[go: up one dir, main page]

JPH02247591A - position measurement system - Google Patents

position measurement system

Info

Publication number
JPH02247591A
JPH02247591A JP6844389A JP6844389A JPH02247591A JP H02247591 A JPH02247591 A JP H02247591A JP 6844389 A JP6844389 A JP 6844389A JP 6844389 A JP6844389 A JP 6844389A JP H02247591 A JPH02247591 A JP H02247591A
Authority
JP
Japan
Prior art keywords
station
signal
slave
phase delay
master station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6844389A
Other languages
Japanese (ja)
Inventor
Masao Ogino
正夫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6844389A priority Critical patent/JPH02247591A/en
Publication of JPH02247591A publication Critical patent/JPH02247591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To narrow the band of a signal and to take a measurement with high accuracy by measuring the position of a mobile station with the phase delay quantity of a master station and the phase delay quantities of slave stations which are sent from 1st and 2nd slave stations. CONSTITUTION:The master station 4 and 1st and 2nd slave stations 2 and 3 receive sent signals to measure the phase delay quantities and the phase delay quantities which are measured by the slave stations 2 and 3 are sent to the master station 4. The master station 4 calculates the positions of the slave stations 2 and 3 from the phase delay quantity that the master station itself calculates and the phase delay quantities sent from the slave stations 2 and 3 and the slave station positions are displayed with position data which are the calculation results. A track Ia is calculated from the phase difference between the master station 4 and slave station 2, a track Ib is calculated from the phase difference between the master station 4 and slave station 3, and the intersection of the tracks Ia and Ib is determines as the position of the mobile station 1. Thus, the mobile station 1 sends a sine wave measurement signal, so the band of the signal may be narrow. Further, the slave stations 2 and 3 and master station 4 multiply their received signals respectively to improve the measurement accuracy, so the measurement accuracy of the mobile station 1 can be improved.

Description

【発明の詳細な説明】 (11要〕 移動局の位置を測定する位置測定システムに関し、 信号の帯域が狭くでき、位W!W!度が高いことを目的
とし、 正弦波のバースト状の測定信号を送信する移動局と、該
移動局よりの測定信号を受信して互いに異なる複数の周
波数に逓倍し、得られた複数の逓倍信号夫々を周波数が
夫々と同一の!!i準(1と比較して従局の位相遅延量
を測定する複数の従局と、該移動局よりの測定信号を受
信して互いに異なる複数の周波数に逓倍し、得られた複
数の逓倍信号夫々を周波数が夫々と同一の基準信号と比
較して親局の位相遅延量を測定し、該親局の位相遅延量
と該複数の従局から伝送される従局の位相遅延量とによ
り移動局の位置を測定する親鳥とを有し構成する。
[Detailed Description of the Invention] (Requires 11) Regarding a position measurement system for measuring the position of a mobile station, the purpose is to narrow the signal band and have a high degree of W!W!, and to measure the burst shape of a sine wave. A mobile station transmits a signal, and a measurement signal from the mobile station is received and multiplied to a plurality of different frequencies, and each of the obtained plurality of multiplied signals is divided into !!i quasi(1 and A plurality of slave stations that compare and measure the amount of phase delay of the slave stations, and a plurality of slave stations that receive measurement signals from the mobile station and multiply them to a plurality of different frequencies, each of which has the same frequency. a parent station that measures the phase delay amount of the master station in comparison with a reference signal of the parent station, and measures the position of the mobile station based on the phase delay amount of the master station and the phase delay amount of the slave stations transmitted from the plurality of slave stations. Contains and configures.

〔産業上の利用分野〕[Industrial application field]

本発明は位flf3111定システムに関し、移動局の
位置を測定する位置測定システムに国する。
The present invention relates to a location system for determining the location of a mobile station.

従来より自am、人等の移動局の位置を測定する位N1
1定システムがある。このようなシステムは規模が大き
くならず、かつ位置精度が^いことが要望されている。
Conventionally, N1 is used to measure the position of mobile stations such as self-am, people, etc.
There is a fixed system. Such a system is required to be small in scale and to have high positional accuracy.

〔従来の技術〕[Conventional technology]

従来の位置測定システムとしては、 0)移動物体にGPS (グローバル・ボジシにング・
システム)を用いた[Siからの位置情報信号を受信す
るGPS受信機を設け、少なくとも3個GPSlfi星
の位置情報信号により位置を測定する方法、 ■ 移動物体が出力するVHF又はUHFの信号を少な
くとも2ケ所の固定局の方向探知器で受信し、この2ケ
所の固定局からの移動物体の方向の交点で位置を測定す
る方法、 ■ 少なくとも3ケ所のロラン局またはデツカ局のパル
ス信号を移動物体で受信し、各局のパルス信@闇の位相
差により各局までの距離を求める双曲線航法により位置
を測定する方法、 等がある。
Conventional position measurement systems include: 0) GPS (global positioning) for moving objects;
A method of measuring the position using the position information signals of at least three GPSlfi stars by providing a GPS receiver that receives position information signals from Si using A method of receiving pulse signals from two fixed stations using direction finders and measuring the position at the intersection of the directions of the moving object from these two fixed stations. There is a method of measuring the position by hyperbolic navigation, which receives the signals from each station and determines the distance to each station by the phase difference between each station's pulse signal @ darkness.

(発明が解決しようとする課題〕 従来の巾の方法は複数の衛星を必要とするためシステム
全体が大規模になり、コストが非常に高いという問題が
ある。
(Problems to be Solved by the Invention) The conventional method requires a plurality of satellites, resulting in a large scale of the entire system and a problem in that the cost is extremely high.

■の方法は方向探知器の精度によって移動物体と固定局
との距離が大きくなると位置精度が悪化するという11
9INがある。
Method (1) is based on the fact that the position accuracy deteriorates as the distance between the moving object and the fixed station increases due to the accuracy of the direction finder11.
There are 9 INs.

■の方法は位ian度を上げようとするとパルスのエツ
ジが急峻でなければならず送信するパルス徳目の帯域幅
によって位置精度が制限されるという1g題があった。
Method (2) has a problem in that in order to increase the degree of position, the edge of the pulse must be steep, and the position accuracy is limited by the bandwidth of the transmitted pulse.

本発明は上記の点に鑑みなされたもので、信号の帯域が
狭くでき、位1fJtffが高い位置測定システムを提
供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a position measuring system in which the signal band can be narrowed and the position 1fJtff is high.

(課題を解決するための手段) 第1図は本発明システムの原珊図を示す。(Means for solving problems) FIG. 1 shows the original coral diagram of the system of the present invention.

同図中移動jS1は、正弦波のバースト状の測定信号を
送信する。
In the figure, the moving jS1 transmits a sinusoidal burst measurement signal.

w41.第2の従局2.3夫々は、移動局1よりの測定
信号を受信して互いに異なる複数の周波数に逓信し、得
られた複数の遍倍信号夫々を周波数が夫々と同一の基準
信号と比較して従局の位相遅延量を測定する。
w41. Each of the second slave stations 2 and 3 receives the measurement signal from the mobile station 1, transmits it to a plurality of different frequencies, and compares each of the obtained multiplied signals with a reference signal having the same frequency. and measure the amount of phase delay of the slave station.

親局4は移動局1よりの測定信号を受信して互いに異な
る複数の周波数に逓倍し、得られた複数の遵倍信号夫々
を周波数が夫々と同一の基準信号を比較して親局の位相
遅延量を測定し、親局の位相遅延量と第1.第2の従局
2.3から伝送される従局の位相遅延量とにより移動局
1の位置を測定する。
The master station 4 receives the measurement signal from the mobile station 1, multiplies it to a plurality of mutually different frequencies, compares each of the obtained multiplied signals with a reference signal having the same frequency, and calculates the phase of the master station. The amount of delay is measured, and the amount of phase delay of the master station and the first. The position of the mobile station 1 is measured based on the phase delay amount of the slave station transmitted from the second slave station 2.3.

(作用) 本発明においては、移動局2は正弦波の測定信号を送信
するため、送信信号の帯域が狭くて済む。
(Function) In the present invention, since the mobile station 2 transmits a sine wave measurement signal, the band of the transmission signal can be narrow.

また、第1#第2の従局2.3及びt1局4夫々は受信
した測定信号を複数の周波数に逓倍した逓倍信号で順次
位相MK量を測定して測定精度を上げるため、移動ji
2の位置精度が向上する。
In addition, each of the 1st and 2nd slave stations 2.3 and t1 station 4 sequentially measures the phase MK amount using a multiplied signal obtained by multiplying the received measurement signal to a plurality of frequencies.
2. The positional accuracy of item 2 is improved.

(実施例〕 第2図は移動局のブロック図を示す、、同図中、発振!
120の出力する周波数数−IMHzの高安定基準信号
は分局器21及びAM変A器22に供給される。
(Embodiment) Figure 2 shows a block diagram of a mobile station. In the figure, oscillation!
A highly stable reference signal having a frequency of -IMHz outputted from the substation 120 is supplied to the branching unit 21 and the AM transformer A 22.

分局器は基準信号を分局して例えば10KHzの分局信
号(正弦波)を得、制御部23に供給する。&1111
aB23は端子27から親局からの測定開始信号により
上記分周信号をバースト状に取出し、振幅変調(AMI
調)器22に供給する。
The splitter splits the reference signal to obtain a split signal (sine wave) of, for example, 10 KHz, and supplies it to the control section 23 . &1111
The aB23 extracts the above-mentioned frequency-divided signal in a burst form from the terminal 27 in response to the measurement start signal from the master station, and performs amplitude modulation (AMI
control) unit 22.

AM変m器22は基準信号をバースト状の分周信号即ち
測定信号によりAM変調してUHF又はVHF帯域の高
周波信号を得る。この高周波信号は帯域フィルタ24で
不要周波数成分を除去されアンプ25で増幅されてアン
テナ26より送信される。
The AM modulator 22 performs AM modulation on the reference signal using a burst-like frequency-divided signal, that is, a measurement signal to obtain a high frequency signal in the UHF or VHF band. This high frequency signal has unnecessary frequency components removed by a bandpass filter 24, is amplified by an amplifier 25, and is transmitted from an antenna 26.

第3図は従局のブロック図を示す。同図中、アンテナ3
0で移動局の出力する高周波信号が受信され帯域フィル
タ31で帯域制限され、かつアンプ32で増幅されてA
M復調器33に供給される。
FIG. 3 shows a block diagram of the slave station. In the figure, antenna 3
A high frequency signal output from a mobile station is received at 0, band limited by a bandpass filter 31, and amplified by an amplifier 32.
The signal is supplied to the M demodulator 33.

AIVLtl:l器33は受信高周波信号より測定信号
を復調する。この復調信号(バースト状の正弦波)は逓
倍器34.35.36夫々に供給され、逓倍器34はm
i逓倍して例えば周波数30KHzとし、逓倍器35は
m2遍倍して例えば周波数300KHzとし、逓倍器3
6は第3逓倍して例えば周波数3MHzとし、夫々の逓
倍信号は位相遅延測定器37.38.39に供給される
The AIVLtl:l device 33 demodulates the measurement signal from the received high frequency signal. This demodulated signal (burst sine wave) is supplied to each of the multipliers 34, 35, and 36, and the multiplier 34 is
The frequency is multiplied by i to, for example, 30 KHz, and the multiplier 35 is multiplied by m2 to set the frequency to, for example, 300 KHz.
6 is third multiplied to, for example, a frequency of 3 MHz, and the respective multiplied signals are supplied to phase delay measuring devices 37, 38, and 39.

発振器41の出力する周波数数十MHzの^安定基準信
号(正弦波)は、夫々位相遅延測定器37.38.39
に供給される。発振器41は端子42にm局からl1l
tl信号を供給される同期制御部43により同期1I1
1111を行なわれ親局における基準信号と同期を取ら
れており、親局からの測定n始信号を基準として測定開
始8I閂が設定される。
The stable reference signal (sine wave) with a frequency of several tens of MHz output from the oscillator 41 is measured by a phase delay measuring device 37, 38, and 39, respectively.
supplied to The oscillator 41 connects the terminal 42 with l1l from the m station.
Synchronization 1I1 is performed by the synchronization control unit 43 supplied with the tl signal.
1111 is performed and synchronized with the reference signal at the master station, and the measurement start 8I bar is set based on the measurement n start signal from the master station.

位相遅延測定器37.38.39夫々は各逓倍信号の位
相遅延lを測定してインターフェイス44より端子45
を介して親局へ伝送する。
Each of the phase delay measuring devices 37, 38, and 39 measures the phase delay l of each multiplied signal and outputs the measured signal from the interface 44 to the terminal 45.
It is transmitted to the master station via.

第4図は親局の70ツク図を示す。同図中、アンテナ5
0で移wJ局の出力する高周波信号が受信され帯域フィ
ルタ51で帯域制限され、かつアンプ52で増幅されて
AM復漏器53に供給される。。
FIG. 4 shows a 70 block diagram of the master station. In the figure, antenna 5
A high frequency signal output from the mobile station 0 is received, band limited by a bandpass filter 51, amplified by an amplifier 52, and supplied to an AM repeater 53. .

AMv111器53は受信高周波信号より測定信号をI
IIする。この復調信号(バースト状の正弦波)は逓倍
器53.54.55夫々に供給され、逓倍器53はm1
遍倍して例えば周波数30KHzとし、逓倍器54は第
2逓倍して例えば周波数300KHzとし、逓倍器55
は第3逓倍して例えば周波数3MHzとし、夫々の逓倍
信号は位相遅延測定器57.58.59に供給される。
The AMv111 device 53 receives the measurement signal from the received high frequency signal.
II. This demodulated signal (burst sine wave) is supplied to each of the multipliers 53, 54, and 55, and the multiplier 53
The multiplier 54 multiplies the frequency to, for example, 30 KHz, and the multiplier 54 multiplies the frequency to, for example, 300 KHz.
is third-multiplied to, for example, a frequency of 3 MHz, and the respective multiplied signals are supplied to phase delay measuring devices 57, 58, and 59.

発振161の出力する周波数数1MH2の高安定基準信
号は夫々位相遅延測定器57.58゜59に供給される
。発振器61は同期1ll一部63により同期が取られ
ている。また、同期611111部63は端子62から
従局に同期信号及び測定開始信号を供給し、移動局には
測定開始信号を供給している。
Highly stable reference signals with a frequency of 1 MH2 outputted from the oscillation 161 are supplied to phase delay measuring devices 57.58.59, respectively. The oscillator 61 is synchronized by a synchronization section 63. Further, the synchronization unit 611111 63 supplies a synchronization signal and a measurement start signal to the slave station from the terminal 62, and supplies a measurement start signal to the mobile station.

位相遅延測定器57.58.59夫々は各逓倍信号の位
相遅延lを測定して位置算出l!164に供給する。こ
の位ffi算出部64には端子65を介して従局より位
相遅延機が供給され、位置算出部64で算出された移動
局の位置データ表示器66に表示される。
Each of the phase delay measuring devices 57, 58, and 59 measures the phase delay l of each multiplied signal and calculates the position l! 164. At this point, a phase delay device is supplied to the ffi calculation unit 64 from the slave station via a terminal 65, and the position data of the mobile station calculated by the position calculation unit 64 is displayed on the display 66.

第5図は本発明システムの位gaIl定処理のフローチ
ャートを示す。
FIG. 5 shows a flowchart of the position determination process of the system of the present invention.

同図中、ステップ71で親局より移動局及び従局へ位a
m定開始が指示される。これによって移動局及び従局で
測定器6が行なわれ(ステップ72)、移動局より送信
が開始される(ステップ73)。
In the figure, in step 71, the master station sends a message a to the mobile station and slave station.
The start of m-setting is instructed. As a result, the mobile station and the slave station perform the measuring device 6 (step 72), and the mobile station starts transmitting (step 73).

親局及び従局は送信された信号を受信して位相11延愚
を測定しくステップ74)、従局で測定された位相遅延
臘が親局に伝送される(ステップ75)。親局は自ら測
定した位相遅延量及び従局から伝送された位相遅延墨か
ら従局の位置忰出を行ない(ステップ76)。その算出
結果である位置データにより従局位置の表示を行なう(
ステップ77)。
The master station and the slave station receive the transmitted signal and measure the phase delay (step 74), and the phase delay measured by the slave station is transmitted to the master station (step 75). The master station calculates the position of the slave station from the amount of phase delay it has measured and the phase delay black transmitted from the slave station (step 76). The slave station position is displayed using the position data that is the calculation result (
Step 77).

移動局の測定信号の角周波数をω箇とすると親局及び第
1.第2の従局夫々の復調信号は1・記の如くなる。
If the angular frequencies of the measurement signals of the mobile stations are ω, then the master station and the first . The demodulated signals of each of the second slave stations are as shown in 1.

l1局 Sin ((c)1 t+n+ X+θ1+δ
)第1の従局 5iJ1  ((lc>+ j−1nz
π十θ2]δ)第2の従74  Sin (ωIj+n
37E+θ3+δ)ここでn瞥π→・θ1.n2π」−
θ2゜n3π+03は移動局から各局までの距離により
生じる位相差、δは受信機のAMI調までの位相差で各
js同一とする。
l1 station Sin ((c)1 t+n+ X+θ1+δ
) First slave station 5iJ1 ((lc>+ j-1nz
π ten θ2] δ) second subordinate 74 Sin (ωIj+n
37E+θ3+δ) Here, n views π→・θ1. n2π”-
θ2°n3π+03 is the phase difference caused by the distance from the mobile station to each station, and δ is the phase difference up to the AMI tuning of the receiver, which is assumed to be the same for each js.

復調信号を夫々ml 、第2 、第3逓倍すると次の如
く表わされる。
When the demodulated signal is multiplied by ml, 2nd, and 3rd, respectively, it is expressed as follows.

@74  Sin  (m+ Q)It+m+  (n
+ π+θ黛+δ)) Sin (mz ωI t−1−mz  (n+ 7t
+θ1 +δ) ) Sin  (ms (t)+  t−tml  (n+
  π+θ1+δ)) 第1の従fj4  Sin (ml (J)+ j(m
I(nz 1C+θ2+δ)) Sin  (mz (t)I t−1m2 (nz  
π+θ2 +δ) ) Sin  (mz (t)r  j+m!(nz 7C
+02 +δ)) 第2の従8 sin  (m+ U)+  t−Im+
  (n3π+θ3 +δ) ) Sin  (mz (t)+  t(ml (nz 7
t+θ3 +δ) ) Sin  (ms (t)Ij(・mz  (n3  
π+θ3+δ〉) 親局、第1の従局、第2の従局夫々のtllil信号を
m1遍倍した逓倍信号を便宜上第6図(A)。
@74 Sin (m+ Q)It+m+ (n
+ π + θ + δ)) Sin (mz ωI t-1-mz (n+ 7t
+θ1 +δ) ) Sin (ms (t)+ t-tml (n+
π+θ1+δ)) First slave fj4 Sin (ml (J)+j(m
I (nz 1C+θ2+δ)) Sin (mz (t)I t-1m2 (nz
π+θ2 +δ) ) Sin (mz (t)r j+m!(nz 7C
+02 +δ)) Second minor 8 sin (m+ U)+ t-Im+
(n3π+θ3 +δ) ) Sin (mz (t)+t(ml (nz 7
t+θ3 +δ) ) Sin (ms (t)Ij(・mz (n3
π+θ3+δ〉) For convenience, FIG. 6(A) shows a multiplied signal obtained by multiplying the tllil signals of the master station, the first slave station, and the second slave station by m1 times.

(D)、(E)の如く矩形波で表わし、mz/m+ =
2.ms /mz−2と仮定すると、親局のmlM倍、
ml逓倍した逓倍信号は同図(B)。
Expressed as a square wave as shown in (D) and (E), mz/m+ =
2. Assuming ms/mz-2, mlM times that of the master station,
The multiplied signal multiplied by ml is shown in the same figure (B).

(C)の如くなり、第1の従局のmz遁倍、ms逓倍し
た信号は同図(E)、(F)の如くなり、第2の従局の
ml1Ii倍、ms逓倍した信号は同図(H)、(1)
に示す如くなる。
The signal of the first slave station multiplied by mz and ms becomes as shown in (E) and (F) of the same figure, and the signal of the second slave station multiplied by ml1Ii and multiplied by ms becomes ( H), (1)
The result will be as shown below.

上記各波形の同−時開における位相遅延のを求める。The phase delay in simultaneous opening of each of the above waveforms is determined.

今、各局の基準信号の位相差を夫々γ1.γ2゜γ3と
すると位相遅延量は次の如く表わされる。
Now, the phase difference between the reference signals of each station is set to γ1. When γ2°γ3, the phase delay amount is expressed as follows.

Ij8   m+  (n+ 7E十01+δ)−71
m2 (n、π+θ1+δ)−7+ ml  (n、π+θ1+δ)−γ1 従局1m+(n2π→・θ2→〜6)−γ2m、(n2
π+θ2+6)−12 ms(n2π+θ2+6)−γ2 従局2  ml  (ng M+03+δ)−13m2
 (n3π+θ34δ)−γ3 ms (nsπ十03+δ)−18 四周と第1の従局との位相差S、tas定時刻が同一と
してm璽ω鵞の周波数では次の如くなる。
Ij8 m+ (n+ 7E101+δ)-71
m2 (n, π+θ1+δ)-7+ ml (n, π+θ1+δ)-γ1 Slave station 1m+(n2π→・θ2→~6)-γ2m, (n2
π+θ2+6)-12 ms (n2π+θ2+6)-γ2 Slave station 2 ml (ng M+03+δ)-13m2
(n3π+θ34δ)−γ3 ms (nsπ103+δ)−18 Assuming that the phase difference S between the four rotations and the first slave station and the fixed time tas are the same, the frequency of mxω is as follows.

(nl −nz ) 7rml + (01−02)J
+(γ1−γ2 ) 逓倍周波数の選び方としてm、逓倍した信号の波長が測
定すべぎ距離より大となるように選ぶと次式が成立する
(nl -nz) 7rml + (01-02)J
+(γ1-γ2) If the frequency to be multiplied is selected so that the wavelength of the signal multiplied by m is greater than the distance to be measured, the following equation holds true.

(n+ −nz >7rm+ =O I18と第1の従8Iilの^安定基準信号の位相差が
既知か又は各8周日期が取れている場合はγ1゜T2が
既知量となり、(θ1−θz)/m+を求めることがで
きる。θ1.θ2の精度を出すために逓倍周波数を大き
くして測定を行なう゛。
(n+ -nz >7rm+ =O If the phase difference between the ^ stable reference signals of I18 and the first slave 8Iil is known or the 8-cycle period for each is set, γ1°T2 becomes a known quantity, and (θ1-θz) /m+ can be obtained.In order to obtain the accuracy of θ1 and θ2, the multiplication frequency is increased and the measurement is performed.

位相差の測定精度がπ15 (36度)の場合、周波数
30KHzで距離1000mの精度が得られ、周波数3
00K Hzで距離100711の精度が得られ、周波
数3MHzで距11110mの精度が得られる。
If the measurement accuracy of the phase difference is π15 (36 degrees), the accuracy at a distance of 1000 m can be obtained at a frequency of 30 KHz, and at a frequency of 3
At 00 KHz, an accuracy of distance 100711 is obtained, and at a frequency of 3 MHz, an accuracy of distance 11110 m is obtained.

このため、位置算出部64ではmtω―の周波数で概略
の位相差を測定し、順次m2ω1の周波数、m3ω1の
周波数で位相差を測定して測定精度を上げる。
Therefore, the position calculation unit 64 measures the approximate phase difference at the frequency of mtω-, and sequentially measures the phase difference at the frequency of m2ω1 and m3ω1 to improve measurement accuracy.

このようにして親局と第1の従局内の位相差(第6図に
示す位相差ψ1)が求まり、第1図に破纏で示す軌跡■
aが算出される。
In this way, the phase difference between the master station and the first slave station (phase difference ψ1 shown in Fig. 6) is determined, and the trajectory ■
a is calculated.

同様にして親局と第2の従局間の位相差(第6図に示す
位相差ψ2)が求められ、第1図に一点鎖線で示す軌跡
Ibが締出され、軌跡:[a、ibの交点が移動局の位
置と決定される。
In the same way, the phase difference between the master station and the second slave station (phase difference ψ2 shown in FIG. 6) is determined, and the trajectory Ib shown by the dashed line in FIG. 1 is excluded. The intersection point is determined to be the location of the mobile station.

このように、移動局は正弦波の測定信号を送信するため
、送信信号の帯域が狭くて済む。
In this way, since the mobile station transmits a sinusoidal measurement signal, the band of the transmission signal can be narrow.

また、第1.第2の従局及び親局夫々は受信した測定信
号を複数の周波数に逓信した逓倍信号で順次位相遅延量
を測定して測定精度を上げるため、移動局の位置精度が
向上する。
Also, 1st. Each of the second slave station and the master station sequentially measures the amount of phase delay using a multiplied signal obtained by multiplying the received measurement signal to a plurality of frequencies to improve measurement accuracy, thereby improving the positioning accuracy of the mobile station.

また、!g局と移動局と少なくとも2つの従局との比較
的小さな規模でシステムを構成でき、コストも高くなら
ない。
Also,! The system can be configured on a relatively small scale, consisting of a g station, a mobile station, and at least two slave stations, and the cost does not increase.

なお、移動局よりAM変調で得られた高周波信号の代り
に測定信号として搬送波信号そのものをバースト状に送
(HL、、これを従局、親局で受信しても良く、上記実
施例に限定されない。
Note that instead of the high frequency signal obtained by AM modulation from the mobile station, the carrier signal itself is sent in a burst as a measurement signal (HL), and this may be received by the slave station and the master station, and is not limited to the above embodiment. .

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の位置測定シス−jムによれば、送
信する信号の帯域が狭くて済み、位置精度を高くできシ
ステム規模が小さくて済み、実用上きわめて有用である
As described above, according to the position measuring system of the present invention, the band of the signal to be transmitted can be narrow, the position accuracy can be increased, and the system scale can be small, making it extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原即図、 第2図は移動局のブロック図、 第3図は従局のブロック図、 第4図は親局の10ツク図、 第5図は本発明システムの位置測定シスのフローチャー
ト、 第6図は各局の逓倍信号のタイミングチャートである。 20.41.61は発振器、 23はAM変調器、 33.53はAM復II器、 34・〜36.54〜56は逓倍器、 37〜39.57〜59は位相遅延測定器、44はイン
ターフェイス部、 64は位l斡出部 を示す。 特許出願人 富 士 通 株式会社 代 理 人 弁即士 伊 東 忠 彦 ゛ 八 図において、 1は移動局、 2.3は従局。 4は親局、 第1図 号局の7′o−/2し 第2図 次局のブb−72目 第3図 南し酌のフ一〇−y2Yj8 第4図 第5図
Fig. 1 is an original diagram of the present invention, Fig. 2 is a block diagram of a mobile station, Fig. 3 is a block diagram of a slave station, Fig. 4 is a 10-step diagram of a master station, and Fig. 5 is a position of the system of the present invention. Flowchart of the measurement system. Figure 6 is a timing chart of the multiplied signals of each station. 20.41.61 is an oscillator, 23 is an AM modulator, 33.53 is an AM receiver II, 34.~36.54~56 is a multiplier, 37~39.57~59 is a phase delay measuring device, 44 is a An interface section, 64 indicates an output section. Patent applicant: Fujitsu Co., Ltd. Agent: Tadahiko Ito In Figure 8, 1 is a mobile station, and 2.3 is a slave station. 4 is the master station, Figure 1 is the station numbered 7'o-/2, Figure 2 is the next station's b-72, Figure 3 is the south cup of the cup, 10-y2Yj8, Figure 4, Figure 5.

Claims (1)

【特許請求の範囲】  正弦波のバースト状の測定信号を送信する移動局(1
)と、 該移動局(1)よりの測定信号を受信して互いに異なる
複数の周波数に逓倍し、得られた複数の逓倍信号夫々を
周波数が夫々と同一の基準信号と比較して従局の位相遅
延量を測定する複数の従局(2、3)と、 該移動局(1)よりの測定信号を受信して互いに異なる
複数の周波数に逓倍し、得られた複数の逓倍信号夫々を
周波数が夫々と同一の基準信号と比較して親局の位相遅
延量を測定し、該親局の位相遅延量と該複数の従局(2
、3)から伝送される従局の位相遅延量とにより移動局
(1)の位置を測定する親局(4)とを有することを特
徴とする位置測定システム。
[Claims] A mobile station (1 mobile station) that transmits a sinusoidal burst measurement signal.
), the measurement signal from the mobile station (1) is received and multiplied to a plurality of different frequencies, and each of the obtained multiplied signals is compared with a reference signal having the same frequency to determine the phase of the slave station. A plurality of slave stations (2, 3) that measure the amount of delay and a measurement signal from the mobile station (1) are received and multiplied to a plurality of mutually different frequencies, and each of the obtained plurality of multiplied signals is multiplied by a frequency. The phase delay amount of the master station is measured by comparing it with the same reference signal as the reference signal, and the phase delay amount of the master station and the plurality of slave stations (2
, 3) and a master station (4) that measures the position of the mobile station (1) based on the amount of phase delay of the slave station transmitted from the master station (4).
JP6844389A 1989-03-20 1989-03-20 position measurement system Pending JPH02247591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6844389A JPH02247591A (en) 1989-03-20 1989-03-20 position measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6844389A JPH02247591A (en) 1989-03-20 1989-03-20 position measurement system

Publications (1)

Publication Number Publication Date
JPH02247591A true JPH02247591A (en) 1990-10-03

Family

ID=13373848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6844389A Pending JPH02247591A (en) 1989-03-20 1989-03-20 position measurement system

Country Status (1)

Country Link
JP (1) JPH02247591A (en)

Similar Documents

Publication Publication Date Title
CA1314964C (en) Navigation and tracking system
US5008679A (en) Method and system for locating an unknown transmitter
JP3383797B2 (en) Method and system for determining the position of a mobile transmitter
US5689270A (en) Navigation and positioning system and method using uncoordinated becon signals
CN101438186B (en) Measuring the distance between devices
US5347285A (en) Method and apparatus for tracking the position and velocity of airborne instrumentation
US5173710A (en) Navigation and positioning system and method using uncoordinated beacon signals
RU2508558C2 (en) Spacecraft position estimating system and method
CA2372843C (en) Improvements in or relating to object location
US3242494A (en) Position determination system
US3430234A (en) Navigation systems using earth satellites
JP2004526166A (en) Altitude estimation system and method
US20160109553A1 (en) Method for locating and positioning using broadcast fm signals and phase difference computation technique
JPH02247590A (en) position measurement system
JPS61198079A (en) Device for detecting amplitude of discontinuous phase introduced to reception signal at some moment
JP3826191B2 (en) Moving body positioning method and moving body guidance method
US3816832A (en) Radio receiving station
JPH02247591A (en) position measurement system
JPH06265624A (en) Position measuring apparatus
JPH0815426A (en) Terrain alteration extracting device using interference type synthetic aperture radar
EP0664008A1 (en) Method and apparatus for tracking the position and velocity of airborne instrumentation
US20250106814A1 (en) Passive geo location of a wlan device by merging circular error probability ellipses based upon selection of data subsets
RU2612127C2 (en) Method for clock synchronization and device for its implementation
RU2529867C2 (en) Method of controlling ship movement
JPH02196976A (en) Gps position measuring system