[go: up one dir, main page]

JPH02255568A - Production of sintered body of lead titanate - Google Patents

Production of sintered body of lead titanate

Info

Publication number
JPH02255568A
JPH02255568A JP1076438A JP7643889A JPH02255568A JP H02255568 A JPH02255568 A JP H02255568A JP 1076438 A JP1076438 A JP 1076438A JP 7643889 A JP7643889 A JP 7643889A JP H02255568 A JPH02255568 A JP H02255568A
Authority
JP
Japan
Prior art keywords
lead
sintered body
lead titanate
powder
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076438A
Other languages
Japanese (ja)
Inventor
Hiroaki Yanagida
柳田 博明
Yoriichi Tsuji
辻 頼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1076438A priority Critical patent/JPH02255568A/en
Publication of JPH02255568A publication Critical patent/JPH02255568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the sintered body of lead titanate in which the particles constituting the sintered body have specific shape anisotropy, such as plate, needle and columnar shapes, and have good particle orientatability by mixing titanium dioxide particles, lead compd. powder and glass component powder and sintering the mixture composed thereof in a specific temp. range. CONSTITUTION:The mixture obtd. after the titanium dioxide particles, the lead compd. powder and the glass component powder are mixed is sintered in an about 500 to 850 deg.C temp. range. The titanium dioxide particles of the raw material have the anisotropy in particle shape, such as plate, needle and columnar shapes. The powders of lead compds. which are such as, for example, lead oxide, basic lead carbonate and lead oxalate and are fine are selected as the lead compd. powder of the raw material. The glass components of silica glass, lead glass, etc., which have m.p. near the synthesizing temp. of the lead titanate are preferable as the glass component.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、チタン酸鉛焼結体の製造方法に関し、更に
詳細には、その焼結体の構成粒子が特定の異方性形状を
有しかつ一軸方向に配向している粒子配向性チタン酸鉛
焼結体の製造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing a lead titanate sintered body, and more specifically, the constituent particles of the sintered body have a specific anisotropic shape. The present invention also relates to a method for manufacturing a lead titanate sintered body having uniaxially oriented particles.

(従来の技術) 通常、チタン酸鉛(P bT i Os )などの焼結
体材料では、その結晶粒子がランダムに配列しており、
結晶軸に起因する電気的特性を充分に生かし得ていない
のが現状である。かかる焼結体が内在する電気的特性を
向上させるためには、その構成結晶粒子の特定結晶軸が
一定面内にまたは一定方向に配向するようにその微細構
造を有するようにしなければならない。そのためには、
根状もしくは針状なとの形状を有するかかる焼結体材料
の結晶粒子が、−軸方向に配向させた高い粒子配向を有
する焼結体を作成する必要がある。
(Prior Art) Normally, in a sintered material such as lead titanate (PbTiOs), the crystal particles are arranged randomly.
At present, the electrical properties caused by the crystal axes cannot be fully utilized. In order to improve the inherent electrical properties of such a sintered body, the fine structure must be such that the specific crystal axes of the constituent crystal grains are oriented in a certain plane or in a certain direction. for that purpose,
It is necessary to produce a sintered body having a high grain orientation in which the crystal grains of such a sintered body material having a root-like or needle-like shape are oriented in the -axis direction.

形状異方性を有するチタン酸鉛の粒子は、異方性形状を
有する二酸化チタン(Tie、)を出発原料として、 
この二酸化チタンに鉛原料を600〜800・Cの温度
条件下で反応させることにより合成できることが知られ
ている。その−例として、針状形状を有する二酸化チタ
ン粒子を出発原料として、蓚酸鉛、塩化鉛などを反応さ
せて、針状もしく柱状のチタン酸鉛粒子を合成する方法
が知られている(特開昭56−74973号、同56−
149710参照)。
Particles of lead titanate having shape anisotropy are produced by using titanium dioxide (Tie, ) having anisotropic shape as a starting material,
It is known that it can be synthesized by reacting this titanium dioxide with a lead raw material at a temperature of 600 to 800 C. As an example, a method is known in which acicular or columnar lead titanate particles are synthesized by using titanium dioxide particles having an acicular shape as a starting material and reacting them with lead oxalate, lead chloride, etc. Kaisho 56-74973, 56-
149710).

一方、チタン酸鉛焼結体は、通常、粉末状のチタン酸鉛
原料に二酸化マンガン(MnO2)、酸化ニオブ(Nb
zO−)などの焼結助剤および成形助剤等を添加・混合
して所定の形状に成形した後、約1000〜1250−
Cの温度条件で焼成することにより得ることができる。
On the other hand, lead titanate sintered bodies are usually made of powdered lead titanate raw materials, manganese dioxide (MnO2), niobium oxide (Nb
After adding and mixing sintering aids and forming aids such as zO-) and forming into a predetermined shape,
It can be obtained by firing under temperature conditions of C.

しかし、得られる焼結体が充分に緻密化されたものにな
るためには、いずれの原料成分も微細な粉末を使用する
必要がある。
However, in order for the resulting sintered body to be sufficiently densified, it is necessary to use fine powder for each raw material component.

しかしながら、チタン酸鉛焼結体の原料として使用され
る形状異方性のチタン酸鉛粒子は、比較的大きな形状を
有していて、焼結が困難であるばかりでなく、崩壊し易
く、かつ、従来の焼結では、混合・成形工程で原料粉末
の形状が破壊されてしまうという問題がある。
However, shape-anisotropic lead titanate particles used as a raw material for lead titanate sintered bodies have a relatively large shape and are not only difficult to sinter, but also easily disintegrate. However, in conventional sintering, there is a problem in that the shape of the raw material powder is destroyed during the mixing and shaping process.

このような問題を解決するために、チタン酸鉛粒子を合
成する際に、その原料に予め焼結助剤を添加しておき、
ホットプレス法などによって焼結を行なうという方法が
提案されている。このホットプレス法では、1000−
C以上の高温が用いられるために、チタン酸鉛粒子は粒
成長を起こし、この際に出発原料として使用されるチタ
ン酸鉛粒子の形状異方性が破壊されてしまうため、通常
用いられている二酸化マンガン、酸化ニオブなとの焼結
助剤では粒子配向性が良好なチタン酸鉛焼結体を得るこ
とが困難である。
In order to solve this problem, when synthesizing lead titanate particles, a sintering aid is added to the raw material in advance.
A method has been proposed in which sintering is performed using a hot press method or the like. In this hot press method, 1000-
Lead titanate particles undergo grain growth due to the use of high temperatures of C or higher, which destroys the shape anisotropy of the lead titanate particles used as the starting material. It is difficult to obtain a lead titanate sintered body with good particle orientation using sintering aids such as manganese dioxide and niobium oxide.

(発明が解決しようとする課題) この発明は、チタン酸鉛焼結体の構成粒子の配向性が良
好であるチタン酸鉛焼結体に得るためには、焼結に際し
てチタン酸鉛粒子の粒成長を惹起させないようにすれば
、その構成粒子の特定の形状異方性を保持しながら、そ
の結晶軸が一定面内もしくは一定方向に配向した粒子配
向性の良好なチタン酸鉛焼結体が得られるという知見を
得、この発明を完成した。
(Problems to be Solved by the Invention) This invention aims at obtaining a lead titanate sintered body in which the constituent particles of the lead titanate sintered body have good orientation. If growth is prevented, a lead titanate sintered body with good particle orientation, with its crystal axes oriented in a certain plane or in a certain direction, can be created while maintaining the specific shape anisotropy of its constituent particles. This invention was completed based on the knowledge that it can be obtained.

したがって、この発明は、チタン酸鉛焼結体を構成する
粒子が板状、針状、柱状などの特定の形状異方性を有し
かつこの構成粒子が一軸方向に配向している粒子配向性
の良好なチタン酸鉛(PbT i 031F結体の製造
方法を提供することを目的としている。
Therefore, the present invention provides particle orientation in which the particles constituting the lead titanate sintered body have a specific shape anisotropy such as plate-like, acicular, or columnar shape, and the constituent particles are uniaxially oriented. The purpose of the present invention is to provide a method for producing lead titanate (PbT i 031F) with good properties.

(課題を解決するための手段) この発明は、二酸化チタン(TiO”1粒子と、鉛化合
物粉末と、ガラス成分粉末を混合した後、得られた混合
物をガラス成分の融点近傍で焼結を行なってチタン酸鉛
(PbTiO3)焼結体を製造することを特徴としてい
る。
(Means for Solving the Problems) This invention involves mixing one titanium dioxide (TiO) particle, a lead compound powder, and a glass component powder, and then sintering the resulting mixture near the melting point of the glass component. The method is characterized in that a lead titanate (PbTiO3) sintered body is manufactured using the same method.

この発明に係るチタン酸鉛焼結体の製造方法において使
用される原料の一つである二酸化チタン(Tie−)粒
子は、板状、針状、柱状などの粒子形状が異方性を有す
るものである。
Titanium dioxide (Tie-) particles, which are one of the raw materials used in the method for producing a lead titanate sintered body according to the present invention, have anisotropic particle shapes such as plate-like, needle-like, and columnar shapes. It is.

別の原料として使用される鉛化合物粉末としては、特定
の粒子形状を有する二酸化チタンと均一に混合し得るも
のが好ましく、例λば、酸化鉛(PbO)、塩基性炭酸
鉛[(PbCo31.Pb(OH)、] 、蓚酸鉛(P
bC20,1などの鉛化合物であって、その粉末が微細
なものが選択される。焼結原料として更に添加されるガ
ラス成分としては、いわゆるシリカガラス、鉛ガラスな
どのガラス成分であって、チタン酸鉛の反応合成温度近
傍に融点を有するものが好ましい。
The lead compound powder used as another raw material is preferably one that can be uniformly mixed with titanium dioxide having a specific particle shape, such as lead oxide (PbO), basic lead carbonate [(PbCo31.Pb (OH), ], lead oxalate (P
A lead compound such as bC20,1 whose powder is fine is selected. The glass component further added as a sintering raw material is preferably a glass component such as so-called silica glass or lead glass, which has a melting point near the reaction synthesis temperature of lead titanate.

この発明において、原料として使用される二酸化チタン
、鉛化合物およびガラス成分からなる原料粉末は均一に
混合される。これら原料粉末の配合割合については、P
 b / T i比は通常0.8〜1.5、好ましくは
1.0〜1.5であり、またガラス成分は、チタン酸鉛
に対して、約0.5〜10重量%1、好ましくは1〜5
重量%であればよい。特に、ガラス成分の配合割合が多
すぎる場合には、チタン酸鉛の有する優れた電気的特性
を有効に活かすことができな(なり、またそのガラス成
分の配合割合が少なすぎる場合には、チタン酸鉛粒子の
粒成長が起こり、ガラス成分を配合する効果が期待でき
なくなる。
In this invention, raw material powders consisting of titanium dioxide, a lead compound, and a glass component used as raw materials are uniformly mixed. Regarding the blending ratio of these raw material powders, please refer to P.
The b/Ti ratio is usually 0.8 to 1.5, preferably 1.0 to 1.5, and the glass component is about 0.5 to 10% by weight, preferably 1, based on lead titanate. is 1-5
It suffices if it is % by weight. In particular, if the blending ratio of the glass component is too high, the excellent electrical properties of lead titanate cannot be effectively utilized. Grain growth of acid lead particles occurs, and the effect of blending the glass component cannot be expected.

この発明において、二酸化チタン、鉛化合物原料および
ガラス成分からなる原料粉末を均一に混合した混合物を
ガラス成分の融点近傍で、通常的500〜850・C温
度条件で焼成することによって、チタン酸鉛の反応合成
と焼結を同時に行なうことができ、形状異方性を有する
チタン酸鉛粒子が一軸方向に配向したチタン酸鉛焼結体
を容易に製造することができる極めて工業的に有利なも
のである。
In this invention, lead titanate is produced by firing a uniform mixture of raw material powders consisting of titanium dioxide, a lead compound raw material, and a glass component at a temperature of 500 to 850 C near the melting point of the glass component. It is extremely industrially advantageous because reaction synthesis and sintering can be performed simultaneously, and lead titanate sintered bodies in which lead titanate particles with shape anisotropy are uniaxially oriented can be easily produced. be.

(発明の効果) この発明に係るチタン酸鉛焼結体の製造方法においては
、ガラス成分の添加により、一般に焼結が非常に困難で
あるとされていて、かつ、粒子が比較的大きく、形状異
方性が損なわれ易い原料粉末を比較的低温で容易に焼結
ができるという大きな利点力≦2゜ またチタン酸鉛は一般の焼結条件である1000・C以
上の高温では粒成長を起こし、この粒成長が原料粉末の
形状を損なう大きな要因となっていた。
(Effects of the Invention) In the method for producing a lead titanate sintered body according to the present invention, sintering is generally considered to be extremely difficult due to the addition of a glass component, and the particles are relatively large and shaped. It has the great advantage of being able to easily sinter raw material powder whose anisotropy is easily lost at a relatively low temperature ≦2°.Also, lead titanate causes grain growth at high temperatures of 1000 C or higher, which is the general sintering condition. This grain growth was a major factor in damaging the shape of the raw material powder.

この発明に係る方法では、従来の焼結温度より著しく低
い温度で焼成を行なうことができるので、合成されたチ
タン酸鉛が粒成長を起こすことなく、原料粉末の有する
形状異方性を保持した状態でチタン酸鉛焼結体を得るこ
とができる。
In the method according to the present invention, sintering can be performed at a temperature significantly lower than the conventional sintering temperature, so that the synthesized lead titanate does not cause grain growth and retains the shape anisotropy of the raw material powder. A lead titanate sintered body can be obtained in this state.

更に、焼成温度を酸化鉛(PbO)の遊離蒸発温度より
も低い温度にすることができるために、チタン酸鉛また
はその他の酸化鉛を含む強誘電体の焼成に際して必要と
される試料からの酸化鉛の蒸発を抑制するための雰囲気
制御を行なう必要がな(大気中で焼成を行なうことがで
きるという工業上極めて有利である。
Furthermore, since the firing temperature can be lower than the free evaporation temperature of lead oxide (PbO), the oxidation from the sample required during firing of lead titanate or other lead oxide-containing ferroelectrics can be reduced. There is no need to perform atmosphere control to suppress evaporation of lead (it is extremely advantageous industrially because firing can be carried out in the atmosphere).

(実施例) この発明を実施例により説明する。(Example) This invention will be explained by examples.

実施例1 板状の形状を有するチタン酸カリウムを、脱カリウム処
理して作成した板状の形状を有する二酸化チタン粉末と
、低融点微粉末ガラス(合成されるチタン酸鉛に対し3
重量%相当量)を、過剰量の蓚酸(C,H2O,・H2
O)を溶解した水溶液に分散混合し、この水溶液とは別
に調整した硝酸鉛pb (NO31,水溶液を、Pb/
Ti=1.0となるように撹拌しながら一定速度で滴下
して、板状の二酸化チタン粉末の表面にPbC20,が
均一に被覆した沈殿物を得た。
Example 1 Titanium dioxide powder having a plate shape created by depotassiuming potassium titanate having a plate shape and a low melting point fine powder glass (3% compared to lead titanate to be synthesized)
oxalic acid (C, H2O, .H2
Lead nitrate pb (NO31, NO31, aqueous solution prepared separately from this aqueous solution) was dispersed and mixed in an aqueous solution in which Pb/O) was dissolved.
The mixture was dropped at a constant rate while stirring so that Ti=1.0, thereby obtaining a precipitate in which the surface of a plate-shaped titanium dioxide powder was uniformly coated with PbC20.

この沈殿物を充分にろ湯洗浄して乾燥した後、−軸プレ
スにより直径10mmのペレットを圧粉成形した。この
ペレットをホットプレス用ダイスにセットして、800
〜850・Cの温度で、300〜500kg/cm”の
範囲で圧力を変えてホットプレスしたところ、チタン酸
鉛の板状粒子が一軸方向に配向した焼結体を得た。
After thoroughly washing the precipitate with hot water and drying it, it was compacted into pellets with a diameter of 10 mm using a -shaft press. Set this pellet in a hot press die and
When hot pressing was carried out at a temperature of ~850·C and a pressure varying in a range of 300 to 500 kg/cm'', a sintered body in which plate-like particles of lead titanate were uniaxially oriented was obtained.

得られた焼結体の密度を示すと、下記表の通りであった
。その焼結体の破断面を電子顕微鏡(SEM)で観察し
たところ、いずれの焼成条件で焼結した場合でも、チタ
ン酸鉛の板状粒子がプレス方向に対し垂直に良好な状態
で配向しているのが確認された。
The density of the obtained sintered body is shown in the table below. When the fractured surface of the sintered body was observed using an electron microscope (SEM), it was found that the plate-like particles of lead titanate were oriented perpendicularly to the pressing direction in a good manner no matter which firing conditions were used for sintering. It was confirmed that there was.

表 沈殿物に結合剤として有機バインダーを浸み込ませた後
、直径10mmの形状に打ち抜いた。これを数枚に重ね
てプレスして得られた試料を800・Cで2時間焼成し
てチタン酸鉛焼結体を得た。
After the surface precipitate was impregnated with an organic binder as a binder, it was punched out into a shape with a diameter of 10 mm. A sample obtained by stacking several sheets and pressing them was fired at 800.degree. C. for 2 hours to obtain a lead titanate sintered body.

得られた焼結体の破断面を電子顕微鏡(SEM)によっ
て観察した結果、実施例1と同様に、その板状粒子配向
性は極めて良好なものであることが判明した。
As a result of observing the fractured surface of the obtained sintered body using an electron microscope (SEM), it was found that, as in Example 1, the orientation of the plate-shaped particles was extremely good.

特許出願大姉1)博明 マツダ株式会社 実施例2Patent application big sister 1) Hiroaki Mazda Corporation Inc Example 2

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化チタン粒子と、鉛化合物粉末と、ガラス成
分粉末とを混合した後、得られた混合物を約500・C
〜850・Cの温度範囲で焼結してチタン酸鉛焼結体を
得ることを特徴とするチタン酸鉛焼結体の製造方法。
(1) After mixing titanium dioxide particles, lead compound powder, and glass component powder, the resulting mixture is heated to about 50.
A method for producing a lead titanate sintered body, the method comprising obtaining a lead titanate sintered body by sintering in a temperature range of ~850·C.
JP1076438A 1989-03-30 1989-03-30 Production of sintered body of lead titanate Pending JPH02255568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076438A JPH02255568A (en) 1989-03-30 1989-03-30 Production of sintered body of lead titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076438A JPH02255568A (en) 1989-03-30 1989-03-30 Production of sintered body of lead titanate

Publications (1)

Publication Number Publication Date
JPH02255568A true JPH02255568A (en) 1990-10-16

Family

ID=13605153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076438A Pending JPH02255568A (en) 1989-03-30 1989-03-30 Production of sintered body of lead titanate

Country Status (1)

Country Link
JP (1) JPH02255568A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100135A (en) * 1980-01-17 1981-08-11 Matsushita Electric Ind Co Ltd Manufacture of lead titanate
JPS56104715A (en) * 1980-01-17 1981-08-20 Matsushita Electric Ind Co Ltd Preparation of lead titanate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100135A (en) * 1980-01-17 1981-08-11 Matsushita Electric Ind Co Ltd Manufacture of lead titanate
JPS56104715A (en) * 1980-01-17 1981-08-20 Matsushita Electric Ind Co Ltd Preparation of lead titanate

Similar Documents

Publication Publication Date Title
JPH03153557A (en) Production of source powder of lead perovskite structure ceramics
CN110550952A (en) zirconia ceramic powder and preparation method thereof
JPH0580427B2 (en)
JPH02255568A (en) Production of sintered body of lead titanate
KR960002625B1 (en) Process for producing microcrystalline barium ferrite platelets
JP3103165B2 (en) Method of manufacturing piezoelectric body
JP2841347B2 (en) Manufacturing method of piezoelectric ceramics
JPH0712922B2 (en) Method of forming inorganic hydroxide precipitate
JPH06321630A (en) Composition for ceramic dielectric
EP4397641A1 (en) Perovskite-type ceramic compact and method for manufacturing same
JPS6227371A (en) Composition for ceramic dielectric and manufacture of ceramic dielectric
JPS5926966A (en) Manufacture of ceramics green molded body
JPS61291418A (en) Method for producing easily sinterable raw material powder of tungsten bronze type oxide
JPH0531516B2 (en)
WO2024250380A1 (en) Bismuth-ferrite-based lead-free piezoelectric ceramic material and preparation method therefor
JPS63248704A (en) Manufacturing method for multi-component ceramic raw material powder
JPH03122021A (en) Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain
JPS6325261A (en) Manufacture of high density pmn base ferroelectric ceramic
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPS6325262A (en) Manufacturing method of high-density BBT ferroelectric ceramic
JPS6325272A (en) Manufacturing method of high-density PSZNT-based ferroelectric ceramic
JPS6325263A (en) Manufacture of high density bzt base ferroelectric ceramic
JPS6325265A (en) Manufacturing method of high-density BZNT-based ferroelectric ceramic
JPS632808A (en) Production of powder of easily-sinterable raw material for perovskite solid solution
JPS63285150A (en) Method for manufacturing dielectric ceramics containing neodymium