[go: up one dir, main page]

JPH0488160A - Production of metallized polypropylene film for capacitor - Google Patents

Production of metallized polypropylene film for capacitor

Info

Publication number
JPH0488160A
JPH0488160A JP2203041A JP20304190A JPH0488160A JP H0488160 A JPH0488160 A JP H0488160A JP 2203041 A JP2203041 A JP 2203041A JP 20304190 A JP20304190 A JP 20304190A JP H0488160 A JPH0488160 A JP H0488160A
Authority
JP
Japan
Prior art keywords
film
polypropylene film
layer
capacitor
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2203041A
Other languages
Japanese (ja)
Inventor
Hajime Kitamura
肇 北村
Susumu Ueno
進 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2203041A priority Critical patent/JPH0488160A/en
Publication of JPH0488160A publication Critical patent/JPH0488160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve adhesive strength between a film and a metallic vapor deposited layer by subjecting the surface of a biaxially oriented polypropylene film to low temp. plasma treatment under reduced pressure and then forming a metallic vapor deposited layer on the resulting treated surface. CONSTITUTION:Low temp. plasma treatment is previously applied to the surface of a biaxially oriented polypropylene film under a reduced pressure of about 0.005-5Torr. It is desirable to form fine ruggedness of 0.01-0.1mum diameter in a density of 100-10,000 pieces/mum<2>, preferably 500-5,0000 pieces/mum<2>, in the surface. Further, Al, Zn, Cu, Sn, Zn-Al alloy, etc., are vapor-deposited onto the treated surface. By this method, the adhesion between the film layer and the metallic vapor deposited layer is performed without deteriorating the characteristics of the film, and a superior metallized polypropylene film for capacitor is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属化層とフィルム層との密着性に優れたコ
ンデンサー用金属化ポリプロピレンフィルムの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a metallized polypropylene film for capacitors that has excellent adhesion between a metallized layer and a film layer.

(従来の技術) 2軸配向ポリプロピレンフイルム(以下、OPPフィル
ムとする)は、誘電損失が小さく絶縁破壊電圧が高いと
いう特徴と持っていて油浸コンデンサーの誘電体層とし
て広く用いられている。
(Prior Art) Biaxially oriented polypropylene film (hereinafter referred to as OPP film) has the characteristics of low dielectric loss and high dielectric breakdown voltage, and is widely used as a dielectric layer of oil-immersed capacitors.

この場合、電極層としてはアルミニウム、亜鉛あるいは
これらの混合物を蒸着したものが使用されているが、フ
ィルム誘電体層と蒸着金属層との密着性に劣り、これを
絶縁油中に浸漬したときに蒸着層がフィルム層から剥が
れたり、高電圧印加時にコンデンサーの部分放電により
蒸着金属層が飛散脱落したりする等の問題があった。
In this case, the electrode layer is made of vapor-deposited aluminum, zinc, or a mixture thereof, but the adhesion between the film dielectric layer and the vapor-deposited metal layer is poor, and when it is immersed in insulating oil, There were problems such as the vapor deposited layer peeling off from the film layer and the vapor deposited metal layer scattering and falling off due to partial discharge of the capacitor when high voltage was applied.

フィルム層と蒸着層との密着性を高める方法としては、
コロナ処理による方法や銅、銀などの密着性のよい金属
で予備蒸着を行う方法なども提案されているが、いずれ
も満足すべき結果は得られていない。とくにコロナ処理
は現在一般に行われている方法であるが、効果が不充分
であり、またコロナ処理ロールとフィルムとの間に巻き
込まれる空気量のバラツキの影響もあって、フィルムの
改質ムラが生じやすく部分的な蒸着層の剥離を生ずる等
の問題があった。とくにコロナ放電は大気圧下での高電
圧放電であるがために、電界強度ムラに起因するスパー
クを生じやすく、その結果としてフィルム面にピンホー
ルを発生させて、○PPフィルムの特性である機械的強
度や電気絶縁性等を損なっていた。
As a method to increase the adhesion between the film layer and the vapor deposited layer,
A method using corona treatment and a method using a metal with good adhesion such as copper or silver for pre-evaporation have also been proposed, but neither method has yielded satisfactory results. In particular, corona treatment is a method commonly used at present, but its effectiveness is insufficient, and the uneven amount of air caught between the corona treatment roll and the film causes uneven film modification. There were problems such as partial peeling of the vapor deposited layer. In particular, since corona discharge is a high-voltage discharge under atmospheric pressure, sparks are likely to occur due to uneven electric field strength, resulting in pinholes on the film surface and mechanical The electrical strength and electrical insulation properties were impaired.

このような理由から金属層とフィルム層の密着性の改善
されたコンデンサー用金属化フィルムの開発が要望され
ていた。
For these reasons, there has been a demand for the development of a metallized film for capacitors that has improved adhesion between the metal layer and the film layer.

(発明が解決しよ、うとする課題) したがって、本発明の目的は、二輪延伸ポリプロピレン
フィルムと金属蒸着層との密着性に優れたコンデンサー
用金属化フィルムを、フィルム固有の特性を損なうこと
なく、容易に得られる方法を提供することにある。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a metallized film for a capacitor that has excellent adhesion between a two-wheeled stretched polypropylene film and a metal vapor deposition layer, without impairing the inherent characteristics of the film. The purpose is to provide a method that can be easily obtained.

(課題を解決するための手段) 本発明によるコンデンサー用金属化ポリプロピレンフィ
ルムの製造方法は、二軸延伸ポリプロピレンフィルムの
表面に、0.005〜5トルの減圧下で低温プラズマ処
理を行い、望ましくはそこに直径0.01〜0.17a
の微細な凹凸を、密度100〜10,000個/ gn
 ”で形成させた後、その処理面に金属蒸着層を形成す
ることを特徴とするものである。
(Means for Solving the Problems) A method for manufacturing a metallized polypropylene film for capacitors according to the present invention includes performing low-temperature plasma treatment on the surface of a biaxially oriented polypropylene film under a reduced pressure of 0.005 to 5 torr, and preferably There diameter 0.01~0.17a
fine irregularities with a density of 100 to 10,000 pieces/gn
”, and then a metal vapor deposition layer is formed on the treated surface.

これを説明すると、本発明者らは、上記問題点について
鋭意研究の結果、二軸延伸ポリプロピレンフィルムの表
面に、あらかじめo、0.005〜5トルの減圧下で低
温プラズマ処理を行い、望ましくはそこに直径0.01
〜0.ipの微細な凹凸を、密度100〜10,000
個/4.好ましくは500〜5,000個/p2で形成
させた後、その処理面にさらに、A1.Zn、Cu−S
n、Zn−Alアロイ等を蒸着させると、フィルムの特
性を損なうことなく、フィルム層と金属蒸着層とが密着
し、優れたコンデンサー用金属化ポリプロピレンフィル
ムの得られることを見出し9本発明に到達したものであ
る。
To explain this, as a result of intensive research into the above-mentioned problem, the present inventors performed low-temperature plasma treatment on the surface of a biaxially oriented polypropylene film in advance under a reduced pressure of 0.005 to 5 Torr, and desirably There diameter 0.01
~0. The fine irregularities of the ip have a density of 100 to 10,000.
piece/4. After forming preferably 500 to 5,000 pieces/p2, A1. Zn, Cu-S
The present inventors discovered that by vapor-depositing Zn, Zn-Al alloy, etc., the film layer and the metal vapor-deposited layer are in close contact with each other without impairing the properties of the film, and an excellent metallized polypropylene film for capacitors can be obtained.9 The present invention has been achieved. This is what I did.

本発明の方法によるプラズマ処理は、減圧可能なプラズ
マ処理装置内にOPPフィルムを装着し、圧力o、0.
005〜5トルの条件で無機ガスと通気しながら電極間
に、例えば周波数KHz〜数百KHzの高周波電力を印
加することによって行われる。
In plasma processing according to the method of the present invention, an OPP film is installed in a plasma processing apparatus capable of reducing pressure, and the pressure is o, 0.
This is carried out by applying high frequency power with a frequency of, for example, KHz to several hundred KHz between the electrodes while aerating the inorganic gas under conditions of 0.005 to 5 Torr.

なお、放電周波数帯としては上記高周波のほかに低周波
、マイクロ波、直流などを用いることができる。また低
温プラズマの発生装置の形式としては、内部電極型、外
部電極型、コイル型の容量結合、誘導結合等があるが、
これらの内では内部電極型が短時間の処理で優れた密着
性を付与できるので好ましい。
Note that as the discharge frequency band, in addition to the above-mentioned high frequency, low frequency, microwave, direct current, etc. can be used. In addition, the types of low-temperature plasma generators include internal electrode type, external electrode type, coil type capacitive coupling, inductive coupling, etc.
Among these, the internal electrode type is preferred because it can provide excellent adhesion with a short treatment time.

プラズマ処理の特徴はo、0.005〜5トルという減
圧下の雰囲気中での低電圧放電であるため、コロナ放電
で生ずるようなスパークは生ぜず、基材フィルムへの悪
影響が少ない点にある。しかしながら、コンデンサーフ
ィルムとして用いられる○PPフィルムは5〜20mと
いう極薄のフィルムであり、この表面処理に当ってはよ
り注意深い条件設定が必要である。
The characteristic of plasma treatment is that it is a low voltage discharge in an atmosphere under a reduced pressure of 0.005 to 5 torr, so it does not generate sparks like that caused by corona discharge and has little negative impact on the base film. . However, the OPP film used as a capacitor film is an extremely thin film with a thickness of 5 to 20 m, and the surface treatment requires more careful setting of conditions.

本発明の方法は前述したように内部電極方式で実施する
のが好ましいが、このときの電極の形状についてはとく
に制限がなく、入力側電極とアース側電極とが同一の形
状でも、あるいは異なった形状のいずれでもよく、これ
らは平板状、リング状、棒状、シリンダー状等、種々の
形状のものとすることができ、さらには処理装置の金属
内壁を一方の電極としてアースした形状のものであって
もよい。なお、入力側電極としては一般に銅、鉄。
As mentioned above, the method of the present invention is preferably carried out using the internal electrode method, but there are no particular restrictions on the shape of the electrodes, and the input-side electrode and the ground-side electrode may have the same shape or different shapes. They can have any shape, such as a flat plate, a ring, a rod, a cylinder, etc., and even have a shape in which the metal inner wall of the processing device is grounded as one electrode. It's okay. Note that the input side electrode is generally copper or iron.

アルミニウム等が使われるが、放電を安定して維持する
ためには、これらの入力電極が耐電圧10,000v以
上を有する、ガラス、ホーロー、セラミック等で絶縁コ
ートされていることが好ましい。とくに絶縁コートされ
た棒状電極は、局所的に効果的なプラズマを発生させる
上で好適である。
Aluminum or the like is used, but in order to maintain stable discharge, it is preferable that these input electrodes be insulating coated with glass, enamel, ceramic, or the like having a withstand voltage of 10,000 V or more. In particular, rod-shaped electrodes coated with insulation are suitable for generating locally effective plasma.

電極間に印加される電力については、それが大きすぎる
場合は発熱によるフィルムの変形、変質を来すため好ま
しくなく、陽電極の面積当り150に%1/ r&以下
、とくには50kV/ r&以下で制御することが好ま
しい。
Regarding the electric power applied between the electrodes, if it is too large, it is undesirable because it will cause deformation and deterioration of the film due to heat generation. Preferably controlled.

本発明で用いられる無機ガスには、 He、 Ne、A
r、 H,、N2.0□、空気、CO,CO2等があり
、これらは単独または2種以上を混合して用いられる。
Inorganic gases used in the present invention include He, Ne, A
There are r, H,, N2.0□, air, CO, CO2, etc., and these can be used alone or in combination of two or more.

低温プラズマ処理の際のガス圧は0.005〜5トル、
とくには0.01〜1トルが好ましく、0.005 )
−ル未満または5トルを超えるガス圧ではプラズマの発
生が困難となったり、異常放電等によりフィルムに損傷
を生じ、フィルム強度の低下、ピンホールの発生、熱変
形、あるいはこれらに伴うフィルムの電気特性の低下等
をもたらす。
The gas pressure during low temperature plasma treatment is 0.005 to 5 torr;
In particular, 0.01 to 1 torr is preferable, and 0.005)
- If the gas pressure is less than 5 torr or more than 5 torr, it may be difficult to generate plasma, or damage may occur to the film due to abnormal discharge, resulting in a decrease in film strength, pinhole formation, thermal deformation, or the resulting electrical discharge of the film. This results in deterioration of characteristics, etc.

また、低温プラズマの照射時間は100秒以内、とくに
は30秒以内であること゛が好ましく、この範囲外では
上記と同様の現象を生ずるので好ましくない。
Further, it is preferable that the irradiation time of the low temperature plasma be within 100 seconds, particularly within 30 seconds; outside this range, the same phenomenon as described above will occur, so it is not preferable.

以上の条件で低温プラズマ処理を行うことにより、前述
した表面に直径0.01〜0.11の微細な凹凸を、密
度100〜10,000個/即2、好ましくは500〜
s 、 ooo個/μm2で有するOPPフィルムが得
られる。
By performing the low-temperature plasma treatment under the above conditions, fine irregularities with a diameter of 0.01 to 0.11 are formed on the surface at a density of 100 to 10,000 pieces/immediately 2, preferably 500 to 2.
An OPP film having s, ooo pieces/μm2 is obtained.

このような微細な凹凸を表面に有する○PPフィルムは
、フィルムの機械的強度や電気特性の低下を伴わずに、
蒸着金属層との密着性を著しく向上させることができる
○PP film with such fine irregularities on the surface can be used without deteriorating the mechanical strength or electrical properties of the film.
Adhesion with the vapor-deposited metal layer can be significantly improved.

このようにして得られた微細な凹凸を有するOPPフィ
ルムは、次の表面金属化工程に送られて最終製品となる
The thus obtained OPP film having fine irregularities is sent to the next surface metallization step to become a final product.

微細な凹凸を有するOPPフィルムの表面に金属層を形
成する手段としては、真空蒸着法、スパッタリング法等
の周知の手段が採用されるが、これらの内ではエレクト
ロンビームによる真空蒸着によるものが、とくに密着性
に優れたものが得られる。
Well-known methods such as vacuum evaporation and sputtering are used to form a metal layer on the surface of an OPP film having fine irregularities, but among these, vacuum evaporation using an electron beam is particularly effective. A product with excellent adhesion can be obtained.

また、金属層の材料には、A1、Zn、 Cu、 Sn
、Zn−Alアロイ等が挙げられるが、コンデンサーフ
ィルム用としてはAlまたはZn−Alアロイがとくに
好ましい。
In addition, the materials of the metal layer include A1, Zn, Cu, Sn.
, Zn-Al alloy, etc., but Al or Zn-Al alloy is particularly preferred for use in capacitor films.

以下、本発明の具体的態様を実施例により説明するが1
本発明はこの実施例のものに限定されるものではない。
Hereinafter, specific aspects of the present invention will be explained with reference to Examples.
The present invention is not limited to this example.

(実施例) 低温プラズマ処理装置内にOPPフィルムを装着した後
1機内の圧力を0.002 トルまで減圧した。
(Example) After an OPP film was installed in a low temperature plasma processing apparatus, the pressure inside the apparatus was reduced to 0.002 torr.

この状態でアルゴンガスを通気し、圧力を0.05トル
に調整保持した後、110kHz、陽電極当り20kW
/m2の電力を印加し約3秒間プラズマ処理を行った。
In this state, argon gas was vented, the pressure was adjusted and maintained at 0.05 Torr, and then the power was increased to 110kHz, 20kW per positive electrode.
Plasma treatment was performed for about 3 seconds by applying a power of /m2.

この○PPフィルムの表面を電子顕微鏡により観察した
トコ口、直径0.O1〜0.051#、密度r、ooo
−2゜000個/mFの凹凸の存在が確認された。この
フィルムをエレクトロンビーム法により真空蒸着を行い
、表面に厚み0.05.のZn−Alアロイ(Zn含量
10%)の金属層を形成させ、金属化oPPフィルムを
作製した。
The surface of this PP film was observed using an electron microscope, and the diameter was 0. O1~0.051#, density r, ooo
The presence of -2°000 unevenness/mF was confirmed. This film was vacuum-deposited using an electron beam method to a thickness of 0.05 mm on the surface. A metal layer of Zn-Al alloy (Zn content 10%) was formed to produce a metalized oPP film.

この金属蒸着層の密着性をテープ剥離試験(金属蒸着面
にテープを貼り付は急激に引き剥がして密着性を評価す
る)により測定し1通常のコロナ放電処理のものと比較
したところ、下記のように本発明のものの方が優れてい
ることが判った。
The adhesion of this metal evaporated layer was measured by a tape peel test (when a tape is pasted on a metal evaporated surface, it is rapidly peeled off to evaluate the adhesion) and compared with that of a normal corona discharge treatment. Thus, it was found that the product of the present invention is superior.

(発明の効果) 本発明によれば、二軸延伸ポリプロピレンフィルムと金
属蒸着層との密着性に優れたコンデンサー用金属化フィ
ルムを、フィルム固有の特性を損なうことなく、容易に
得ることができる。
(Effects of the Invention) According to the present invention, a metallized film for a capacitor having excellent adhesion between a biaxially oriented polypropylene film and a metal vapor-deposited layer can be easily obtained without impairing the inherent characteristics of the film.

特許出願人 信越化学工業株式会社。Patent applicant: Shin-Etsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 1.二軸延伸ポリプロピレンフィルムの表面に、0.0
05〜5トルの減圧下で低温プラズマ処理を行った後、
その処理面に金属蒸着層を形成することを特徴とするコ
ンデンサー用金属化ポリプロピレンフィルムの製造方法
1. 0.0 on the surface of the biaxially stretched polypropylene film
After performing low temperature plasma treatment under reduced pressure of 05-5 torr,
A method for producing a metallized polypropylene film for a capacitor, the method comprising forming a metal vapor deposition layer on the treated surface.
2.低温プラズマ処理後のポリプロピレンフィルムが、
その表面に直径0.01〜0.1μmの微細な凹凸を、
密度100〜10,000個/μm^2で有する請求項
1記載のコンデンサー用金属化ポリプロピレンフィルム
の製造方法。
2. Polypropylene film after low temperature plasma treatment
Fine irregularities with a diameter of 0.01 to 0.1 μm are formed on the surface.
The method for producing a metallized polypropylene film for a capacitor according to claim 1, having a density of 100 to 10,000 pieces/μm^2.
JP2203041A 1990-07-31 1990-07-31 Production of metallized polypropylene film for capacitor Pending JPH0488160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2203041A JPH0488160A (en) 1990-07-31 1990-07-31 Production of metallized polypropylene film for capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2203041A JPH0488160A (en) 1990-07-31 1990-07-31 Production of metallized polypropylene film for capacitor

Publications (1)

Publication Number Publication Date
JPH0488160A true JPH0488160A (en) 1992-03-23

Family

ID=16467368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2203041A Pending JPH0488160A (en) 1990-07-31 1990-07-31 Production of metallized polypropylene film for capacitor

Country Status (1)

Country Link
JP (1) JPH0488160A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051218A (en) * 2005-08-18 2007-03-01 Tateyama Machine Kk Plasma etching method
JP2009228015A (en) * 2008-03-19 2009-10-08 Toppan Printing Co Ltd Method and apparatus for manufacturing laminate and gas barrier-film
CN106349494A (en) * 2016-08-29 2017-01-25 安徽省宁国市海伟电子有限公司 Processing technology of polypropylene metallized film
JPWO2021005823A1 (en) * 2019-07-10 2021-01-14

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051218A (en) * 2005-08-18 2007-03-01 Tateyama Machine Kk Plasma etching method
JP4523892B2 (en) * 2005-08-18 2010-08-11 立山マシン株式会社 Plasma etching method
JP2009228015A (en) * 2008-03-19 2009-10-08 Toppan Printing Co Ltd Method and apparatus for manufacturing laminate and gas barrier-film
CN106349494A (en) * 2016-08-29 2017-01-25 安徽省宁国市海伟电子有限公司 Processing technology of polypropylene metallized film
CN106349494B (en) * 2016-08-29 2019-06-04 安徽省宁国市海伟电子有限公司 A kind of polypropylene metallized film processing technology
JPWO2021005823A1 (en) * 2019-07-10 2021-01-14
WO2021005823A1 (en) * 2019-07-10 2021-01-14 株式会社村田製作所 Film capacitor and film for film capacitor
CN114040938A (en) * 2019-07-10 2022-02-11 株式会社村田制作所 Film capacitors and films for film capacitors
CN114040938B (en) * 2019-07-10 2024-10-29 株式会社村田制作所 Thin film capacitor

Similar Documents

Publication Publication Date Title
JPS63210099A (en) Preparation of diamond film
US5844770A (en) Capacitor structures with dielectric coated conductive substrates
JPH0488160A (en) Production of metallized polypropylene film for capacitor
US4803094A (en) Metallized coating
JPH04165063A (en) Production of metallized polypropylene film for capacitor
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
JP2001052949A (en) Manufacture of metalized film for capacitor and apparatus for manufacturing metalized film for capacitor
JP4161607B2 (en) Retractable electron beam vacuum evaporation system
JPS6260213A (en) Lead glass thin film dielectric material
JPS6053113B2 (en) Film formation method
JP3155750B2 (en) Method for producing aluminum electrode for electrolytic capacitor
JP3796694B2 (en) Metal-deposited plastic substrate and method for producing the same
JPH0521289A (en) Manufacture of electrode foil for electrolytic capacitor
JPS63255910A (en) Manufacturing method of aluminum electrode material for electrolytic capacitors
JPH03131014A (en) Manufacture of aluminum electrode for electrolytic capacitor
KR100362529B1 (en) Coating method
JPS6286603A (en) Zinc sulphide thin film dielectric material
JPH0432552A (en) Production of electrode foil for electrolytic capacitor
JP2965670B2 (en) Manufacturing method of multilayer thin film capacitor
JPH01184263A (en) Pretreatment for coating
JPH05271903A (en) Production of silicon nitride thin film
JPH0259865B2 (en)
JPH11222666A (en) Metal evaporated fluororesin film and its production
JPS63210270A (en) Method for coating film to insulator substrate
US20030129425A1 (en) High ohm capacitor film