[go: up one dir, main page]

JPH02267267A - Method and device for forming a thin film on film - Google Patents

Method and device for forming a thin film on film

Info

Publication number
JPH02267267A
JPH02267267A JP8731089A JP8731089A JPH02267267A JP H02267267 A JPH02267267 A JP H02267267A JP 8731089 A JP8731089 A JP 8731089A JP 8731089 A JP8731089 A JP 8731089A JP H02267267 A JPH02267267 A JP H02267267A
Authority
JP
Japan
Prior art keywords
film
thin film
forming
vacuum chamber
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8731089A
Other languages
Japanese (ja)
Inventor
Hidehiko Funaoka
英彦 船岡
Yoshihiro Arai
芳博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP8731089A priority Critical patent/JPH02267267A/en
Publication of JPH02267267A publication Critical patent/JPH02267267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the enlargement and complication of the device at the time of conveying a film in a vacuum vessel and forming a thin film on the surface by the vaporized grains by impressing a high-frequency voltage on a film supporting means and treating the film with an electric discharge. CONSTITUTION:The film 4 is delivered from a delivery core 7 in the vacuum vessel 2, wound around a cooling can 3 and wound on a winding core 8. At this time, the vacuum vessel 2 is held at about 1X10<-5>-3X10<-4>Torr, a vaporizing source 6 is heated by a heater 5 to generate vaporized grains, and a thin film is formed on the surface of the film 4. In the device of such structure, a high-frequency power source 9a is connected to the cooling can 3 supporting the film 4, a high-frequency voltage is impressed on the can, and an electric discharge is generated in the vicinity of the can 3. Consequently, the film 4 need not be treated with a glow discharge at different degrees of vacuum before and after the formation of the thin film, the device need not be enlarged or complicated, and an excellent thin film is formed.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、フィルムへの薄膜形成方法およびその際用い
られる装置に関し、さらに詳しくは、真空槽内を搬送し
ながらフィルムに薄膜を形成する方法およびその装置の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for forming a thin film on a film and an apparatus used therefor, and more particularly, a method and apparatus for forming a thin film on a film while being conveyed in a vacuum chamber. Regarding improvements.

発明の技術的背景ならびにその問題点 真空槽内を搬送されるフィルムの裏面をクーリングキャ
ンなどの支持手段により支持し、このフィルムの表面に
真空槽内の蒸発粒子を被着させて薄膜を形成させる薄膜
形成方法が知られている。
Technical background of the invention and its problems The back side of the film being conveyed in a vacuum chamber is supported by a supporting means such as a cooling can, and the evaporated particles in the vacuum chamber are deposited on the surface of the film to form a thin film. Methods for forming thin films are known.

この薄膜形成方法では、通常、フィルムは蒸発粒子を被
着させる前後でグロー放電処理され、表面を浄化すると
ともに活性化している。
In this method of forming a thin film, the film is usually subjected to a glow discharge treatment before and after the deposition of evaporated particles to purify and activate the surface.

このようなグロー放電処理をフィルム表面に行なってこ
のフィルム表面に薄膜を形成するには、第3図に示され
るような薄膜形成装置が用いられる。すなわち薄膜形成
装置1101は、隔壁2aで区画される真空槽2の内部
上方に、グロー放電による前処理室102および後処理
室103と、これら処理室102.103の下方におの
おの配役されるフィルム搬送手段としての送り出しコア
7および巻取りコア8と、この送り出しコア7と巻取り
コア8とのほぼ中間位置に配設されるクーリングキャン
3とを備えている。
To form a thin film on the film surface by subjecting the film surface to such glow discharge treatment, a thin film forming apparatus as shown in FIG. 3 is used. That is, the thin film forming apparatus 1101 includes a pre-processing chamber 102 and a post-processing chamber 103 using glow discharge in the upper part of the inside of the vacuum chamber 2 divided by the partition wall 2a, and a film conveying chamber arranged below each of these processing chambers 102 and 103. It includes a feeding core 7 and a winding core 8 as means, and a cooling can 3 disposed at a substantially intermediate position between the feeding core 7 and the winding core 8.

また真空槽2の内部下方には蒸着源6が設けられており
、この蒸着源6は蒸発手段としての加熱器5により加熱
される。
Further, a vapor deposition source 6 is provided in the lower part of the inside of the vacuum chamber 2, and this vapor deposition source 6 is heated by a heater 5 as an evaporation means.

このような薄膜形成装置101では、前処理室102お
よび後処理室103に電源9が接続されおり、これら処
理室102.103内でグロー放電を発生できるように
なっている。なお第3図において、10はマスク、12
は排気管である。
In such a thin film forming apparatus 101, a power source 9 is connected to a pre-processing chamber 102 and a post-processing chamber 103, so that glow discharge can be generated in these processing chambers 102 and 103. In FIG. 3, 10 is a mask, 12
is the exhaust pipe.

上記のような薄膜形成装置101では、薄膜形成時に送
り出しコア7から送り出されるフィルム4は、前処理室
102を介してクーリングキャン3の外周面に巻回され
、この巻回部表面に蒸発粒子が被着されて薄膜が形成さ
れる。そして、薄膜が形成されたフィルム4は後処理室
103を介して巻取りコア8に巻き取られる。この際、
処理室102.103では0 、 1 jorr前後の
真空度でグロー放電が発生させられる。
In the thin film forming apparatus 101 as described above, the film 4 sent out from the sending core 7 during thin film formation is wound around the outer peripheral surface of the cooling can 3 via the pretreatment chamber 102, and evaporated particles are formed on the surface of this wound portion. A thin film is formed. The film 4 on which the thin film has been formed is then wound onto the winding core 8 via the post-processing chamber 103. On this occasion,
In the processing chambers 102 and 103, glow discharge is generated at a vacuum level of around 0 and 1 jorr.

このようにしてフィルム4をグロー放電処理し、フィル
ム表面の浄化および活性化を行なうことにより、フィル
ム表面に形成される薄膜の密着性を向上させることがで
きる。
By subjecting the film 4 to glow discharge treatment in this way to purify and activate the film surface, the adhesion of the thin film formed on the film surface can be improved.

ところが、このようなグロー放電処理は、蒸発粒子がフ
ィルム表面に被着されるときの真空度(I X 10”
〜3 X 10−’1orr)と異なる真空度で行なう
必要があった。
However, in this glow discharge treatment, the degree of vacuum (I x 10"
It was necessary to carry out the process at a different degree of vacuum (~3 x 10-'1 orr).

したがって、このような薄膜形成方法を適用した装置1
01では、上記したような前処理室102および後処理
室103を真空槽2内に別途設ける必要がある。そのた
め装置f 1.01は、そのフィルム搬送系が複雑化し
、装置自体が大型化するため、保守管理が繁雑化すると
いう問題点があった。
Therefore, apparatus 1 to which such a thin film forming method is applied
01, it is necessary to separately provide the pre-treatment chamber 102 and post-treatment chamber 103 in the vacuum chamber 2 as described above. For this reason, the apparatus f1.01 has a problem in that its film transport system is complicated and the apparatus itself is large, making maintenance management complicated.

また、蒸発粒子を被着させる前後でグロー放電処理を行
なうことによりフィルム4が帯電し、フィルム搬送が円
滑に行なわれず、たとえばフィルム4がクーリングキャ
ン3に巻込まれることによるつまりなどが発生しやすか
った。
Furthermore, by performing glow discharge treatment before and after depositing the evaporated particles, the film 4 becomes electrically charged, making it difficult to transport the film smoothly. .

さらに、装置m!101の大型化により、前記処理室1
02とクーリングキャン3との距離が長くなるため、グ
ロー放電により前処理されたフィルム4の活性がクーリ
ングキャン3に到達する前に低下し、その結果形成され
る薄膜の剥離強度が低下してしまうという問題点があっ
た。
Furthermore, the device m! Due to the enlargement of the processing chamber 101,
Since the distance between 02 and the cooling can 3 becomes longer, the activity of the film 4 pretreated by glow discharge decreases before reaching the cooling can 3, and as a result, the peel strength of the formed thin film decreases. There was a problem.

発明の目的 本発明は、上記のような従来技術における問題点を解決
しようとするものであって、装置の複雑化および大型化
、フィルムの帯電、薄膜形成前でのフィルムの活性低下
などを防止するようなフィルムへの薄膜形成方法、およ
びその際用いられる薄膜形成装置を提供することを目的
としている。
Purpose of the Invention The present invention aims to solve the above-mentioned problems in the prior art, and prevents the complexity and size of the device, the charging of the film, and the reduction in film activity before thin film formation. The purpose of the present invention is to provide a method for forming a thin film on a film, and a thin film forming apparatus used therein.

発明の概要 本発明に係るフォルムへの薄膜形成方法は、真空槽内を
搬送されるフィルムを支持手段により支持するとともに
、この支持手段に高周波電圧を印加して放電を生じさせ
て上記フィルムに放電処理を施す表ともに、該フィルム
の表面に真空槽内の蒸発粒子を被着させて薄膜を形成さ
せることを特徴とする。
Summary of the Invention The method of forming a thin film on a form according to the present invention includes supporting a film conveyed in a vacuum chamber by a support means, and applying a high frequency voltage to the support means to generate an electric discharge on the film. Both surfaces to be treated are characterized in that evaporated particles in a vacuum chamber are deposited on the surface of the film to form a thin film.

本°発明に係るフィルムへの薄膜形成装置は、真空槽内
でフィルムを搬送する搬送手段と、上記真空槽内で蒸着
源を蒸発させて蒸発粒子を発生させる蒸発手段と、真空
槽内を搬送されるフィルムの裏面を支持する支持手段と
、上記支持手段に高周波電圧を印加する高周波電圧印加
手段とを備えることを特徴とする。
The apparatus for forming a thin film on a film according to the present invention includes a conveyance means for conveying the film within a vacuum chamber, an evaporation means for evaporating a vapor deposition source to generate evaporated particles within the vacuum chamber, and a conveyance means for conveying the film within the vacuum chamber. The present invention is characterized by comprising a support means for supporting the back surface of the film to be coated, and a high-frequency voltage application means for applying a high-frequency voltage to the support means.

本発明に係る薄膜形成方法は、搬送されるフィルムを搬
送途中で支持する支持手段に高周波電圧を印加し、薄膜
を形成する際の真空度で放電を発生させており、薄膜を
形成させる前後において異なる真空度でフィルムにグロ
ー放電処理を行なう必要がない。したがって、装置の大
型化および複雑化をまねくことがなく、かつ搬送時での
フィルムの帯電、薄膜形成前でのフィルムの活性低下な
どを防止することができる。
In the thin film forming method according to the present invention, a high frequency voltage is applied to a supporting means that supports the film being transported during transport, and electric discharge is generated at the vacuum level when forming the thin film, before and after forming the thin film. There is no need to perform glow discharge treatment on the film at different degrees of vacuum. Therefore, it is possible to prevent the device from becoming larger and more complicated, and to prevent the film from being charged with electricity during transportation and from decreasing the activity of the film before forming a thin film.

本発明に係る薄膜形成装置は、グロー放電を行なう前処
理室と後処理室とを必要としないため、構造が簡単で保
守管理が容易である。また、円滑にフィルムの搬送を行
なうことができ、さらに得られた薄膜の剥離強度が大き
い。
The thin film forming apparatus according to the present invention does not require a pre-treatment chamber and a post-treatment chamber for performing glow discharge, and therefore has a simple structure and easy maintenance. Further, the film can be transported smoothly, and the peel strength of the obtained thin film is high.

発明の詳細な説明 以下本発明に係るフィルムへの薄膜形成方法について、
具体的に説明する。
Detailed Description of the Invention The method for forming a thin film on a film according to the present invention will be described below.
I will explain in detail.

本発明では、搬送されるフィルムを支持する支持手段に
高周波電圧を印加し、放電を生じさせながらフィルム上
に薄膜を形成させているが、以下に本発明に係る薄膜形
成方法およびその装置を第1図および第2図に基づいて
説明する。なお、第1図および第2図において、共通の
部分には同一の符号を付す。
In the present invention, a high frequency voltage is applied to the supporting means that supports the film being conveyed, and a thin film is formed on the film while generating electric discharge. This will be explained based on FIGS. 1 and 2. In addition, in FIG. 1 and FIG. 2, common parts are given the same reference numerals.

第1図および第2図は、本発明に係る薄膜形成装置を示
す。第1図に示すように、この薄膜形成装置1では、真
空槽2の内部上方に、フィルム搬送手段としての送り出
しコア7および巻取りコア8と、この送り出しコア7と
巻取りコア8とのほぼ中間下方位置に配設されるクーリ
ングキャン3とを備えている。このクーリングキャン3
は、フィルム4の支持手段を構成する。
1 and 2 show a thin film forming apparatus according to the present invention. As shown in FIG. 1, in this thin film forming apparatus 1, a feeding core 7 and a winding core 8, which serve as film transport means, are disposed above the inside of a vacuum chamber 2, and approximately the same as that of the feeding core 7 and winding core 8 are provided. The cooling can 3 is provided at an intermediate lower position. This cooling can 3
constitutes a support means for the film 4.

また真空槽2の内部下方には蒸着源6が設けられており
、この蒸着源6は蒸発手段としての加熱器5により加熱
されて蒸発し蒸発粒子を発生する。
Further, an evaporation source 6 is provided in the lower part of the inside of the vacuum chamber 2, and this evaporation source 6 is heated by a heater 5 serving as an evaporation means to evaporate and generate evaporated particles.

この薄膜形成装置1では、クーリングキャン3にマツチ
ングボックス(図示せず)を経て高周波電源9aが接続
されおり、クーリングキャン3に高周波電圧を印加でき
るようになっている。なお第1図において、10はマス
ク、11はガス導入管、12は排気管である。
In this thin film forming apparatus 1, a high frequency power source 9a is connected to the cooling can 3 via a matching box (not shown), so that a high frequency voltage can be applied to the cooling can 3. In FIG. 1, 10 is a mask, 11 is a gas introduction pipe, and 12 is an exhaust pipe.

なお、この薄膜形成装置1はフィルム裏面支持手段とし
てクーリングキャン3を設けているが、本発明において
フィルム裏面支持手段は、搬送途中のフィルムを支持で
きる部材であれば特に限定されず、たとえば無端ベルト
などであってもよい。
Although this thin film forming apparatus 1 is provided with a cooling can 3 as a means for supporting the back surface of the film, in the present invention, the means for supporting the film back surface is not particularly limited as long as it is a member capable of supporting the film during conveyance, and may be, for example, an endless belt. etc.

また、第2図に示すように、薄膜形成装置IAは、真空
槽2内部の上方と下方とを隔壁2aを設けることにより
区画し、さらに真空槽2内部上方に排気管31を設けて
もよい。この装置IAでは、薄膜形成時に、真空槽2内
部上方と下方とを異なる真空度に保つことができる。
Further, as shown in FIG. 2, the thin film forming apparatus IA may partition the inside of the vacuum chamber 2 into an upper part and a lower part by providing a partition wall 2a, and may further provide an exhaust pipe 31 above the inside of the vacuum tank 2. . In this apparatus IA, the upper and lower parts of the interior of the vacuum chamber 2 can be maintained at different degrees of vacuum during thin film formation.

以上のような薄膜形成装置1またはIAを用いて薄膜を
形成するには、先ずフィルム4が、送り出しコア7およ
び巻取りコア8からなる搬送手段に装着される。この際
フィルム4は、クーリングキャン3の外周面に巻回され
ることにより、裏面側から支持される。
In order to form a thin film using the thin film forming apparatus 1 or IA as described above, the film 4 is first mounted on a conveying means consisting of a feed core 7 and a winding core 8. At this time, the film 4 is supported from the back side by being wound around the outer peripheral surface of the cooling can 3.

このようにしてフィルム4を装着し、さらに蒸着源6を
装着した後、真空槽2内を減圧し、次いで蒸着源6を加
熱・蒸発させる。
After the film 4 is attached in this way and the vapor deposition source 6 is attached, the pressure inside the vacuum chamber 2 is reduced, and then the vapor deposition source 6 is heated and evaporated.

この際の真空槽2内の真空度は、通常1×10 ’〜3
 X 10−’fort、好ましく1!2.3x10 
” 2 X 10−’Iortテある。
The degree of vacuum in the vacuum chamber 2 at this time is usually 1 x 10' to 3
X 10-'fort, preferably 1!2.3x10
” 2 x 10-'Iort.

この真空度は、薄膜形成部近傍での値であり、薄膜形成
部近傍とは、フィルムから蒸着源の直線距離の1!3程
度までの領域を意味している。
This degree of vacuum is a value in the vicinity of the thin film forming part, and the vicinity of the thin film forming part means an area up to about 1:3 of the straight line distance from the film to the vapor deposition source.

本発明では、上記のような真空条件下に保持するのに真
空槽2内にガス導入管11からアルゴンガスなどの不活
性ガスを導入してもよいし、反応性蒸着を行なう場合に
は酸素ガス、窒素ガスなどの気体を導入してもよく、ま
た残留ガスによってもよい。
In the present invention, an inert gas such as argon gas may be introduced into the vacuum chamber 2 from the gas introduction tube 11 to maintain the vacuum condition as described above, or oxygen gas may be introduced into the vacuum chamber 2 when performing reactive vapor deposition. A gas such as gas or nitrogen gas may be introduced, or residual gas may be introduced.

このようにして、真空槽2内の真空度を上記条件に設定
し、蒸発粒子濃度を安定させた後、フィルム4の搬送を
開始するとともに、クーリングキャン3に高周波電圧を
印加する。
In this way, after setting the degree of vacuum in the vacuum chamber 2 to the above conditions and stabilizing the concentration of evaporated particles, transport of the film 4 is started and a high frequency voltage is applied to the cooling can 3.

クーリングキャンに印加される高周波電圧とは、IQQ
KHs以上の周波数を有する電圧を意味する。本発明で
は、上記のような高周波電圧だけを印加してもよ(、高
周波電圧を直流電圧に重畳させながら印加してもよい。
The high frequency voltage applied to the cooling can is IQQ
It means a voltage having a frequency of KHs or higher. In the present invention, only the high frequency voltage as described above may be applied (or the high frequency voltage may be applied while being superimposed on the DC voltage.

また、放電が発生するクーリングキャン3近傍に磁界を
印加し、放電を安定化させてもよい。
Alternatively, a magnetic field may be applied near the cooling can 3 where discharge occurs to stabilize the discharge.

このような高周波電圧をクーリングキャン3に印加する
とクーリングキャン近傍に放電が生ずる。
When such a high frequency voltage is applied to the cooling can 3, a discharge occurs near the cooling can.

この際クーリングキャンに生ずる直流成分の電圧すなわ
ち直流電圧■DCは、0.2〜8に■、好ましくは0.
4〜6KVの範囲となるようにすることが望ましい。こ
の直流電圧vDCは、高周波電圧のみを印加した場合で
あっても、また高周波電圧を直流電圧に重畳させて印加
した場合であっても同様の条件に設定される。
At this time, the voltage of the DC component generated in the cooling can, that is, the DC voltage (DC) is 0.2 to 8, preferably 0.
It is desirable that the voltage is in the range of 4 to 6 KV. This DC voltage vDC is set to the same conditions even when only the high frequency voltage is applied or when the high frequency voltage is applied in a superimposed manner on the DC voltage.

クーリングキャンに誘起される直流電圧vDcが0.2
KV未満であると、放電の安定性がとれないばかりか、
フィルムへの蒸発粒子の衝突エネルギーが小さくなり、
安定性および密着強度の良好な薄膜が得られない傾向が
ある。一方直流電圧vDcが8KVを超えると、フィル
ムの熱損傷が大きくなる傾向がある。
The DC voltage vDc induced in the cooling can is 0.2
If it is less than KV, not only will the discharge be unstable,
The collision energy of evaporated particles on the film is reduced,
There is a tendency that a thin film with good stability and adhesion strength cannot be obtained. On the other hand, if the DC voltage vDc exceeds 8 KV, thermal damage to the film tends to increase.

このような放電処理を行なうことにより、送り出しコア
7から送り出されたフィルム4は、搬送途中でクーリン
グキャン3に支持される部分、すなわち薄膜が形成され
る部分で放電処理されて活性化される。したがって、薄
膜形成時にフィルム4の活性が低下したり、フィルム4
が帯電したりすることがない。
By performing such a discharge treatment, the film 4 sent out from the delivery core 7 is activated by discharge treatment at a portion supported by the cooling can 3 during transportation, that is, a portion where a thin film is formed. Therefore, when forming a thin film, the activity of the film 4 may be reduced or
will not become charged.

また、放電により蒸着源6から発生する蒸発粒子がイオ
ン化し、イオン化されていない粒子よりもフィルム4の
表面に強く衝突するため、形成される薄膜の剥離強度を
向上させることができる。
Further, the evaporated particles generated from the vapor deposition source 6 due to the discharge are ionized and collide with the surface of the film 4 more strongly than non-ionized particles, so that the peel strength of the formed thin film can be improved.

なおこの蒸発粒子のイオン化を促進するために、さらに
他のイオン化手段を用いてもよい。
Note that other ionization means may be used to promote ionization of the evaporated particles.

発明の効果 本発明に係る薄膜形成方法は、中間支持部に高周波電圧
を印加し、薄膜を形成する際の真空度にて放電を発生さ
せるため、薄膜を形成させる前後でフィルムにグロー放
電処理を行なう必要がなく、この方法で薄膜を形成する
ための装置の大型化および複雑化を防ぐことができる。
Effects of the Invention The thin film forming method according to the present invention applies a high frequency voltage to the intermediate support part and generates discharge at the vacuum level when forming the thin film, so the film is subjected to glow discharge treatment before and after forming the thin film. There is no need to carry out this process, and it is possible to prevent an apparatus for forming a thin film from becoming larger and more complicated using this method.

また、フィルム搬送時にフィルムが帯電することがなく
、さらに薄膜の形成部分で放電を行なうために薄膜形成
前にフィルムの活性が低下することがない。
Further, the film is not charged during film transport, and furthermore, since discharge occurs in the thin film formation area, the activity of the film does not decrease before the thin film is formed.

本発明に係る薄膜形成装置は、グロー放電を行なう前処
理室と後処理室とを必要としないため、構造が簡単で保
守管理が容易である。また、搬送時にフィルムへの帯電
を伴わないため円滑にフィルムの搬送を行なうことがで
き、さらに充分な活性状態で薄膜の形成を行なえるため
、得られた薄膜の剥離強度が大きい。
The thin film forming apparatus according to the present invention does not require a pre-treatment chamber and a post-treatment chamber for performing glow discharge, and therefore has a simple structure and easy maintenance. Further, since the film is not charged during transport, the film can be transported smoothly, and the thin film can be formed in a sufficiently active state, so the peel strength of the obtained thin film is high.

以下本発明を実施例により説明するが、本発明はこれら
実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

■遭」 第2図に示される装置IAに厚さ30μmのポリパラバ
ン酸フィルム(フィルム4)と、銅(蒸着源6)とを装
着し、Arガスを導入して真空槽2内の真空度をI X
 10 ’tauとした後、蒸着源6を加熱して蒸発粒
子を発生させた。
■A 30 μm thick polyparabanic acid film (film 4) and copper (evaporation source 6) are attached to the apparatus IA shown in FIG. IX
After setting the temperature to 10' tau, the vapor deposition source 6 was heated to generate vaporized particles.

次いで、フィルム4を搬送速度8m/分で搬送しながら
、周波数13.56MHz、電力IKwの高周波電圧に
電圧3KVの直流電圧を重畳させてクーリングキャン3
に印加し、放電を発生させてCu膜を形成した。形成さ
れたCu膜は膜厚が2μmであった。
Next, while conveying the film 4 at a conveyance speed of 8 m/min, a DC voltage of 3 KV is superimposed on a high frequency voltage of a frequency of 13.56 MHz and a power of IKw, and the cooling can 3 is
was applied to generate a discharge to form a Cu film. The Cu film formed had a thickness of 2 μm.

このようにしてフィルム表面に形成されたCu膜の剥離
強度を第4図に示すような装置を用いて測定した。すな
わ)、第4図に示される装置では、フィルム4裏面を支
持台20に接着層21を介して固定し、接着強度測定棒
23の先端をCu膜4aに接着層24を介して接着し、
次いで接着強度測定棒23を引上げ、Uゲージ(図示せ
ず)により膜の剥離強度を測定することができる。
The peel strength of the Cu film thus formed on the film surface was measured using an apparatus as shown in FIG. In the apparatus shown in FIG. 4, the back surface of the film 4 is fixed to the support base 20 via the adhesive layer 21, and the tip of the adhesive strength measuring rod 23 is bonded to the Cu film 4a via the adhesive layer 24. ,
Next, the adhesive strength measuring rod 23 is pulled up, and the peel strength of the film can be measured using a U gauge (not shown).

上記測定装置による測定結果を表1に示す。Table 1 shows the measurement results using the above measuring device.

比較例1 クーリングキャン3への電圧の印加を行なわなかった以
外は、実施例1と同様にしてフィルム表面に薄膜を形成
した。
Comparative Example 1 A thin film was formed on the film surface in the same manner as in Example 1, except that no voltage was applied to the cooling can 3.

得られたCu膜の剥離強度を実施例1と同様に測定した
The peel strength of the obtained Cu film was measured in the same manner as in Example 1.

得られた結果を表1に示す。なお、表1に示される値は
、実施例1での剥離強度を100とした相対値である。
The results obtained are shown in Table 1. The values shown in Table 1 are relative values with the peel strength in Example 1 being 100.

比較例2 第3図に示される薄膜形成装置101に実施例1と同様
のフィルム4および蒸着源6を装着して薄膜を形成した
Comparative Example 2 A thin film was formed by equipping the thin film forming apparatus 101 shown in FIG. 3 with the same film 4 and vapor deposition source 6 as in Example 1.

薄膜形成時において、前処理室102および後処理室1
03には窒素ガスを導入して真空度IX10−11ot
rに保持した。また、送り出しコア7および巻取りコア
8近傍の真空度は4 X 10 ’tour、薄膜形成
部近傍の真空度は6 X 10 ’tonとした。
During thin film formation, the pretreatment chamber 102 and the posttreatment chamber 1
Introducing nitrogen gas to 03 and vacuum degree IX10-11ot
It was held at r. Further, the degree of vacuum near the sending core 7 and the winding core 8 was 4×10'tour, and the degree of vacuum near the thin film forming part was 6×10'ton.

形成された薄膜の剥離強度を実施例1と同様にして測定
した。
The peel strength of the formed thin film was measured in the same manner as in Example 1.

得られた結果を表1に示す。なお、表1で示される値は
、実施例1での剥離強度を100とした相対値である。
The results obtained are shown in Table 1. Note that the values shown in Table 1 are relative values with the peel strength in Example 1 being 100.

表  1 1、IA・・・薄膜形成装置 2・・・真空槽    3・・・クーリングキャン4・
・・フィルム基板 5・・・加熱器6・・・蒸着源  
  7・・・送り出しコア8・・・巻取りコア  9・
・・高周波電源10・・・マスク
Table 1 1. IA... Thin film forming device 2... Vacuum chamber 3... Cooling can 4.
... Film substrate 5 ... Heater 6 ... Vapor deposition source
7... Feeding core 8... Winding core 9.
・High frequency power supply 10 ・Mask

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る薄膜形成方法で用い
られる装置の概略断面図、第3図は従来の薄膜形成方法
で用いられる装置の概略断面図、第4図は薄膜の剥離強
度を測定する装置を示す模式図である。
1 and 2 are schematic cross-sectional views of the apparatus used in the thin film forming method according to the present invention, FIG. 3 is a schematic cross-sectional view of the apparatus used in the conventional thin film forming method, and FIG. 4 is the peel strength of the thin film. 1 is a schematic diagram showing an apparatus for measuring .

Claims (2)

【特許請求の範囲】[Claims] (1)真空槽内を搬送されるフィルムを支持手段により
支持するとともに、この支持手段に高周波電圧を印加し
て放電を生じさせて上記フィルムに放電処理を施すとと
もに、該フィルムの表面に真空槽内の蒸着源から発生し
た蒸発粒子を被着させて薄膜を形成させることを特徴と
するフィルムへの薄膜形成方法。
(1) The film being conveyed in the vacuum chamber is supported by a support means, and a high frequency voltage is applied to the support means to generate a discharge to perform discharge treatment on the film, and the surface of the film is placed in the vacuum chamber. A method for forming a thin film on a film, the method comprising forming a thin film by depositing evaporated particles generated from an evaporation source within the film.
(2)真空槽内でフィルムを搬送する搬送手段と、上記
真空槽内で蒸着源を蒸発させて蒸発粒子を発生させる蒸
発手段と、上記真空槽内を搬送されるフィルムの裏面を
支持する支持手段と、該支持手段に高周波電圧を印加す
る高周波電圧印加手段とを備えることを特徴とするフィ
ルムへの薄膜形成装置。
(2) A conveyance means for conveying the film within the vacuum chamber, an evaporation means for evaporating a deposition source to generate evaporated particles within the vacuum chamber, and a support for supporting the back surface of the film conveyed within the vacuum chamber. 1. An apparatus for forming a thin film on a film, comprising: means for forming a thin film on a film; and a high-frequency voltage applying means for applying a high-frequency voltage to the supporting means.
JP8731089A 1989-04-06 1989-04-06 Method and device for forming a thin film on film Pending JPH02267267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8731089A JPH02267267A (en) 1989-04-06 1989-04-06 Method and device for forming a thin film on film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8731089A JPH02267267A (en) 1989-04-06 1989-04-06 Method and device for forming a thin film on film

Publications (1)

Publication Number Publication Date
JPH02267267A true JPH02267267A (en) 1990-11-01

Family

ID=13911264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8731089A Pending JPH02267267A (en) 1989-04-06 1989-04-06 Method and device for forming a thin film on film

Country Status (1)

Country Link
JP (1) JPH02267267A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224441A (en) * 1991-09-27 1993-07-06 The Boc Group, Inc. Apparatus for rapid plasma treatments and method
JP2002220657A (en) * 2001-01-25 2002-08-09 Kiyousera Opt Kk Thin film forming apparatus and thin film forming method
JP2006069074A (en) * 2004-09-02 2006-03-16 Sumitomo Electric Ind Ltd Method for producing composite film and surface modification method for resin film
JP2006104568A (en) * 2004-10-08 2006-04-20 Dainippon Printing Co Ltd Film formation apparatus using pressure gradient ion plating
JP2006111942A (en) * 2004-10-15 2006-04-27 Dainippon Printing Co Ltd Pressure gradient type ion-plating film-forming apparatus
JP2006111931A (en) * 2004-10-15 2006-04-27 Dainippon Printing Co Ltd Pressure gradient type ion plating film-forming apparatus
JP2006111891A (en) * 2004-10-12 2006-04-27 Dainippon Printing Co Ltd Pressure gradient type ion-plating film-forming apparatus
JP2006124781A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006124731A (en) * 2004-10-26 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006131929A (en) * 2004-11-04 2006-05-25 Dainippon Printing Co Ltd Pressure-gradient ion-plating type film deposition system and film deposition method
WO2013047279A1 (en) * 2011-09-29 2013-04-04 積水化学工業株式会社 Method for starting surface treatment of film and surface-treatment device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224441A (en) * 1991-09-27 1993-07-06 The Boc Group, Inc. Apparatus for rapid plasma treatments and method
JP2002220657A (en) * 2001-01-25 2002-08-09 Kiyousera Opt Kk Thin film forming apparatus and thin film forming method
JP2006069074A (en) * 2004-09-02 2006-03-16 Sumitomo Electric Ind Ltd Method for producing composite film and surface modification method for resin film
JP2006104568A (en) * 2004-10-08 2006-04-20 Dainippon Printing Co Ltd Film formation apparatus using pressure gradient ion plating
JP2006111891A (en) * 2004-10-12 2006-04-27 Dainippon Printing Co Ltd Pressure gradient type ion-plating film-forming apparatus
JP2006111942A (en) * 2004-10-15 2006-04-27 Dainippon Printing Co Ltd Pressure gradient type ion-plating film-forming apparatus
JP2006111931A (en) * 2004-10-15 2006-04-27 Dainippon Printing Co Ltd Pressure gradient type ion plating film-forming apparatus
JP2006124731A (en) * 2004-10-26 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006124781A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Pressure gradient type ion plating film deposition apparatus and film deposition method
JP2006131929A (en) * 2004-11-04 2006-05-25 Dainippon Printing Co Ltd Pressure-gradient ion-plating type film deposition system and film deposition method
WO2013047279A1 (en) * 2011-09-29 2013-04-04 積水化学工業株式会社 Method for starting surface treatment of film and surface-treatment device

Similar Documents

Publication Publication Date Title
US20180171480A1 (en) Vapor deposition apparatus having pretreatment device that uses plasma
US20040166322A1 (en) Vapor-deposited film
JPH02267267A (en) Method and device for forming a thin film on film
JP7426003B2 (en) Film forming equipment and film forming method
JP2003073814A (en) Film forming equipment
JP2004197207A (en) Thin film forming equipment
JP2007297712A (en) Metallization through a thin seed layer deposited using plasma
JP5873705B2 (en) Method for producing metal-deposited film
JP2006131929A (en) Pressure-gradient ion-plating type film deposition system and film deposition method
JPH04183865A (en) Method and device for forming a thin film on film
JPH03211278A (en) Method and device for forming thin film on film
JPH02232365A (en) Method and device for forming thin film
KR100302870B1 (en) Method for depositing metal on surface of polymer film by ion beams
JPH0111721Y2 (en)
JP3398563B2 (en) Method and apparatus for manufacturing composite thin film
JP2013237897A (en) Vacuum film deposition system, gas barrier film, and laminate with gas barrier property
JP3243319B2 (en) Metallization method for organic substrate surface
JP2003301260A (en) Roll-up electron beam vacuum evaporation system
JPH04297579A (en) Thin film forming method and device
JPH0293065A (en) Thin film formation method
JPH0586470A (en) Roll-up electron beam vacuum evaporation system
JP2000198162A (en) Gas barrier material and method for producing the same
JPH0293059A (en) Thin film formation method
JPH0488160A (en) Production of metallized polypropylene film for capacitor
JPH03294473A (en) Ion plating apparatus