[go: up one dir, main page]

JPH02267243A - High strength bolt steel having excellent delayed fracture characteristics - Google Patents

High strength bolt steel having excellent delayed fracture characteristics

Info

Publication number
JPH02267243A
JPH02267243A JP8702089A JP8702089A JPH02267243A JP H02267243 A JPH02267243 A JP H02267243A JP 8702089 A JP8702089 A JP 8702089A JP 8702089 A JP8702089 A JP 8702089A JP H02267243 A JPH02267243 A JP H02267243A
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
high strength
hydrogen
bolts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8702089A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
信一 鈴木
Hiroaki Harada
宏明 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8702089A priority Critical patent/JPH02267243A/en
Publication of JPH02267243A publication Critical patent/JPH02267243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To increase limiting diffusible hydrogen in the steel and to improve its delayed fracture resistance by increasing the amounts of Si and Cr in a steel compared with those in a conventional steel. CONSTITUTION:The compsn. of the high strength bolt steel is constituted of, by weight, 0.18 to 0.35% C, >0.50 to 1.50% Si, 0.20 to 0.60% Mn, >1.50 to 3.50% Cr, 0.10 to 0.50% Mo, 0.008 to 0.070% Al and the balance Fe with impurities. The steel is applicable to the manufacture of bolts having excellent delayed fracture characteristics even if its strength is regulated to about 140 to 160kg/mm<2> by heat treatment. When about 0.005 to 0.030% Nb or Ti is furthermore added to the compsn., the steel is provided with high strength and can be fined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、140〜160 kg f / mJの引張
強さを有する耐遅れ破壊特性の優れた高強度ボルトに適
用する鋼である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is a steel applicable to high-strength bolts having a tensile strength of 140 to 160 kgf/mJ and excellent delayed fracture resistance.

(従来の技術) 高強度ボルト(以下、ボルト)は、機械、自動屯、橋、
建物に多く使用されている。ボルトの強度が125kg
f/mAを超えると遅れ破壊の危険性が高まることはよ
く知られており、現在使用されているボルトの強度ハ9
0kg f / ij或ハ110kg f / m4級
のものが主体となっている。
(Conventional technology) High-strength bolts (hereinafter referred to as bolts) are used in machines, automatic tunnels, bridges, etc.
It is often used in buildings. Bolt strength is 125kg
It is well known that exceeding f/mA increases the risk of delayed fracture, and the strength of bolts currently used is
The main types are 0kg f/ij or 110kg f/m4.

(発明が解決しようとする課題) しかしながら近年の構造物はますまず大型化の傾向にあ
り、継手効率を高めるためあるいは軽量化の目的から、
ボルトをより高強度にしたい要求が強い。そこで、強度
が!25kgf/ml!を超えるボルトの遅れ破壊の問
題を解決させなければならない。
(Problem to be solved by the invention) However, in recent years, structures have tended to become larger and larger, and in order to increase joint efficiency or reduce weight,
There is a strong demand for higher strength bolts. That's where strength comes in! 25kgf/ml! It is necessary to solve the problem of delayed fracture of bolts exceeding

ボルトの遅れ破壊は、ボルト中の水素が原因していると
言われている。遅れ破壊に関わる水素は、鋼中組織間を
常温で容易に動きうる、格子間隙または転位、或は結晶
粒界等に存在するいわゆる拡散性水素(以下、拡散性水
素)である。より高強度のボルトを使用する場合、水素
、特に拡散性水素に対する抵抗力のある鋼でなければな
らない。
The delayed fracture of bolts is said to be caused by hydrogen in the bolts. Hydrogen involved in delayed fracture is so-called diffusible hydrogen (hereinafter referred to as diffusible hydrogen), which exists in lattice gaps, dislocations, grain boundaries, etc., and can easily move between structures in steel at room temperature. If higher strength bolts are used, the steel must be resistant to hydrogen, especially diffusible hydrogen.

(課題を解決するための手段、作用) 本発明者らは、鋼の化学成分の調整、特にSl。(Means and actions for solving problems) The inventors have focused on adjusting the chemical composition of steel, particularly Sl.

C「を高めることにより、遅れ破壊に至らない限界の拡
散性水素(以下、限界拡散性水素)が増加できることが
可能であるとの知見を得て、上記問題点を解決すること
ができたのである。
We were able to solve the above problem by obtaining the knowledge that it is possible to increase the limit diffusible hydrogen that does not lead to delayed fracture (hereinafter referred to as limit diffusible hydrogen) by increasing C. be.

本発明は、以上の知見にもとずいてなされたものであり
、熱処理を施すことにより、140kg f /−〜I
 G Okg f / mJの高強度において、従来鋼
より高い限界拡散性水素を示すことを特徴とする耐遅れ
破壊特性の優れた高強度ボルト用鋼に関わるものである
The present invention has been made based on the above findings, and by applying heat treatment, it is possible to reduce the
This relates to a steel for high-strength bolts with excellent delayed fracture resistance, which is characterized by exhibiting a higher limit diffusivity of hydrogen than conventional steels at a high strength of G Okg f / mJ.

本発明者らは、耐遅れ破壊特性に及ぼす合金元素の影響
を調べたところ、従来のボルト用鋼に採用されているも
のと比べて、Sl量の増加、特に、Crの増加が有効で
あることを見い出した。
The present inventors investigated the influence of alloying elements on delayed fracture resistance and found that an increase in the amount of Sl, especially an increase in Cr, is effective compared to those used in conventional steel for bolts. I discovered that.

即ち、本発明のボルト用鋼の合金成分の範囲は、次の理
由で決定した。
That is, the range of alloy components of the steel for bolts of the present invention was determined for the following reasons.

Cは、焼入れ一焼戻しにより高強度を得るためには、0
.18%以上必要とし、一方、0.35%を超えるとじ
ん性及び耐遅れ破壊特性が低下し、高強度ボルトの特性
を満足しえないことから、0.18〜0.35%とした
C should be 0 in order to obtain high strength through quenching and tempering.
.. On the other hand, if it exceeds 0.35%, the toughness and delayed fracture resistance will deteriorate and the characteristics of a high-strength bolt cannot be satisfied, so it is set at 0.18 to 0.35%.

Slは、元来脱酸に必要であるが、ここでは特に、鋼の
耐遅れ破壊特性を向上させる。しかし、その効果を十分
に発揮せしめるには、0.50%超必要であるが、一方
、この増加による鋼のしん性の低下にもとずいて上限を
1.50%とした。
Sl is originally necessary for deoxidation, but here it particularly improves the delayed fracture resistance of the steel. However, in order to fully exhibit its effect, it is necessary to exceed 0.50%, but on the other hand, based on the decrease in the toughness of steel due to this increase, the upper limit was set at 1.50%.

Mnは、脱酸及び脱硫に必要であり、焼入性の確保のた
めにも0.20%以り必要であるが、0.60%を超え
ると遅れ破壊特性が低下するため、0.20〜0.80
%とした。
Mn is necessary for deoxidation and desulfurization, and 0.20% or more is also necessary to ensure hardenability, but if it exceeds 0.60%, delayed fracture properties will deteriorate, so ~0.80
%.

Crは、前述のとおり、かつ焼入性の確保のために1,
50%超必要とした。また、140kgf/II+4以
上の強度を得るための焼戻温度を高める働きが有り、一
般に、遅れ破壊特性は、焼戻温度が高い方が優れている
。しかし、多量に添加しても効果が飽和するので上限を
3.50%とした。
As mentioned above, Cr is 1,
More than 50% was required. It also has the function of increasing the tempering temperature to obtain a strength of 140 kgf/II+4 or higher, and generally the higher the tempering temperature, the better the delayed fracture properties. However, even if added in a large amount, the effect is saturated, so the upper limit was set at 3.50%.

Moは、鋼の強じん性を高めるに非常に有効な元素であ
って、この場合の必要量は0,10%以上である。しか
し、高価な元素であるため、その有効性を勘案して上限
を0.50%とした。
Mo is a very effective element for increasing the toughness of steel, and the required amount in this case is 0.10% or more. However, since it is an expensive element, the upper limit was set at 0.50% in consideration of its effectiveness.

Agは、鋼の組織を微細化して鋼の強度と靭性を向上す
る有効な量としてその下限をo、oog%としたが、多
すぎると非金属介在物が増加しその効果を減少させるた
め、その上限を0.070%とした。
The lower limit of Ag was set as o, oog% as an effective amount to refine the structure of steel and improve the strength and toughness of steel, but if it is too large, nonmetallic inclusions will increase and the effect will be reduced. The upper limit was set at 0.070%.

上述の基本成分の飼料に対して、更に、鋼の高強度化及
び微細化のために、0.005〜0.030%のNb或
いはTIを1種以上添加することができる。
To the above-mentioned basic ingredient feed, one or more types of Nb or TI can be added in an amount of 0.005 to 0.030% in order to increase the strength and refine the steel.

これらは、添加効果が飽和する量で上限とした。The upper limit was determined by the amount at which the added effect was saturated.

(実 施 例) 供試鋼の化学成分を表1に示す。(Example) Table 1 shows the chemical composition of the test steel.

A、  B、 C,D、  E及びFは本発明のボルト
用鋼に従ったものであり、G、H及びIは比較のために
用意した既存の鋼であり、これらのφ20+amの棒鋼
を用いて、引張強さが140)cg f / o+j〜
160kgf/−を目標に熱処理(焼入れ一焼戻し)を
行った。この時の熱処理条件及び引張性質を表2に示す
A, B, C, D, E, and F are steels for bolts according to the present invention, and G, H, and I are existing steels prepared for comparison. The tensile strength is 140) cg f / o + j ~
Heat treatment (quenching and tempering) was performed with a target of 160 kgf/-. Table 2 shows the heat treatment conditions and tensile properties at this time.

これらの鋼が、遅れ破壊に対し、どれだけの拡散性水素
を許容しつるかを調べる。即ち、6鋼の限界水素量を求
める。
We will investigate how much diffusible hydrogen these steels can tolerate against delayed fracture. That is, the limit amount of hydrogen for 6 steels is determined.

次に、限界水素量を求める方法について述べる。Next, a method for determining the limit amount of hydrogen will be described.

第1図に示したMIOボルトで軸部に2+a+sVの円
周ノツチを設けた試験片を作り、2本を組にして、水素
を富化するために、20%HCj2溶液に20分間浸漬
した後、大気中に放置し、その放置時間を種々変えるこ
とにより、試験片中の水素量を変化させる。こうして、
そのうちの1本は、熱的分析法により水素を測定し、も
う1本は、第2図に示した試験機で遅れ破壊を行う。図
において1は試験片、2はバランスウェイト、3は支点
を示す。
A test piece with a circumferential notch of 2+a+sV on the shaft part was made using the MIO bolt shown in Figure 1, and the two pieces were put together and immersed in a 20% HCj2 solution for 20 minutes to enrich hydrogen. The amount of hydrogen in the specimen is varied by leaving it in the atmosphere and varying the length of time it is left in the atmosphere. thus,
One of them measures hydrogen using a thermal analysis method, and the other one performs delayed fracture using the testing machine shown in Figure 2. In the figure, 1 indicates a test piece, 2 indicates a balance weight, and 3 indicates a fulcrum.

なお、試験片を20%MCI溶液に20分間浸漬しても
水素侵入量が少ない場合は、浸漬時間及びHCg溶液の
濃度によって水素量を調整している。
Note that if the amount of hydrogen penetrating is small even after immersing the test piece in a 20% MCI solution for 20 minutes, the amount of hydrogen is adjusted by the immersion time and the concentration of the HCg solution.

また、遅れ破壊試験における試験荷重は、HCI溶液に
浸漬する前の各試験片の破断荷重の70%と一定にした
Further, the test load in the delayed fracture test was kept constant at 70% of the fracture load of each test piece before being immersed in the HCI solution.

そして、浸漬時間及び放置時間を種々変えた時の拡散性
水素量と、遅れ破壊試験における破断時間との関係を表
3に示す。
Table 3 shows the relationship between the amount of diffusible hydrogen and the rupture time in the delayed fracture test when the immersion time and standing time were varied.

同表から、6鋼の遅れ破壊を起こさない上限の拡散性水
素量、即ち、限界拡散性水素量を推定すると表4のよう
になる。
From the same table, the upper limit diffusible hydrogen amount that does not cause delayed fracture of the 6th steel, ie, the limit diffusible hydrogen amount, is estimated as shown in Table 4.

これより、本発明の範囲にあるA、B、C,D。From this, A, B, C, and D are within the scope of the present invention.

E、及びFは、比較材であるG、 H,及びIに比べて
限界水素量が高く、遅れ破壊しにくいことを示している
E and F have a higher limit hydrogen content than the comparative materials G, H, and I, indicating that they are less likely to undergo delayed fracture.

表 鋼種記号 限界拡散性水素推定量 A        0.62ppm B        O,58ppm CO,44ppm D        0.50ppm E        O,46ppm F        O,38ppm G (80M440)      0.19ppmH(
SN0M240)     0.10ppm1  (S
N0M439)     O,14ppm
Table Steel type symbol Estimated limit diffusible hydrogen amount A 0.62ppm B O, 58ppm CO, 44ppm D 0.50ppm E O, 46ppm F O, 38ppm G (80M440) 0.19ppmH (
SN0M240) 0.10ppm1 (S
N0M439) O, 14ppm

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試験片の形状の説明図、 破壊試験装置の説明図である。 第2図は遅れ Figure 1 is an explanatory diagram of the shape of the test piece; It is an explanatory view of a destructive test device. Figure 2 is delayed

Claims (1)

【特許請求の範囲】 1、重量比で C:0.18〜0.35%、 Si:0.50超1.50%、 Mn:0.20〜0.60%、 Cr:1.50超3.50%、 Mo:0.10〜0.50%、 Al:0.008〜0.070%、 残Fe及び不純物からなることを特徴とする耐遅れ破壊
特性の優れた高強度ボルト用鋼。 2、重量比で 0.005〜0.030%のNb或はTiを1種以上含
有し、残Fe及び不純物からなることを特徴とする請求
項1記載の耐遅れ破壊特性の優れた高強度ボルト用鋼。
[Claims] 1. C: 0.18 to 0.35% by weight, Si: more than 0.50 1.50%, Mn: 0.20 to 0.60%, Cr: more than 1.50 3.50%, Mo: 0.10~0.50%, Al: 0.008~0.070%, residual Fe and impurities. High strength bolt steel with excellent delayed fracture resistance. . 2. High strength with excellent delayed fracture resistance according to claim 1, which contains one or more types of Nb or Ti in a weight ratio of 0.005 to 0.030%, and is composed of residual Fe and impurities. Steel for bolts.
JP8702089A 1989-04-07 1989-04-07 High strength bolt steel having excellent delayed fracture characteristics Pending JPH02267243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8702089A JPH02267243A (en) 1989-04-07 1989-04-07 High strength bolt steel having excellent delayed fracture characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8702089A JPH02267243A (en) 1989-04-07 1989-04-07 High strength bolt steel having excellent delayed fracture characteristics

Publications (1)

Publication Number Publication Date
JPH02267243A true JPH02267243A (en) 1990-11-01

Family

ID=13903278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8702089A Pending JPH02267243A (en) 1989-04-07 1989-04-07 High strength bolt steel having excellent delayed fracture characteristics

Country Status (1)

Country Link
JP (1) JPH02267243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077467A1 (en) * 2001-03-22 2002-10-03 Nippon Steel Corporation High-strength bolt excellent in delayed fracture resistance characteristics and its steel product
JP2014098191A (en) * 2012-11-14 2014-05-29 Kobe Steel Ltd Steel for high strength bolt excellent in delayed fracture resistance in corrosion environment and high strength bolt
US9695488B2 (en) 2012-01-11 2017-07-04 Kobe Steel, Ltd. Steel for bolt use, bolt, and method for manufacturing bolt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077467A1 (en) * 2001-03-22 2002-10-03 Nippon Steel Corporation High-strength bolt excellent in delayed fracture resistance characteristics and its steel product
US7070664B2 (en) 2001-03-22 2006-07-04 Nippon Steel Corporation High strength bolt superior in delayed fracture resistant property and steel material for the same
US9695488B2 (en) 2012-01-11 2017-07-04 Kobe Steel, Ltd. Steel for bolt use, bolt, and method for manufacturing bolt
JP2014098191A (en) * 2012-11-14 2014-05-29 Kobe Steel Ltd Steel for high strength bolt excellent in delayed fracture resistance in corrosion environment and high strength bolt

Similar Documents

Publication Publication Date Title
JP3817105B2 (en) High strength steel with excellent fatigue characteristics and method for producing the same
Kobayashi et al. Development of high toughness in austempered type ductile cast iron and evaluation of its properties
WO2010055609A1 (en) Thick steel sheet having high strength and method for producing same
US9777355B2 (en) Process for producing precipitation strengthening martensitic steel
BRPI0619892A2 (en) spring steel, spring steelmaking process and spring steel fabricated with such steel
JPWO2010032428A1 (en) High strength thick steel plate and manufacturing method thereof
JP4485424B2 (en) Manufacturing method of high-strength bolts with excellent delayed fracture resistance
WO2007046198A1 (en) Low-carbon sulfur-containing free-cutting steel with excellent cuttability
JPH02267243A (en) High strength bolt steel having excellent delayed fracture characteristics
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP3548519B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JP2009191325A (en) High strength steel and metal bolt having excellent corrosion resistance and cold forgeability and allowing scarce penetration of hydrogen from environment
JP3782645B2 (en) High strength steel for super large heat input welding
JPH0196354A (en) High-strength bolt steel with excellent delayed fracture resistance
JP4081234B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JPS5852021B2 (en) Kouensei Kōchiyouriyoku Kōtansōkōsenzai
JP3217589B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JPH06185513A (en) High strength bolt excellent in delay destruction resistance characteristic and manufacture thereof
JP4646719B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JPS5817808B2 (en) Method for producing welded steel pipes with excellent stress corrosion cracking resistance
JP2014198867A (en) High tensile steel sheet excellent in heat affected zone toughness
JP2990963B2 (en) High strength bolt steel with excellent delayed fracture resistance
JPH021902B2 (en)
JP2851651B2 (en) High-strength steel with excellent hot-dip galvanizing resistance