B2 (en) | Heat generation type flow sensor | |
JPH0690062B2 (en) | Thermal flow velocity detector | |
JPH06249864A (en) | Wind speed sensor | |
JPS62265529A (en) | Device for measuring flow rate of medium and manufacture thereof | |
JPH08146026A (en) | Thermistor flow velocity sensor and flow rate sensor for liquid | |
JPH05231899A (en) | Intake air amount detector | |
JPH0641133Y2 (en) | Heat wire type flow meter | |
JPS6242368Y2 (en) | ||
JPH11344369A (en) | Flow-rate detecting element and flow-rate sensor | |
JP2793615B2 (en) | Infrared sensor | |
JP2858156B2 (en) | Temperature sensor | |
JPH0438425A (en) | Thermal flow sensor | |
JP2003106884A (en) | Airflow sensor |