JPH02266568A - Mos transistor - Google Patents
Mos transistorInfo
- Publication number
- JPH02266568A JPH02266568A JP8762589A JP8762589A JPH02266568A JP H02266568 A JPH02266568 A JP H02266568A JP 8762589 A JP8762589 A JP 8762589A JP 8762589 A JP8762589 A JP 8762589A JP H02266568 A JPH02266568 A JP H02266568A
- Authority
- JP
- Japan
- Prior art keywords
- region
- drain
- source
- concentration
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体集積回路のMOS型トランジスタに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a MOS type transistor of a semiconductor integrated circuit.
従来の技術
近年、MOS型トランジスタは、その製造装置や加工技
術の進歩に伴い、ますます微細化され、半導体集積回路
の高密度化、高集積化を実現してきた。BACKGROUND OF THE INVENTION In recent years, MOS transistors have become increasingly finer due to advances in manufacturing equipment and processing technology, leading to higher density and higher integration of semiconductor integrated circuits.
以下に従来のMOS型トランジスタについて説明する。A conventional MOS transistor will be explained below.
第4図は従来のNチャネルMOS型トランジスタの要部
断面図である。■はP型半導体基板、2は半導体基板1
よりも不純物濃度の高いP型分離領域、3はソース、ド
レインを構成する窩濃度N型不純物領域(以下ソース、
ドレイン領域とよぶ)、4はL D D (Light
ly Doped drain)を構成する3よりも不
純物濃度の低いN型不純物濃度領域、5はゲート、6は
ゲート絶縁物である。FIG. 4 is a sectional view of a main part of a conventional N-channel MOS transistor. ■ is a P-type semiconductor substrate, 2 is a semiconductor substrate 1
3 is a P-type isolation region with a higher impurity concentration than the source, and 3 is a hole-concentration N-type impurity region (hereinafter referred to as source) that constitutes the source and drain.
(referred to as drain region), 4 is LDD (Light
ly Doped drain), 5 is a gate, and 6 is a gate insulator.
以上のように構成されたMO8型トランジスタについて
、以下その動作を説明する。半導体基板1を基準電圧に
して、ゲート5にソース、ドレイン領域3のうち、低い
電圧が印加されるソース領域の電圧(以下Vsとよぶ)
とMO3型トランジスタのしきい値電圧(以下vthと
よぶ)の和以上の電圧を印加することによりドレイン領
域からソース領域に電流を流すことができる。ゲート5
.の電圧がvi+vth以下では電流は流れない。この
動作を用いて、様々な動作の半導体集積回路をMO3型
トランジスタで実現できる。The operation of the MO8 type transistor configured as described above will be explained below. With the semiconductor substrate 1 as a reference voltage, the voltage of the source region (hereinafter referred to as Vs) to which the lower voltage of the source and drain regions 3 is applied to the gate 5.
By applying a voltage equal to or higher than the sum of the threshold voltage (hereinafter referred to as vth) of the MO3 type transistor, a current can flow from the drain region to the source region. gate 5
.. If the voltage is below vi+vth, no current will flow. Using this operation, semiconductor integrated circuits with various operations can be realized using MO3 type transistors.
発明が解決しようとする課題
このような従来のMO8型トランジスタで微細化すると
き、隣接トランジスタ間の分離を行う分離領域2の不純
物濃度を高くして、隣接トランジスタ間で空乏層がつな
がり、電流が流れるいわゆるバンチスルー電流を抑制し
なければならない。Problems to be Solved by the Invention When miniaturizing such a conventional MO8 type transistor, the impurity concentration of the isolation region 2 that isolates adjacent transistors is increased, and the depletion layer is connected between adjacent transistors, resulting in a current flow. It is necessary to suppress the so-called bunch-through current that flows.
空乏層の幅Wは階段接合では、
となる。ここで
KSi:シリコンの比誘電率
Eo :真空の誘電率
q :電子の電荷
ND :ソース、ドレインを構成するN型不純物濃度
N^ :P量分i!!領域の不純物濃度中 :ビルトイ
ン電圧
V :ソース、ドレインーP型分離領域間電圧Ns:P
型分離領域の濃度を増加すると空乏層幅を狭くできるこ
とが分かる。一方空乏層中の最大電界EMAXは
空乏層中の最大電界が増加し、いわゆるアバランシェ降
伏が発生しやす(なり、ソース、ドレインの耐圧が低下
してしまうという課題があった。The width W of the depletion layer in a stepped junction is as follows. Here, KSi: relative permittivity of silicon Eo: permittivity of vacuum q: charge of electrons ND: concentration of N-type impurities constituting the source and drain N^: amount of P i! ! In the impurity concentration of the region: Built-in voltage V: Voltage between source, drain and P-type isolation region Ns: P
It can be seen that the width of the depletion layer can be narrowed by increasing the concentration of the type separation region. On the other hand, the maximum electric field EMAX in the depletion layer increases, and so-called avalanche breakdown tends to occur (this causes a problem in that the withstand voltage of the source and drain decreases).
また、電源電圧より高い電圧を発生する昇圧回路を内蔵
した半導体集積回路では、隣接トランジスタ間距離を離
すことによりパンチスルーは防止できるが、ソース、ド
レイン領域と分離領域のアバランシェ降伏は防止できな
いため、昇圧電圧が設計通りに発生しないという課題も
あった。Furthermore, in semiconductor integrated circuits that incorporate a booster circuit that generates a voltage higher than the power supply voltage, punch-through can be prevented by increasing the distance between adjacent transistors, but avalanche breakdown in the source, drain and isolation regions cannot be prevented. There was also the problem that the boosted voltage was not generated as designed.
これらの課題はPチャネルMO8型トランジスタでも、
MO8型トランジスタが、半導体基板1ではなくウェル
の中に形成されても同様に有している課題である。These issues also apply to P-channel MO8 type transistors.
This is a similar problem even if the MO8 type transistor is formed not in the semiconductor substrate 1 but in a well.
課題を解決するための手段
この目的を達成するために本発明のMO3型トランジス
タは、ソース、ドレインの高不純物濃度領域が、高不純
物濃度の分#@域と接しない構成を有している。Means for Solving the Problems In order to achieve this object, the MO3 type transistor of the present invention has a structure in which the high impurity concentration regions of the source and drain do not contact the #@ region of high impurity concentration.
作用
この構成により、ソース、ドレインの高不純物領域が、
同じく高不純物濃度の分離領域と接しないため、ドレイ
ン領域に高い電圧が印加されても、空乏層が、前記同高
濃度領域の間に形成されて、電界を緩和し、アバランシ
ェ降伏の発生を抑制することができる。Effect This configuration allows the highly impurity regions of the source and drain to
Similarly, since it does not contact the isolation region with high impurity concentration, even if a high voltage is applied to the drain region, a depletion layer is formed between the high concentration regions, relaxing the electric field and suppressing the occurrence of avalanche breakdown. can do.
実施例
以下本発明の一実施例について5図面を参照しながら説
明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to five drawings.
第1図は本発明の第1の実施例におけるNチャネルMO
5型トランジスタの要部断面図を示すものである。第1
図において1はP型半導体基板、2は半導体基板1より
も不純物濃度の高いP要分i11領域、3はソース、ド
レインを構成する高濃度N型不純物領域(以下ソース、
ドレイン領域とよぶ)、4はLDD (Lightly
Oo’ped Drain)を構成する3よりも不純
物濃度の低いN型不純物濃度領域、5はゲート、6はゲ
ート絶縁物である。FIG. 1 shows an N-channel MO in the first embodiment of the present invention.
FIG. 5 is a cross-sectional view of a main part of a type 5 transistor. 1st
In the figure, 1 is a P-type semiconductor substrate, 2 is a P-portion i11 region with a higher impurity concentration than the semiconductor substrate 1, and 3 is a high-concentration N-type impurity region constituting the source and drain (hereinafter referred to as source).
(referred to as drain region), 4 is LDD (Lightly
5 is a gate, and 6 is a gate insulator.
以上のように構成されたMO3型トランジスタにおいて
、その動作は従来のMO3型トランジスタと同様である
が、ソース、ドレイン領域3を2の分離領域より離して
形成することにより、高濃度不純物領域どうしが接しな
いため、ドレイン領域に高い電圧が印加されても、空乏
層が前記高濃度領域の間の領域に形成されて、電界を緩
和し、アバランシェ降伏の発生を抑制することができる
。The operation of the MO3 type transistor configured as described above is similar to that of the conventional MO3 type transistor, but by forming the source and drain regions 3 apart from the two isolation regions, the high concentration impurity regions can be separated from each other. Since they are not in contact with each other, even if a high voltage is applied to the drain region, a depletion layer is formed in the region between the high concentration regions, which alleviates the electric field and suppresses the occurrence of avalanche breakdown.
ソース、ドレイン領域3の形成には、不純物拡散あるい
は不純物イオン注入時に、分離領域2と重ならないよう
に、また不純物拡散時や注入後の熱処理を行ったときの
横方向拡散を考虜して、不純物拡散または不純物イオン
注入に用いるレジストマスクの窓を2の分離領域よりも
離しておく。When forming the source and drain regions 3, we take care not to overlap the isolation region 2 during impurity diffusion or impurity ion implantation, and take into account lateral diffusion during impurity diffusion or post-implantation heat treatment. A window of a resist mask used for impurity diffusion or impurity ion implantation is set apart from the second isolation region.
第2図は本発明の第2の実施例におけるNチャネルMO
S型トランジスタの要部断面図を示すものである。第2
図において1はP型半導体基板、2は半導体基板1より
も不純物濃度の高いP型分離領域、7はドレインを構成
する高濃度N型不純物領域、8はソースを構成する高濃
度N型不純物領域、4はLDDを構成する7および8よ
りも不純物濃度の低いN型不純物濃度領域、5はゲート
、6はゲート絶縁物である。FIG. 2 shows an N-channel MO in a second embodiment of the present invention.
1 is a cross-sectional view of a main part of an S-type transistor. Second
In the figure, 1 is a P-type semiconductor substrate, 2 is a P-type isolation region with a higher impurity concentration than the semiconductor substrate 1, 7 is a high-concentration N-type impurity region forming the drain, and 8 is a high-concentration N-type impurity region forming the source. , 4 is an N-type impurity concentration region having a lower impurity concentration than 7 and 8 constituting the LDD, 5 is a gate, and 6 is a gate insulator.
第1図の構成と異なるのは半導体基板1、分離領域2の
間で高電圧のかかるドレイン領域7のみ分離領域2から
離して形成されている点である。The difference from the configuration shown in FIG. 1 is that only the drain region 7 to which a high voltage is applied between the semiconductor substrate 1 and the isolation region 2 is formed apart from the isolation region 2.
高電圧の印加されるドレイン領域のみを分離領域2より
離して形成し、アバランシェ降伏の発生を抑制するとと
もに、ソース領域8は従来の方法で形成するために、ソ
ース領域8と、分離領域2とを離すために必要な領域が
不要になり、MOS型トランジスタの平面の面偕増加を
押さえることができ、第1の実施例より高密度化に適し
ている。Only the drain region to which a high voltage is applied is formed apart from the isolation region 2 to suppress the occurrence of avalanche breakdown, and the source region 8 is formed by a conventional method. This eliminates the need for the area required to separate the MOS transistors, suppresses an increase in the surface area of the MOS transistor, and is more suitable for higher density than the first embodiment.
第3図は本発明の第3の実施例におけるNチャネルMO
S型トランジスタの要部断面図を示すものである。第3
図において1はP型半導体基板、2は半導体基板1より
も不純物濃度の高いP型分離領域、9は電源電圧よりも
高い電圧が、昇圧回路から印加される高濃度N型不純物
領域、]Oは電源電圧よりも低い電圧が印加される高濃
度N型不純物領域、4はLDDを構成する9および10
よりも不純物濃度の低いN型不純物濃度領域、5はゲー
ト、6はゲート絶縁物である。FIG. 3 shows an N-channel MO in the third embodiment of the present invention.
1 is a cross-sectional view of a main part of an S-type transistor. Third
In the figure, 1 is a P-type semiconductor substrate, 2 is a P-type isolation region with a higher impurity concentration than the semiconductor substrate 1, 9 is a high-concentration N-type impurity region to which a voltage higher than the power supply voltage is applied from the booster circuit, ]O 4 is a high concentration N-type impurity region to which a voltage lower than the power supply voltage is applied, and 4 is a region 9 and 10 constituting the LDD.
5 is a gate, and 6 is a gate insulator.
第1図、第2図の構成と異なるのは、昇圧回路を内蔵す
る半導体集積回路において、電源電圧以上の電圧が印加
される高濃度N型不純物領域9のみが分離領域2と離し
て形成されることにある。The difference from the configurations in FIGS. 1 and 2 is that in a semiconductor integrated circuit incorporating a booster circuit, only the high concentration N-type impurity region 9 to which a voltage higher than the power supply voltage is applied is formed separately from the isolation region 2. There are many things.
このような構成にすることにより、電源電圧以下の電圧
しか印加されないMOS型トランジスタや、高1度N型
不純物領域は従来の方法で形成するため、昇圧電圧の印
加される領域でのアバランシェ降伏を抑制しつつ、高密
度、高集積の半導体集債回路を実現できる。With this configuration, the MOS transistor to which only a voltage lower than the power supply voltage is applied and the high-1 degree N-type impurity region are formed using conventional methods, so avalanche breakdown in the region to which the boosted voltage is applied can be prevented. It is possible to realize a high-density, highly integrated semiconductor integrated circuit while suppressing the amount of noise.
尚、上記の実施例ではLDD型のMOS型トランジスタ
で説明したが、LDD構造でなくても同様な効果が得ら
れる。Although the above embodiments have been explained using LDD type MOS transistors, similar effects can be obtained even if the transistors do not have an LDD structure.
また、上記の実施例はNチャネルMOS型トランジスタ
で説明したがPチャネルMO8型トランジスタでも同様
な効果が得られることは言うまでもない。Further, although the above embodiment has been explained using an N-channel MOS type transistor, it goes without saying that similar effects can be obtained using a P-channel MO8 type transistor.
また、上記の実施例で1を半導体基板としたが、半導体
基板上に形成されたウェルであってもよい。Further, in the above embodiment, 1 is a semiconductor substrate, but it may be a well formed on a semiconductor substrate.
発明の効果
以上のように本発明は、ソース、ドレインの高不純物濃
度領域を、高不純物濃度の分離領域と接しないように形
成することにより、前記の同高不純物濃度領域のアバラ
ンシェ降伏を抑圧し、高い電源電圧を印加できる半導体
集積回路が可能な優れたMOS型トランジスタを実現で
きるものである。Effects of the Invention As described above, the present invention suppresses avalanche breakdown in the high impurity concentration regions by forming the high impurity concentration regions of the source and drain so as not to contact the high impurity concentration isolation regions. Therefore, it is possible to realize an excellent MOS type transistor that can be used as a semiconductor integrated circuit to which a high power supply voltage can be applied.
第1図は本発明の第1の実施例におけるNチャネルMO
S型トランジスタの要部断面図、第2図は本発明の第2
の実施例におけるNチャネルMOS型トランジスタの要
部断面図、第3図は本発明の第3の実施例におけるNチ
ャネルMOS型トランジスタの要部断面図、第4図は従
来のNチャネルMOS型トランジスタの要部断面図であ
る。
■・・・・・・P′型半導体基板、2・・・・・・P型
分離領域、3.7.8.9.10・・・・・・高濃度N
型不純物領域、4・・・・・・LDD (Lightl
y Doped Drain)を構1−−P梨半導イ本
基板
4−N S!不S!、 M g域
5−・−ゲート
6−・ケ゛−ト地球物
9.10
−高県度N製不托句領域FIG. 1 shows an N-channel MO in the first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the main parts of an S-type transistor, which is the second embodiment of the present invention.
FIG. 3 is a cross-sectional view of a main part of an N-channel MOS transistor according to a third embodiment of the present invention, and FIG. 4 is a cross-sectional view of a main part of an N-channel MOS transistor according to a third embodiment of the present invention. FIG. ■...P' type semiconductor substrate, 2...P type isolation region, 3.7.8.9.10...High concentration N
type impurity region, 4...LDD (Lightl
y Doped Drain) configuration 1--P pear semiconductor main board 4-N S! No S! , Mg area 5--Gate 6--Kate earth object 9.10-High prefecture N-made non-phrase area
Claims (3)
いはウェルと反対導電型の高不純物濃度領域が、前記基
板あるいはウェルと同一導電型で前記基板あるいはウェ
ルより高不純物濃度の分離領域から隔離されていること
を特徴とするMOS型トランジスタ。(1) A high impurity concentration region of a conductivity type opposite to that of the semiconductor substrate or well constituting the source and drain regions is isolated from an isolation region of the same conductivity type as the substrate or well and of a higher impurity concentration than the substrate or well. A MOS transistor characterized by:
半導体基板あるいはウェルと反対導電型のソースおよび
ドレインの二つの高不純物濃度領域のうち、半導体基板
あるいはウェルを基準にして、高電圧が印加される方の
高不純物濃度領域が、前記基板あるいはウェルと同一導
電型で前記基板あるいはウェルより高不純物濃度の分離
領域と隔離されていることを特徴とするMOS型トラン
ジスタ。(2) A high voltage is applied to two high impurity concentration regions of the source and drain, which are formed in a semiconductor substrate or well and have a conductivity type opposite to that of the semiconductor substrate or well, with the semiconductor substrate or well as a reference. A MOS type transistor characterized in that a high impurity concentration region on the other side is isolated from an isolation region having the same conductivity type as the substrate or well and having a higher impurity concentration than the substrate or well.
スあるいはドレイン領域を構成する半導体基板あるいは
ウェルと反対導電型の高不純物濃度領域が、前記基板あ
るいはウェルと同一導電型で前記基板あるいはウェルよ
り高不純物濃度の分離領域と隔離されていることを特徴
とするMOS型トランジスタ。(3) A high impurity concentration region of the opposite conductivity type to the semiconductor substrate or well constituting the source or drain region to which a voltage boosted than the power supply voltage is applied is of the same conductivity type as the substrate or well, and A MOS transistor characterized by being isolated from an isolation region with a higher impurity concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8762589A JPH02266568A (en) | 1989-04-06 | 1989-04-06 | Mos transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8762589A JPH02266568A (en) | 1989-04-06 | 1989-04-06 | Mos transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02266568A true JPH02266568A (en) | 1990-10-31 |
Family
ID=13920159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8762589A Pending JPH02266568A (en) | 1989-04-06 | 1989-04-06 | Mos transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02266568A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6182467A (en) * | 1984-09-29 | 1986-04-26 | Toshiba Corp | Image sensor manufacturing method |
-
1989
- 1989-04-06 JP JP8762589A patent/JPH02266568A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6182467A (en) * | 1984-09-29 | 1986-04-26 | Toshiba Corp | Image sensor manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5675172A (en) | Metal-insulator-semiconductor device having reduced threshold voltage and high mobility for high speed/low-voltage operation | |
US6174778B1 (en) | Method of fabricating metal oxide semiconductor | |
US6717221B2 (en) | Method of fabricating MOSFET transistors with multiple threshold voltages by halo compensation and masks | |
US7554159B2 (en) | Electrostatic discharge protection device and method of manufacturing the same | |
US5557129A (en) | Semiconductor MOSFET device having a shallow nitrogen implanted channel region | |
US6768178B2 (en) | Semiconductor device | |
US20050064670A1 (en) | Depletion drain-extended MOS transistors and methods for making the same | |
US6825530B1 (en) | Zero Threshold Voltage pFET and method of making same | |
JP2001308321A (en) | Semiconductor device and manufacturing method thereof | |
KR890005891A (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JP2009152442A (en) | Semiconductor device and manufacturing method thereof | |
US6476430B1 (en) | Integrated circuit | |
US6900081B2 (en) | Method of manufacturing semiconductor integrated circuit device | |
US6153910A (en) | Semiconductor device with nitrogen implanted channel region | |
JPH10135349A (en) | CMOS semiconductor device and method of manufacturing the same | |
JPH02266568A (en) | Mos transistor | |
KR940010321A (en) | Manufacturing Method of NMOS LDD PMOS Halo Integrated Circuit for Complementary Metal Oxide Semiconductor (CMOS) Transistor | |
US6809376B2 (en) | Semiconductor integrated circuit device and manufacture method therefore | |
JPS62262462A (en) | Semiconductor device | |
JPH08306799A (en) | Input protection circuit and method for manufacturing semiconductor integrated circuit device | |
JPS61177776A (en) | semiconductor equipment | |
JP2507981B2 (en) | Manufacturing method of complementary MIS transistor | |
JPH0462975A (en) | Semiconductor device | |
JPS61196568A (en) | Semiconductor device | |
JP2003258249A (en) | Semiconductor integrated circuit |