JPH02256598A - Attitude control system for space navigation body including movable body - Google Patents
Attitude control system for space navigation body including movable bodyInfo
- Publication number
- JPH02256598A JPH02256598A JP1079863A JP7986389A JPH02256598A JP H02256598 A JPH02256598 A JP H02256598A JP 1079863 A JP1079863 A JP 1079863A JP 7986389 A JP7986389 A JP 7986389A JP H02256598 A JPH02256598 A JP H02256598A
- Authority
- JP
- Japan
- Prior art keywords
- control system
- mass
- attitude control
- change
- jet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010586 diagram Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、宇宙航行体の姿勢制御系に関し、特にマニピ
ュレータ等を用いて大質量の荷物を取り扱う宇宙航行体
の姿勢制御系に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an attitude control system for a spacecraft, and more particularly to an attitude control system for a spacecraft that handles a large amount of cargo using a manipulator or the like.
(従来の技術)
従来のこの種の姿勢制御系としては、マニピュレータを
用いてペイロードを動かす時のスペースシャトルの姿勢
制御系などが知られており、第2図はDarryl
G、 Sargentにより技術誌AIAAに掲載さ
れた技術論文“TheImpact of Rem
ote Manipulator 5tructu
ral Dynamics on 5huttl
e on−orbit Flight Cont
rol”で示されたこの種の姿勢制御系の構成図である
。(Prior Art) As a conventional attitude control system of this type, the attitude control system of the space shuttle when moving a payload using a manipulator is known, and FIG.
A technical paper published in the technical journal AIAA by G. Sargent, “The Impact of Rem.
ote Manipulator 5tructu
ral Dynamics on 5huttl
e on-orbit Flight Cont.
FIG. 2 is a configuration diagram of this type of attitude control system indicated by "rol".
(発明が解決しようとする課題)
上述した従来の姿勢制御系は、マニピュレータの制御系
から独立しているので、マニピュレータの動作情報を得
ることができない、また、その姿勢制御系では、マニピ
ュレータが大質量のペイロードを取り扱うことによって
生じる。質量中心位置の変化、質量特性の変化を考慮し
た姿勢制御理論が組まれていない。そこで、このような
従来の姿勢制御系においては、ペイロード、マニピュレ
ータ、オービタ−の位置関係によっては、姿勢制御性能
が大幅に劣化することになる。また、逆に姿勢制御性能
を維持するためには、マニピュレータによるペイロード
の取り扱い範囲を大幅に制限する必要がある。(Problems to be Solved by the Invention) The conventional attitude control system described above is independent from the manipulator control system, so it is not possible to obtain the operation information of the manipulator. resulting from handling a payload of mass. There is no attitude control theory that takes into account changes in the center of mass position and changes in mass characteristics. Therefore, in such a conventional attitude control system, attitude control performance may be significantly degraded depending on the positional relationship among the payload, manipulator, and orbiter. On the other hand, in order to maintain attitude control performance, it is necessary to significantly limit the range in which the payload can be handled by the manipulator.
以上に述べたように、可動物を含む宇宙航行体の姿勢を
制御する従来の姿勢制御系には解決すべき課題があった
。As described above, conventional attitude control systems that control the attitude of spacecraft including movable objects have problems that need to be solved.
(課題を解決するための手段)
本発明の姿勢制御系は、マニピュレータの動作情報およ
び取り扱うペイロードの諸元から質量中心位置および質
量特性を計算する手段と、質量中心位置および質量特性
から最適な姿勢制御アクチュエータの組み合せ及び制御
量を与える手段とを有している。(Means for Solving the Problems) The attitude control system of the present invention includes a means for calculating the center of mass position and mass characteristics from operation information of a manipulator and specifications of a payload to be handled, and a means for calculating an optimal attitude from the center of mass position and mass characteristics. and a combination of control actuators and means for providing a controlled variable.
(実施例) 次に、本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施例の構成を示すブロック図であ
る。5TEERING PROCESSORIは、制
御則に入力されるTRANSLATION COMM
AND、ROTATIONCOMMANDを直接にRC
3PROCESSOR2のJET 5ELECT
LOGIC4へ送るか、又は姿勢誤差および角速度誤差
の形でRC3PROCESSOR2のPHASEPLA
NE C0NTR0LLER3へ送出する。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. 5TEERING PROCESSORI is the TRANSLATION COMM input to the control law.
AND, RC ROTATIONCOMMAND directly
3PROCESSOR2 JET 5ELECT
Send to LOGIC4 or PHASEPLA of RC3PROCESSOR2 in the form of attitude error and angular velocity error
Send to NE C0NTR0LLER3.
RO39は各ジヨイントの角度をCENTEROF
MASS、MASS PROPERTYCALClJ
LATORl 0へ与える。CENTEROF MA
SS、MASS PROPERTY CALCUL
ATORIOは、各ジヨイントの角度データ、RMSが
取り扱い中のPAYLOAD DATA、RMS諸元
及びオービタ−の諸元より重心位置及び質量特性を計算
し、結果を5TATE ESTIMATOR8及びR
C3P ROCE S S OR2ニ与える。STAT
EESTIMATOR8は、その重心位置および質量特
性、IMU(Inertial Measureme
nt Units)7から出力される姿勢データ並び
にRC3PROCESSOR2から出力される角速度変
化予測値より姿勢および角゛速度を推定し、5TEER
ING PROCBSSORIへ送出する。また、外
乱による角加速度も推定しPHASE PLANE”
3へ送出する。RO39 changes the angle of each joint to CENTEROF.
MASS, MASS PROPERTYCALClJ
Give to LATORl 0. CENTEROF MA
SS, MASS PROPERTY CALCUL
ATORIO calculates the center of gravity position and mass characteristics from the angle data of each joint, the PAYLOAD DATA being handled by RMS, the RMS specifications, and the orbiter specifications, and sends the results to 5TATE ESTIMATOR 8 and R
C3P ROCE S S OR2 is given. STAT
EESTIMATOR 8 has its center of gravity position, mass characteristics, IMU (Inertial Measurement
The attitude and angular velocity are estimated from the attitude data output from nt Units) 7 and the predicted angular velocity change value output from RC3PROCESSOR2, and the 5TEER
Send to ING PROCBSSORI. In addition, the angular acceleration due to disturbance is estimated and PHASE PLANE
Send to 3.
PHASE PLANE C0NTR0LLBR3
は、外乱による角加速度推定値及び5TEERING
PROESSORIから与えられた姿勢誤差および角
速度誤差より、重心位置および質量特性を考慮された位
相面制御則に従って、JETSELECTION L
OGIC4へ制御信号を送出する。JET −3EL
ECTION LOGIC4は5TEERING
PROCESSORl又はPHASE PLANE
C0NTR0LLER3から受けたWIJ御命令から
、重心位置および質量特性を考慮したJETの虐択1論
に従って、RO8JETS5のON10FFm御を行う
、また、JET 5ELECTION LOGIC
4は、JETの噴射によって生じる角速度増分を予測し
、5TATE ESTIMATOR8へ出力する。PHASE PLANE C0NTR0LLBR3
is the estimated angular acceleration due to disturbance and 5TEERING
Based on the attitude error and angular velocity error given by PROESSORI, JETSELECTION L is determined according to the phase plane control law that takes into account the center of gravity position and mass characteristics.
Sends a control signal to OGIC4. JET-3EL
ECTION LOGIC4 is 5TEERING
PROCESSORl or PHASE PLANE
From the WIJ command received from C0NTR0LLER3, perform ON10FFm control of RO8JETS5 according to JET's OPTION 1 theory considering the center of gravity position and mass characteristics, and JET 5ELECTION LOGIC
4 predicts the angular velocity increment caused by the JET injection and outputs it to the 5TATE ESTIMATOR 8.
(発明の効果)
以上に説明したように、本発明の姿勢制御系によれば、
可動物の動作情報(RMSのジヨイントの角度データな
ど)を姿勢制御則の中に取り込み、可動物の動きによっ
て生じる質量中心位置の変化および質量特性の変化を計
算し、姿勢制御則内の必要な箇所に提供することにより
、精度のよい姿勢の推定ならびに最適なRC8JETの
選択および制御量を与えることが可能になり、可動物が
動作中の姿勢制御性能を劣化させることなく精度よい姿
勢制御を行うことができる。 ′(Effects of the Invention) As explained above, according to the attitude control system of the present invention,
The motion information of the movable object (such as RMS joint angle data) is incorporated into the attitude control law, and the changes in the center of mass position and mass properties caused by the movement of the movable object are calculated, and the necessary information in the attitude control law is calculated. By providing the information to the location, it is possible to estimate the posture with high accuracy, select the optimal RC8JET, and provide the control amount, and perform accurate posture control without deteriorating the posture control performance of the movable object during movement. be able to. ′
第1図は本発明の一実施例の構成を示すブロック図、第
2図は可動物を含む宇宙航行体の姿勢を制御する従来の
姿勢制御系を示すシロツタ図である。
1・ 5TEER’ING’ PROCESSOR。
2・・・RC3PROCESSOR,3・・・PHAS
E PLANE C0NTR0LLER14・・・
JET 5ELECTION LOGIC15・・
・RC8JETS、6・ VEHICLE DYN
AMIC3,7・・・INERTIAL MEAS
UREMENT UNIT、8・・・5TATE
ESTIMATOR,9・・・REMOTE、
MANIPULATORSYSTEM、10・・・C
ENTEROF MASS、MASS PRO
PERTY CALCULATORoFIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a whiteboard diagram showing a conventional attitude control system for controlling the attitude of a spacecraft including a movable object. 1. 5TEER'ING' PROCESSOR. 2...RC3PROCESSOR, 3...PHAS
E PLANE C0NTR0LLER14...
JET 5ELECTION LOGIC15...
・RC8JETS, 6・VEHICLE DYN
AMIC3,7...INERTIAL MEAS
UREMENT UNIT, 8...5TATE
ESTIMATOR, 9...REMOTE,
MANIPULATOR SYSTEM, 10...C
ENTEROF MASS, MASS PRO
PERTY CALCULATOR
Claims (1)
動物の移動による質量中心位置の変化および質量特性の
変化を計算する手段と、前記質量中心位置の変化および
質量特性の変化に応じて姿勢制御アクチュエータを選択
し、該アクチュエータに制御量を与える手段とを有する
ことを特徴とする可動物を含む宇宙航行体の姿勢制御系
。In an attitude control system for a spacecraft including a movable object, means for calculating a change in the center of mass position and a change in mass characteristics due to the movement of the movable object; 1. An attitude control system for a spacecraft including a movable object, comprising means for selecting a control actuator and applying a control amount to the actuator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1079863A JPH02256598A (en) | 1989-03-30 | 1989-03-30 | Attitude control system for space navigation body including movable body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1079863A JPH02256598A (en) | 1989-03-30 | 1989-03-30 | Attitude control system for space navigation body including movable body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02256598A true JPH02256598A (en) | 1990-10-17 |
Family
ID=13702042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1079863A Pending JPH02256598A (en) | 1989-03-30 | 1989-03-30 | Attitude control system for space navigation body including movable body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02256598A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103941741A (en) * | 2014-04-28 | 2014-07-23 | 北京控制工程研究所 | Method for determining controlled quantity of angular speed of control moment gyro frame on basis of zero movement |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6218398A (en) * | 1985-07-16 | 1987-01-27 | 三菱電機株式会社 | Controller for artificial satellite |
-
1989
- 1989-03-30 JP JP1079863A patent/JPH02256598A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6218398A (en) * | 1985-07-16 | 1987-01-27 | 三菱電機株式会社 | Controller for artificial satellite |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103941741A (en) * | 2014-04-28 | 2014-07-23 | 北京控制工程研究所 | Method for determining controlled quantity of angular speed of control moment gyro frame on basis of zero movement |
CN103941741B (en) * | 2014-04-28 | 2016-06-01 | 北京控制工程研究所 | Based on the control moment gyro frame corners speed control method for determination of amount of zero motion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6131056A (en) | Continuous attitude control that avoids CMG array singularities | |
US6039290A (en) | Robust singularity avoidance in satellite attitude control | |
US5124938A (en) | Gyroless platform stabilization techniques | |
CN108287476B (en) | Autonomous rendezvous guidance method for space tumbling non-cooperative targets based on high-order sliding mode control and disturbance observer | |
US6154691A (en) | Orienting a satellite with controlled momentum gyros | |
KR101118888B1 (en) | Systems and methods for controlling dynamic systems | |
US6088633A (en) | Mobile body controlling gear | |
JP2002274499A (en) | Attitude change control method of triaxial satellite | |
EP1678460B1 (en) | System and method with adaptive angle-of-attack autopilot | |
US4236687A (en) | Ejection seat with pitch, roll and yaw control | |
US5875676A (en) | Non colocated rate sensing for control moment gyroscopes | |
JPH0958597A (en) | Vertical landing control command device for flying object | |
JPH02256598A (en) | Attitude control system for space navigation body including movable body | |
US4044237A (en) | Missile maneuver concept | |
JP3174174B2 (en) | Satellite attitude control system | |
Ho et al. | Autonomous spacecraft docking using a computer vision system | |
Etter | A solution of the time-optimal Euler rotation problem | |
Ciarcia et al. | Experimental emulation of the scaled clohessy-wiltshire dynamics on a flat air-bearing testbed | |
JPH09136700A (en) | Yaw controller of space ship and its method | |
JPS61169786A (en) | Tracking filter | |
JPS6138076B2 (en) | ||
Gomes dos Santos et al. | Hardware-in-the-loop rendezvous tests of a novel actuators command concept | |
Le Huu et al. | Applying Sliding Mode Control to a Quadrotor | |
JPS63141107A (en) | Position controller | |
Smith et al. | Gyroscopic data fusion via a quaternion-based complementary filter |