[go: up one dir, main page]

JPH02234153A - Photographic support - Google Patents

Photographic support

Info

Publication number
JPH02234153A
JPH02234153A JP5570089A JP5570089A JPH02234153A JP H02234153 A JPH02234153 A JP H02234153A JP 5570089 A JP5570089 A JP 5570089A JP 5570089 A JP5570089 A JP 5570089A JP H02234153 A JPH02234153 A JP H02234153A
Authority
JP
Japan
Prior art keywords
electron beam
paper
resin
support
photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5570089A
Other languages
Japanese (ja)
Inventor
Junji Harada
純二 原田
Hideki Sekiguchi
英樹 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP5570089A priority Critical patent/JPH02234153A/en
Publication of JPH02234153A publication Critical patent/JPH02234153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To prevent deterioration of paper strength at the time of exposing it with electron beams due to the hardening of the opaque resin layer by incorporating in the paper support a specified amount of resin having a glass transition point of >=100 deg.C in the paper support and hardened with electron beams and coating it with a resin containing a white pigment. CONSTITUTION:The paper support contains the electron-beam hardened resin having a glass transition point of >=100 deg.C in an amount of 10 - 30wt.% of the paper support, and it is coated with the opaque resin layer comprising the white pigment and electron beam hardenable resin or the molten polyolefin resin containing the white pigment and polyolefin resin, and the like, thus permitting deterioration of paper strength to be prevented even when the paper is exposed to electron beams by forming the opaque resin layer.

Description

【発明の詳細な説明】 (A)産業上の利用分野 本発明は、写真用印画紙の支持体に関するものである.
より詳しくは、紙支持体にガラス転移温度が100℃以
上である電子線硬化された樹脂を含有し、その上を白色
顔料を含んだ樹脂で被覆した耐水性写真用支持体に関す
るものである.CB)従来の技術 近年、写真用支持体としては白色顔料を練りこんだポリ
オレフィン樹脂層を支持体である原紙表面に設けた耐水
性紙が主に用いられている.このように原紙上にポリオ
レフィン樹脂層を設けるのは、現像時に処理薬品が原紙
内に浸透するのを妨げるのが主な理由であり、この被覆
層により現像時間の短縮化が可能となり、また原紙内に
処理薬品が残らないため、経時変化による黄変を避ける
ことができる.このようなポリオレフィン樹脂による原
紙の被覆は一般に溶融押し出し機を用いて行なわる.さ
らに、印画紙の表面となるほうのポリオレフィン樹脂層
には、写真用支持体の隠ぺい力、白色度を向上させ、写
真印画紙の解像度を向上させる目的で、二酸化チタンな
どの無機白色顔料が練り込まれている. 〔C〕発明が解決しようとする課題 しかしながら、ポリオレフィン樹脂は熱溶融時において
も非常に高粘度で、二酸化チタン等の無機顔料を分散す
るのは容易ではなく使用できるポリオレフィン樹脂の種
類も限られていた.また、無機顔料の充填率にも限界が
あり、ある程度の隠ぺい力、白色度を得ようとすると樹
脂厚さを増やさざるを得なかった.また、このようなポ
リオレフィン樹脂の溶融押し出し塗工は、ポリオレフィ
ン樹脂の熱分解温度以上でなされるため、樹脂の熱分解
による黄変化やピンホールが樹脂層に生ずる.さらに、
押し出し速度が増加すると原紙との接着性が低下し、最
終製品の品質低下を引き起こすという問題を有していた
. 樹脂被覆された写真用支持体を製造する上で、溶融押し
出し法を用いれば適度な隠ぺい力を保持したまま不透明
樹脂被覆層を薄くしたり、品質の低下を招くことなく塗
工速度を増加させたりすることは困難であるなめ、写真
印画紙用原紙に白色顔料を練りこんだ電子線硬化性樹脂
(以下、電子線硬化性組成物と称する)を塗工し、これ
に電子線照射して不透明樹脂被覆層を形成して耐水性の
写真用支持体を製造する方法が提案されている(たとえ
ば特公昭60−17104号公報).この方法は電子線
照射により重合可能な不飽和結合を有するアクリレート
エステルのごとき樹脂に白色顔料を高濃度で分散させた
塗液を写真印画紙用原紙上に塗布し、常温で電子線照射
により重合および架橋を行なわせ原紙表面に不透明樹脂
被覆層を形成させる方法であるため、隠ぺい力を低下さ
せることなく不透明樹脂被覆層を薄くでき、かつ溶融押
し出し法に由来する樹脂の黄変化、ビンホールの生成、
樹脂層の接着不良、ブロッキングや梨地の発生による最
終製品の品質低下を引き起こすことなく耐水性の写真用
支持体の製造が可能となる. しかしながら、電子線硬化性組成物を用いた写真用支持
体の製造において白色顔料を高充填した不透明樹脂被覆
層を薄膜化および高速加工した場合には、未反応の電子
線硬化性樹脂が残存しないようにある程度過剰の電子線
照射量が必要となる.これは、不透明樹脂被覆層中に未
反応の電子線硬化性樹.脂がある場合には、現像処理後
に現像処理試薬が不透明樹脂被覆層中に取り込まれ着色
するためである.こ゜のような過剰の電子線は、不透明
樹脂被覆層の下部に位置する原紙層に到達するが、この
とき原紙を構成するセルロース繊維の切断を併発し、紙
間強度を低下させる.また、この紙間強度の低下は写真
用支持体の寸法安定性にも影響し、一殻に電子線照射を
行った紙支持体を使用した場合は引っ張り強度が低下し
、現像中に伸びやすくなる.よってこの方法で作られた
写真用印画紙においては現像処理した後の不透明樹脂被
覆層との接着強度が低下し、接着性に支障をきたすとか
、伸びが大きいという重大な問題を有する.また、近年
特にパネル用やポストカード用、あるいはシール用に写
真印画紙が用いられることが多くなってきたが、これら
の用途には一般に薄手の写真印画紙用支持体が用いられ
ることが多い.しかしながら不透明樹脂被覆層を形成す
る溶融ポリオレフィン樹脂あるいは電子線硬化性樹脂組
成物によっては冷却時、あるいは硬化時の収縮が著しく
、製品となる写真印画紙用支持体にカールを引き起こす
という問題があった.このカールの問題は上記のような
薄手の写真印画紙用支持体に特に起こりやすく、不透明
樹脂被覆層を形成する樹脂の選定範囲を極端に限定する
要因となっていた.CD)課題を解決するための手段 本発明者は、上記のような問題点を解決する手段を鋭意
研究した結果、以下のような解決法を見いだすに至った
.すなわち、紙支持体中にガラス転移温度が100℃以
上である電子線硬化された樹脂が紙支持体の重量に対し
て10乃至30重量%の割合で含有され、かつ前記の紙
支持体の上に白色顔料を含む不透明樹脂被覆層が設けら
れたことを特徴とする写真用支持体の発明である.本発
明による写真用支持体を用いて写真用印画紙を作成し、
現像試験を行って感光性乳剤層の接着強度を測定したと
ころ、乳剤層、不透明樹脂被覆層ともに極めて良好な接
着強度を有し、良好な接着をしていることが見いだされ
た.さらに、本発明によると驚くべきことに紙を支持体
に用い電子線照射により樹脂を硬化させるプロセスでは
不可避であった紙の引っ張り強度の低下が抑制されると
いう思わぬ効果を有していた.また、カール特性が良好
で、比較的薄手(100,un以下)な紙支持体に溶融
ポリオレフィン樹脂、電子線硬化性組成物のいずれを用
いた不透明樹脂被覆層を設けても、カールバランスがと
りやすく、品質の優れた写真印画紙用支持体を提供する
ものであることが見いだされた. 本発明においては、不透明樹脂被覆層は白色顔料と電子
線硬化性樹脂からなる電子線硬化性組成物層または白色
顔料とポリオレフィン樹脂からなる溶融ポリオレフィン
樹脂層である。溶融ポリオレフィン樹脂を不透明樹脂被
覆層に朋いる場合に本発明の電子線硬化性樹脂を含有さ
せた紙支持体を用いてポリオレフィン樹脂被覆層を設け
た後、電子線照射により硬化したところポリオレフィン
樹脂と紙支持体との接着強度が極めて良好で、現像液の
染み込みの少ない写真用支持体であることが見いだされ
た. 以下、本発明について詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a support for photographic paper.
More specifically, the present invention relates to a water-resistant photographic support comprising a paper support containing an electron beam-cured resin having a glass transition temperature of 100°C or higher, and the paper support being coated with a resin containing a white pigment. CB) Prior Art In recent years, waterproof paper, in which a polyolefin resin layer into which a white pigment has been kneaded is provided on the surface of the base paper that is the support, has been mainly used as a photographic support. The main reason for providing a polyolefin resin layer on the base paper in this way is to prevent processing chemicals from penetrating into the base paper during development.This coating layer makes it possible to shorten the development time, and also Since no processing chemicals remain inside, yellowing due to aging can be avoided. Coating base paper with such polyolefin resin is generally done using a melt extruder. Furthermore, inorganic white pigments such as titanium dioxide are mixed into the polyolefin resin layer on the surface of the photographic paper to improve the hiding power and whiteness of the photographic support and to improve the resolution of the photographic paper. It's included. [C] Problems to be Solved by the Invention However, polyolefin resins have extremely high viscosity even when melted, making it difficult to disperse inorganic pigments such as titanium dioxide, and the types of polyolefin resins that can be used are limited. Ta. Furthermore, there is a limit to the filling rate of inorganic pigments, and in order to obtain a certain degree of hiding power and whiteness, it is necessary to increase the resin thickness. Furthermore, since such melt extrusion coating of polyolefin resin is performed at a temperature higher than the thermal decomposition temperature of the polyolefin resin, yellowing and pinholes occur in the resin layer due to thermal decomposition of the resin. moreover,
As the extrusion speed increases, the adhesion to the base paper decreases, causing a problem in the quality of the final product. In the production of resin-coated photographic supports, melt extrusion allows the thinning of opaque resin coating layers while maintaining adequate hiding power, and the ability to increase coating speed without degrading quality. For example, an electron beam curable resin (hereinafter referred to as an electron beam curable composition) in which a white pigment is kneaded is coated on base paper for photographic printing paper, which is difficult to apply. A method of manufacturing a water-resistant photographic support by forming an opaque resin coating layer has been proposed (for example, Japanese Patent Publication No. 17104/1983). In this method, a coating liquid in which a white pigment is dispersed at a high concentration in a resin such as acrylate ester that has unsaturated bonds that can be polymerized by electron beam irradiation is applied onto the base paper for photographic paper, and then polymerized by electron beam irradiation at room temperature. Since this method involves crosslinking and forming an opaque resin coating layer on the surface of the base paper, the opaque resin coating layer can be made thinner without reducing the hiding power, and yellowing of the resin due to the melt extrusion method and the formation of bottle holes. ,
It is now possible to produce water-resistant photographic supports without deteriorating the quality of the final product due to poor adhesion of the resin layer, blocking, or matte finish. However, in the production of photographic supports using electron beam curable compositions, when the opaque resin coating layer highly filled with white pigment is thinned and processed at high speed, no unreacted electron beam curable resin remains. As such, a certain amount of excessive electron beam irradiation is required. This is an unreacted electron beam curable resin in the opaque resin coating layer. This is because if oil is present, the development reagent will be incorporated into the opaque resin coating layer after development and will cause coloration. Such excessive electron beams reach the base paper layer located below the opaque resin coating layer, but at this time, the cellulose fibers that make up the base paper are also cut, reducing the interpaper strength. In addition, this decrease in paper-to-paper strength also affects the dimensional stability of the photographic support, and when using a paper support that has been irradiated with an electron beam on one shell, the tensile strength decreases and it tends to stretch during development. Become. Therefore, photographic paper made by this method has serious problems such as a decrease in adhesive strength with the opaque resin coating layer after development, impairing adhesion, and high elongation. Furthermore, in recent years, photographic paper has been increasingly used especially for panels, postcards, and stickers, and thin supports for photographic paper are generally used for these purposes. However, depending on the molten polyolefin resin or electron beam curable resin composition that forms the opaque resin coating layer, there is a problem in that it shrinks significantly during cooling or curing, causing curling in the photographic paper support used as the product. .. This curling problem is particularly likely to occur in thin photographic paper supports such as those mentioned above, and has been a factor that extremely limits the range of resins that can be selected to form the opaque resin coating layer. CD) Means for Solving the Problems As a result of intensive research into means for solving the above-mentioned problems, the inventor has found the following solution. That is, an electron beam-cured resin having a glass transition temperature of 100° C. or higher is contained in the paper support in an amount of 10 to 30% by weight based on the weight of the paper support, and This is an invention of a photographic support characterized in that an opaque resin coating layer containing a white pigment is provided on the support. Making a photographic paper using the photographic support according to the invention,
When a development test was carried out and the adhesive strength of the photosensitive emulsion layer was measured, it was found that both the emulsion layer and the opaque resin coating layer had extremely good adhesive strength and good adhesion. Furthermore, the present invention surprisingly had the unexpected effect of suppressing the decrease in tensile strength of paper, which is unavoidable in the process of curing resin by electron beam irradiation using paper as a support. In addition, it has good curl characteristics, and even if an opaque resin coating layer made of either a molten polyolefin resin or an electron beam curable composition is provided on a relatively thin (100,000 nm or less) paper support, the curl balance can be maintained. It has been found that the present invention provides a support for photographic paper that is easy to use and of excellent quality. In the present invention, the opaque resin coating layer is an electron beam curable composition layer consisting of a white pigment and an electron beam curable resin, or a molten polyolefin resin layer consisting of a white pigment and a polyolefin resin. When a molten polyolefin resin is applied to an opaque resin coating layer, a paper support containing the electron beam curable resin of the present invention is used to form a polyolefin resin coating layer, which is then cured by electron beam irradiation. It was found that this photographic support has extremely good adhesion strength to the paper support and is less likely to be penetrated by developer. The present invention will be explained in detail below.

本発明において、紙支持体中に電子線硬化物のガラス転
移温度が100゜C以上である電子線硬化性樹脂を含有
させるには抄紙段階から紙業界でいう白水中に電子線硬
化性樹脂を分散させ、セルロース繊維に吸着させる方法
と、抄紙工程の後でタブ等の手段により浸漬することに
よりセルロース繊維に吸着させる方法、および電子線硬
化性樹脂をアセトンなどの溶媒に溶解させた後紙支持体
に塗布、含浸、乾燥させる方法の3種類がある6これら
の場合、電子線硬化性樹脂は含有率を良くするために単
独で、あるいは溶液に溶かした状態で、またはエマルジ
ョンの状態で用いることができる。
In the present invention, in order to contain an electron beam curable resin whose electron beam cured product has a glass transition temperature of 100°C or higher in the paper support, the electron beam curable resin is added to what is called white water in the paper industry from the papermaking stage. One method is to disperse the resin and adsorb it to the cellulose fibers, the other is to adsorb it to the cellulose fibers by soaking it with a means such as a tab after the paper making process, and the paper support method after dissolving the electron beam curable resin in a solvent such as acetone. There are three methods: applying it to the body, impregnating it, and drying it.6 In these cases, the electron beam curable resin can be used alone, dissolved in a solution, or in the form of an emulsion to improve the content. Can be done.

本発明において含有用に用いられる電子線硬化性樹脂は
、硬化物のガラス転移温度が100℃以上であることが
必須条件であり、その他に電子線硬化特性、耐候性、膜
強度、耐熱性、支持体への吸着性・接着性、などの条件
を考慮して選ぶことができる。また、含有用に用いられ
る電子線硬化性樹脂は少なくとも裏面耐水性樹脂層およ
び表面不透明樹脂被覆層を設ける前の紙支持体の重量に
対して10乃至30重量%の割合で含有されることが必
要であり、この割合より少ない場合は期待される寸法安
定性、カール防止効果が得られないし、この割合より多
くても寸法安定性、カール防止効果に影響がないばかり
でなく、含有樹脂を硬化させるのに必要な電子線照射量
が増大し不経済である。
It is essential for the electron beam curable resin used for inclusion in the present invention that the glass transition temperature of the cured product is 100°C or higher, and in addition, electron beam curable properties, weather resistance, film strength, heat resistance, It can be selected in consideration of conditions such as adsorption and adhesion to the support. Further, the electron beam curable resin used for inclusion may be contained in an amount of 10 to 30% by weight based on the weight of the paper support before providing the back side water-resistant resin layer and the front opaque resin coating layer. If it is less than this ratio, the expected dimensional stability and curl prevention effect cannot be obtained, and if it is more than this ratio, not only will the dimensional stability and curl prevention effect not be affected, but the resin contained will be cured. This increases the amount of electron beam irradiation required to achieve this, which is uneconomical.

不透明樹脂被覆層を形成する電子線硬化性樹脂は、電子
線硬化特性、強度特性、白色顔料の高濃度分散性、耐候
性、被膜強度、耐熱性、カール特性、支持体との接着性
、感光性乳剤層との接着性などの条件を考慮して選ぶこ
とができる.電子線硬化性樹脂としては、分子末端にま
たは分子側鎖に電子線反応基を有する不飽和ポリエステ
ル、変性不飽和ポリエステル、アクリル系ボリマーおよ
び不飽和結合を有する単量体などが単体でまたは他の溶
剤とともに使用できる。以下、電子線重合性樹脂のうち
代表的な種類を例示する.(A)単官能アクリレート、
単官能メタクリレート (B)多官能アクリレート、多官能メタクリレート、多
官能オリゴマー (C)ポリエステルアクリレート、ポリエステルメタク
リレート (D)エボキシアクリレート、エボキシメタクリレート (E)ウレタンアクリレート、ウレタンメタクリレート
、 (F)ボリオールアクリレート、ボリオールメタクリレ
ート 本発明者らは電子線照射を行った写真用支持体の研究を
行った結果、上記の電子線硬化性樹脂のなかでも特に、
電子線硬化物のガラス転移温度が100℃以上である架
橋性の良いアクリレート樹脂を一定の割合で紙支持体に
含有させ電子線照射により硬化を行えば、電子線照射後
の紙間強度を増加させ、かつ寸法安定性を向上させ、ま
たカール特性が著しく改善することをつきとめた.電子
線硬化物のガラス転移温度が100℃よりも低い電子線
硬化性樹脂を含有して電子線照射により硬化しても期待
される紙間強度が出す、かつ支持体の寸法安定性向上に
も、カール特性にも際だった効果を及ぼさないことが判
明した.しかしながら、単独では電子線硬化物のガラス
転移温度が100℃よりも低い電子線硬化性樹脂であっ
ても充分にガラス転移温度が高い電子線硬化性樹脂と混
合して硬化した場合に電子線硬化物のガラス転移温度が
100℃以上であれば含有用樹脂として用いることがで
きることも同時に見いだされた.本発明において用いら
れる電子線硬化性組成物中の白色顔料としては、ルチル
型あるいはアナターゼ型の二酸化チタン、酸化亜鉛、タ
ルク、炭酸カルシウム、炭酸バリウム、硫酸バリウム、
硫酸カルシウム、シリカ等の白色顔料を無処理、または
シロキサン、アルミナ、アルコール等で表面処理して用
いることができる.白色顔料の電子線硬化性組成物中に
おいて占める割合は20重量%から80重量%であるこ
とが好ましく、その中でも特に20重量%から70重量
%の範囲にあることが好ましい.これは、白色顔料の占
める割合が極端に少ないと期待される隠ぺい力を持つに
至らず、また極端に多いと電子線硬化性樹脂のバインダ
ーとしての能力が不足するばかりでなく電子線照射量の
増大を招き、写真印画紙用原紙あるいは成膜した被覆樹
脂に好ましくない影響を与えるからである. 本発明における電子線硬化性組成物中には従来のポリオ
レフィン樹脂の溶融押し出し法で作成した写真用支持体
の表面ポリエチレン層に用いられているような群青、コ
バルトバイオレット等の顔料および染料、酸化防止剤、
蛍光増白剤、帯電防止剤、分散剤、安定剤などの各種の
添加剤を適宜組み合わせて加えることができる. 本発明において支持体として用いられる原紙は通常の天
然バルプ紙、合成繊維、あるいは合成樹脂フィルムを擬
紙化したいわゆる合成紙を用いることができるが、針葉
樹パルプ、広葉樹パルプ、針葉樹広葉樹混合パルプの木
材パルプを主成分とする天然バルプ紙が有利に用いられ
る.紙支搏体の厚みに関しては特に制限はなく、その坪
量は50 g/m”〜2 5 0 g/m”が好ましい
.本発明の方法において有利に用いられる天然バルプを
主成分とする紙支持体には各種高分子化合物、添加剤を
含有せしめることができる.たとえば、デンプン誘導体
、ポリアクリルアミド、ポリビニルアルコール誘導体、
ゼラチン等の乾燥紙力増強剤、脂肪酸塩、ロジン誘導体
、ジアルキルケテンダイマー乳化物等のサイズ剤、メラ
ミン樹脂、尿素樹脂、エボキシ化ポリアミド等の湿潤紙
力増強剤、安定剤、顔料、染料、酸化防止剤、蛍光増白
剤、各種ラテックス、無機電解質、pH調整剤等を適宜
組み合わせて含有せしめることができる.また、本発明
において紙支持体と不透明樹脂被覆層の接着性と濡れ性
を良くするために紙支持体表面にコロナ処理等の表面処
理を行なっても、電子線硬化性組成物と感光性乳剤との
接着性および濡れ性を良くするために樹脂の表面にコロ
ナ処理やサブコート等の表面処理を行なってもよい.ま
た本発明の写真用支持体の裏面には、従来から行なわれ
ているような溶融押し出し法によるポリオレフィン樹脂
の塗工や、電子線硬化性樹脂を塗工した後電子線照射に
より被膜を形成する方法により樹脂被覆層を形成し、か
つ裏面筆記性を付与されるようにバックコート層を設け
てる゜ことができる. 電子線硬化性組成物を調整する方法としては一般的な顔
料昆練機を用いることができる.たとえば、二本ロール
、三本ロール、ボールミル、二一グー、高速ミキサー、
ホモジナイザ一等である.紙支持体上に電子線硬化性組
成物を塗布する方法としては、例えば、ブレードコート
、ドクターコート、エアーナイフコート、スプレーコー
ト、スクイズコート、リバースロールコート、グラビア
ロールおよびトランスファーロールコート、エクストル
ージョンコート、カーテンコート等の方法が用いられ、
電子線硬化性樹脂を紙支持体に含有した後でカレンダー
等で平滑化することもできる。
The electron beam curable resin that forms the opaque resin coating layer has the following characteristics: electron beam curing properties, strength properties, high concentration dispersion of white pigment, weather resistance, film strength, heat resistance, curling properties, adhesion to the support, and photosensitivity. It can be selected taking into consideration conditions such as adhesion with the emulsion layer. Examples of electron beam curable resins include unsaturated polyesters having electron beam reactive groups at the molecular ends or side chains, modified unsaturated polyesters, acrylic polymers, and monomers having unsaturated bonds alone or in combination with other Can be used with solvents. Typical types of electron beam polymerizable resins are illustrated below. (A) monofunctional acrylate,
Monofunctional methacrylate (B) Polyfunctional acrylate, polyfunctional methacrylate, polyfunctional oligomer (C) Polyester acrylate, polyester methacrylate (D) Eboxy acrylate, epoxy methacrylate (E) Urethane acrylate, urethane methacrylate, (F) Polyol acrylate, polyester All methacrylate As a result of our research on photographic supports irradiated with electron beams, we found that among the above electron beam curable resins,
If the paper support contains a certain proportion of acrylate resin with good crosslinking properties and the glass transition temperature of the electron beam cured product is 100°C or higher and is cured by electron beam irradiation, the interpaper strength after electron beam irradiation will be increased. It was found that the dimensional stability was improved, and the curling properties were significantly improved. Contains an electron beam curable resin whose glass transition temperature is lower than 100°C, so that even when cured by electron beam irradiation, it provides the expected interpaper strength and also improves the dimensional stability of the support. , it was found that it had no significant effect on curl characteristics. However, even if an electron beam curable resin has a glass transition temperature lower than 100°C when used alone, it cannot be cured by electron beam when mixed with an electron beam curable resin having a sufficiently high glass transition temperature. It was also discovered that if the glass transition temperature of a material is 100°C or higher, it can be used as a containing resin. Examples of the white pigment in the electron beam curable composition used in the present invention include rutile-type or anatase-type titanium dioxide, zinc oxide, talc, calcium carbonate, barium carbonate, barium sulfate,
White pigments such as calcium sulfate and silica can be used untreated or after surface treatment with siloxane, alumina, alcohol, etc. The proportion of the white pigment in the electron beam curable composition is preferably from 20% to 80% by weight, particularly preferably from 20% to 70% by weight. This means that if the proportion of the white pigment is extremely small, it will not have the expected hiding power, and if it is too large, it will not only lack the ability as a binder for the electron beam curable resin but also reduce the amount of electron beam irradiation. This is because it causes an increase in the amount of water and has an undesirable effect on the base paper for photographic paper or the coated resin that has been formed. The electron beam curable composition of the present invention contains pigments and dyes such as ultramarine blue and cobalt violet, which are used in the surface polyethylene layer of photographic supports prepared by conventional polyolefin resin melt extrusion methods, and antioxidants. agent,
Various additives such as optical brighteners, antistatic agents, dispersants, and stabilizers can be added in appropriate combinations. The base paper used as a support in the present invention can be ordinary natural pulp paper, synthetic fiber, or so-called synthetic paper made of artificial paper of synthetic resin film, but wood of softwood pulp, hardwood pulp, softwood mixed pulp Natural pulp paper, whose main component is pulp, is advantageously used. There is no particular restriction on the thickness of the paper support, and its basis weight is preferably 50 g/m'' to 250 g/m''. The paper support mainly composed of natural pulp, which is advantageously used in the method of the present invention, can contain various polymeric compounds and additives. For example, starch derivatives, polyacrylamide, polyvinyl alcohol derivatives,
Dry paper strength enhancers such as gelatin, sizing agents such as fatty acid salts, rosin derivatives, dialkyl ketene dimer emulsions, wet paper strength enhancers such as melamine resins, urea resins, and eboxidized polyamides, stabilizers, pigments, dyes, oxidation Inhibitors, optical brighteners, various latexes, inorganic electrolytes, pH adjusters, etc. can be contained in appropriate combinations. Furthermore, in the present invention, even if the surface of the paper support is subjected to surface treatment such as corona treatment in order to improve the adhesion and wettability between the paper support and the opaque resin coating layer, the electron beam curable composition and the photosensitive emulsion In order to improve adhesion and wettability with the resin, surface treatments such as corona treatment or sub-coat may be applied to the surface of the resin. Further, on the back side of the photographic support of the present invention, a film can be formed by coating a polyolefin resin by the conventional melt extrusion method or by applying an electron beam curable resin and then irradiating it with an electron beam. A resin coating layer can be formed by this method, and a back coat layer can be provided to provide writing properties on the back side. A general pigment kneading machine can be used to prepare the electron beam curable composition. For example, two-roll, three-roll, ball mill, twenty-one goo, high-speed mixer,
It is a first class homogenizer. Examples of methods for applying the electron beam curable composition onto the paper support include blade coating, doctor coating, air knife coating, spray coating, squeeze coating, reverse roll coating, gravure roll and transfer roll coating, and extrusion coating. , curtain coating, etc. are used,
It is also possible to smooth the paper support using a calender or the like after incorporating the electron beam curable resin into the paper support.

本発明において用いられるポリオレフイン樹脂としては
ポリエチレン、ボリプロビレン、ボリブテン、ポリペン
テン等のオレフィンのホモボリマーまたはエチレン/ブ
ロビレン共重合体等の2種以上のオレフィンからなる共
重合体およびその混合物であり、そのなかで特にポリエ
チレンが有利に用いられる. 電子線重合性組成物または溶融ポリオレフイン樹脂より
成る不透明樹脂被覆層の厚さは原紙の種類および白色顔
料の充填率により異なるが、2〜100μm、より好ま
しくは3〜50μmであり、この厚さより薄いと白色度
、不透明度の点から充分なものが得られずまた均一に塗
布しにくく、この厚さより厚いと均一に被覆層を設けに
<<、品質上好ましくない。電子線硬化性組成物を用い
る場合に写真用支持体の表面をさらに鏡面または型付け
仕上げにする場合には、処理したい面を鏡面ロールまた
は型付けロールと接触させその背面から電子線を照射し
て硬化し、鏡面仕上げを施すことができる.また、予め
予備電子線照射を行い表面を一部硬化させた後、鏡面ロ
ールまたは型付けロールと接触させ二次照射を行い完全
に硬化させる方法もある.溶融ポリオレフイン樹脂を用
いる場合には相当するクーリングロールをもちいること
により鏡面、あるいは型付け面が得られる.本発明にお
いて紙支持体に含有させた電子線硬化性樹脂は、白色顔
料を含む不透明樹脂被覆層を設ける前、あるいは設けた
後で電子線照射により硬化することができる。白色顔料
を含む不透明樹脂被覆層が電子線硬化性樹脂組成物から
なる場合には、一度の照射で含有させた電子線硬化性樹
脂と同時に硬化することができる. 電子線照射は、透過力、硬化力の面から加速電圧が10
0〜1000kVであり、より好ましくは100〜30
0kVの電子線加速器を用い、ワンパスの吸収線量が0
.5〜2Q Mradになるようにすることが好ましい
.加速電圧、あるいは電子線照射量がこの範囲より低い
と電子線の透過力が低すぎて十分な硬化が行なわれず、
またこの範囲より大きすぎるとエネルギー効率が悪化す
るばかりでなく、紙支持体の強度低下や樹脂、添加剤の
分解など品質上好ましくない影響が現われる.電子線加
速器としては例えば、エレクトロカーテンシステム、ス
キャンニングタイプ、ダブルスキャンニングタイプ等の
何れでも良い. なお、電子線照射に際しては酸素濃度が高いと電子線硬
化樹脂の硬化が妨げられるため、窒素、ヘリウム、二酸
化炭素等の不活性ガスによる置換を行い、酸素濃度を6
 0 0 ppm以下、好ましくは4 0 0 ppm
以下に抑制した雰囲気中で照射することが好ましい. 本発明による紙支持体中に電子線硬化性樹脂を含有させ
る目的は紙支持体に電子線照射した場合に起こる紙間強
度の低下を抑制し、また寸法安定性を改善し、さらに不
透明樹脂被覆層を設けた場合のカール特性を改善するた
めのものであり、特に硬化後の物質移動の制御を目酌と
するものではないため、少なくとも紙支持体の内部およ
び表面近傍が電子線硬化性樹脂により強化されていれば
紙に含有した電子線硬化性樹脂がビンホールのない被膜
を形成する必要はなく、紙支持体を構成するバルブ繊維
が不透明樹脂被覆層と直接接触しても差し支えない. また、本発明により作成された写真用支持体の不透明樹
脂被覆層上に写真用支持体の最表面における平滑性、耐
水性、耐薬品性、易洗浄性、感光性乳剤層との接着性、
および感光性乳剤のかぶり防止性などの性能を付与する
ためにポリオレフィン樹脂による被膜層を設けても良い
. また、紙支持体と不透明樹脂被覆層との間に紙支持体の
凹凸を平均化するようなプライマー層を設けても良く、
該プライマー層には白色顔料が含有されていても良い. 本発明により作成した写真用支持体は、その上に感光性
乳剤を塗布することにより、写真印画紙として用いるこ
とができる. 〔E〕作用 本発明において製遺された写真用支持体は、すくなくと
も紙支持体上の表面に架橋性の良い電子線硬化性樹脂が
含有されているため、不透明樹脂被覆層を硬化するため
に電子線照射した場合でも紙間強度を低下させることな
く、かつ紙支持体の寸法安定性を改善し、また不透明樹
脂被覆層と良好な接着性を保つことができ、高品質の写
真用支持体を得ることができる. (F)実施例 以下、実施例により本発明を詳しく説明するが、本発明
の内容は実施例に限られるものではない.実施例1 坪量1 0 0 g/m”の写真用原紙の表面に、電子
線硬化性樹脂としてアセトンに溶解したトリメチロール
プロパントリアクリレート(硬化物のTg;250℃以
上)を平均重量10g/m”になるようにタブプレスで
含浸させ、熱風乾燥し,窒素置換(酸素濃度200pp
m)Lた電子線照射装置(日新ハイボルテージ社製、キ
ュアトロン)内に導き、加速電圧220kV、吸収線量
2 Mradの条件で電子線照射を行い、紙に含有させ
た電子線硬化性樹脂を硬化させた.この硬化樹脂含有紙
支持体の裏面に、低密度ポリエチレン(密度0. 9 
1 8 g/cm’、Ml  5)と高密度ポリエチレ
ン(密度Q,965g/cm3、MI7)の等量混合物
により12μmの平均厚さ・でラミネート被覆した. 得られた樹脂含有紙支持体の表面にコロナ処理を施した
後、以下の組成の電子線硬化性組成物を平均厚さ8μm
になるように塗布し、電子線照射装置により2 Mra
dの電子線を照射して硬化させ写真用支持体を得た. (電子線硬化性組成物) ルチル型二酸化チタン     50重量%電子線硬化
性樹脂       50重量%電子線硬化性衝脂とル
チル型二酸化チタンとの混合は三本ロールを用いて行な
った. 電子線硬化性樹脂は α、ω−テトラアクリロイルー(ビストリメチロールプ
ロバン)一テトラヒド口フタレートとトリメチロールブ
ロバントリアクリレートの等量混合物を用いた. 実施例2 実施例1と同様な紙支持体にア七トンに溶解したα、ω
−テトラアクリロイルー(ビストリメチロールプロパン
)一テトラヒド口フタレートとポリオキシアルキレン(
,C  2〜3)化とスフェノールA・ジアクリレート
の等量混合物(硬化物のTg;105℃)を溶剤コータ
ーにより3 0 g/m”の割合で含有させた後、熱風
乾燥し、実施例1と同様に、裏面をポリエチレンラミネ
ートし、表面に不透明樹脂被覆層として低密度ポリエチ
レン(密度0. 9 1 8 g/cm3、MI  1
8.5>に30重量%の酸化チタンを練り込んだマスタ
ーバッチ30部、低密度ポリエチレン(密度α9 1 
8 g/am3、MI5)45部、高密度ポリエチレン
(密度0. 96 5 g/Cm3、MI  7)25
部から成る樹脂組成物を20μmの厚みでラミネート被
覆した.その後、不透明樹脂被覆層側から吸収線量4 
Mradとなるように電子線照射して電子線硬化性樹脂
を硬化させて写真用支持体を得た. 実施例3 実施例1と同様な紙支持体の表面に電子線硬化性樹脂と
してトリス(2−ヒドロキシエチル)イソシアヌル酸ア
クリル酸エステル(硬化物のTg;166℃》を208
/m2の割合で含有させた後、プライマ一層として低密
度ポリエチレン(密度0.91 8 g/c+a’、M
I5)75部、高密度ポリエチレン(密度CL 9 6
 5 g/cm’、MI7)25部から成る樹脂組成物
を7μmの厚みでラミネート被覆した.コロナ処理を行
った後、不透明樹脂被覆層として実施例1と同様な電子
線硬化性組成物を塗布し、吸収線量4 Mradとなる
ように電子線照射して電子線硬化性樹脂と電子線硬化性
組成物を硬化させて写真用支持体を得た. 比較例1 含有用の電子線硬化性樹脂の割合を3 g/m2とする
以外は実施例1と同様な方法で写真用支持体を得た. 比較例2 含有用の電子線硬化性樹脂を硬化物のTgがO℃以下で
ある8モルのプロピレンオキシド変性ぺンタエリスリト
ールテトラアクリレートに変更した以外は実施例2と同
様な方法で写真用支持体を得た. 比較例3 含有用の電子線硬化性摺脂を硬化物のTgが0℃以下で
ある8モルのブロビレンオキシド変性ペンタエリスリト
ールテトラアクリレートに変更した以外は実施例3と同
様な方法で写真用支持体を得た. 比較例4 含有用の電子線硬化性樹脂を硬化物のTgが75℃であ
るポリオキシアルキレン(02〜3)化ビスフェノール
A・ジアクリレートに変更した以外は実施例3と同様な
方法で写真用支持体を得た.比較例ら 含有用の電子線硬化性樹脂を硬化物のTgが90℃であ
るトリプロピレングリコールジアクリレートに変更した
以外は実施例3と同様な方法で写真用支持体を得た. 実施例および比較例において得られた写真用支持体は、
コロナ処理を施した後、通常の方法でカラーハロゲン化
銀写真乳剤を塗布し硬膜して写真印画紙とし、一連の現
像処理を行なったのち接着性の測定を行った.接着性の
測定は、乾燥を終えた写真印画紙の上にカミソリで碁盤
目状にカットを入れ、その上に標準粘着テープを圧着し
、一瞬にして引き剥した時の写真印画紙の表面状態(乳
剤層、不透明樹脂被覆層,原紙などの剥離状B)をもっ
て評価した.写真印画紙の寸法安定性については特に湿
潤時の支持体の引っ張り強度と伸びの関係から判断した
.カール特性においては、現像処理後20’C、湿度5
0%で調湿した雰囲気に放置した写真印画紙用支持体の
4隅のカール高さの平均値により評価した. 実施例および比較例において作成した写真用支持体の接
着性、寸法安定性、カールに関する結果を表1にまとめ
る. (以下余白) 表1 となく、良好な接着性を保つことができる.また、紙支
持体に含有した電子線硬化性樹脂により寸法安定性、カ
ールが改善され高品質の写真用支持体を得ることができ
、結果として高品質の写真用印画紙を作成することがで
きる. CG)発明の効果
The polyolefin resins used in the present invention include homobolymers of olefins such as polyethylene, polypropylene, polybutene, and polypentene, copolymers of two or more olefins such as ethylene/brobylene copolymers, and mixtures thereof; Polyethylene is advantageously used. The thickness of the opaque resin coating layer made of an electron beam polymerizable composition or molten polyolefin resin varies depending on the type of base paper and the filling rate of white pigment, but is 2 to 100 μm, more preferably 3 to 50 μm, and is thinner than this thickness. However, it is difficult to obtain a sufficient whiteness and opacity in terms of whiteness and opacity, and it is difficult to coat the coating uniformly.If the coating layer is thicker than this, it is not preferable in terms of quality. When using an electron beam curable composition, if the surface of the photographic support is to be further mirror-finished or patterned, the surface to be treated is brought into contact with a mirror-finished roll or a patterned roll, and the electron beam is irradiated from the back of the surface to cure it. A mirror finish can be applied. Another method is to perform preliminary electron beam irradiation in advance to partially harden the surface, and then bring it into contact with a mirror roll or molding roll and perform secondary irradiation to completely harden it. When using molten polyolefin resin, a mirror or patterned surface can be obtained by using a corresponding cooling roll. In the present invention, the electron beam curable resin contained in the paper support can be cured by electron beam irradiation before or after providing the opaque resin coating layer containing a white pigment. When the opaque resin coating layer containing a white pigment is made of an electron beam curable resin composition, it can be cured simultaneously with the contained electron beam curable resin by one irradiation. For electron beam irradiation, the acceleration voltage is 10 from the viewpoint of penetrating power and curing power.
0 to 1000 kV, more preferably 100 to 30
Using a 0kV electron beam accelerator, the absorbed dose in one pass is 0.
.. It is preferable to set it to 5 to 2Q Mrad. If the accelerating voltage or electron beam irradiation amount is lower than this range, the penetrating power of the electron beam will be too low and sufficient curing will not occur.
Moreover, if it is too large than this range, not only will energy efficiency deteriorate, but also unfavorable effects will appear on quality, such as a decrease in the strength of the paper support and decomposition of resin and additives. The electron beam accelerator may be, for example, an electrocurtain system, scanning type, double scanning type, etc. In addition, during electron beam irradiation, if the oxygen concentration is high, curing of the electron beam curing resin will be hindered, so replacement with an inert gas such as nitrogen, helium, carbon dioxide, etc. is performed to reduce the oxygen concentration to 6.
00 ppm or less, preferably 400 ppm
It is preferable to irradiate in an atmosphere that is controlled as follows. The purpose of containing an electron beam curable resin in the paper support according to the present invention is to suppress the decrease in interpaper strength that occurs when the paper support is irradiated with an electron beam, improve dimensional stability, and coat the paper support with an opaque resin. This is to improve the curling characteristics when a layer is provided, and is not particularly concerned with controlling mass transfer after curing. If the paper is reinforced with opaque resin, there is no need for the electron beam curable resin contained in the paper to form a film without holes, and there is no problem even if the bulb fibers that make up the paper support come into direct contact with the opaque resin coating layer. Further, on the opaque resin coating layer of the photographic support prepared according to the present invention, smoothness, water resistance, chemical resistance, easy cleaning properties, and adhesion with the photosensitive emulsion layer on the outermost surface of the photographic support,
A coating layer of polyolefin resin may also be provided to impart properties such as antifogging properties to the photosensitive emulsion. Furthermore, a primer layer may be provided between the paper support and the opaque resin coating layer to even out the unevenness of the paper support.
The primer layer may contain a white pigment. The photographic support prepared according to the present invention can be used as photographic paper by coating a photosensitive emulsion thereon. [E] Function The photographic support produced in the present invention contains an electron beam curable resin with good crosslinking properties at least on the surface of the paper support, so it is difficult to cure the opaque resin coating layer. A high-quality photographic support that does not reduce interpaper strength even when exposed to electron beam irradiation, improves the dimensional stability of the paper support, and maintains good adhesion with the opaque resin coating layer. can be obtained. (F) Examples The present invention will be explained in detail below using examples, but the content of the present invention is not limited to the examples. Example 1 An average weight of 10 g/m of trimethylolpropane triacrylate (Tg of cured product: 250°C or higher) dissolved in acetone as an electron beam curable resin was applied to the surface of a photographic base paper with a basis weight of 100 g/m''. It was impregnated with a tab press so that the thickness of
m) The electron beam curable resin contained in the paper was guided into an electron beam irradiation device (Curetron, manufactured by Nissin High Voltage Co., Ltd.) and irradiated with electron beams under the conditions of an acceleration voltage of 220 kV and an absorbed dose of 2 Mrad. hardened. Low density polyethylene (density 0.9
The laminate was coated with an equal mixture of 18 g/cm', Ml 5) and high density polyethylene (density Q, 965 g/cm3, MI 7) to an average thickness of 12 μm. After corona treatment was performed on the surface of the obtained resin-containing paper support, an electron beam curable composition having the following composition was applied to an average thickness of 8 μm.
2 Mra using an electron beam irradiation device.
A photographic support was obtained by curing by irradiation with electron beam (d). (Electron beam curable composition) Rutile type titanium dioxide 50% by weight Electron beam curable resin 50% by weight Electron beam curable resin and rutile type titanium dioxide were mixed using a triple roll. The electron beam curable resin used was a mixture of equal amounts of α,ω-tetraacryloyl(bistrimethylolproban) monotetrahydride phthalate and trimethylolbroban triacrylate. Example 2 α, ω dissolved in a7ton on a paper support similar to Example 1
- Tetraacryloyl(bistrimethylolpropane) monotetrahydrophthalate and polyoxyalkylene (
, C2-3) and sphenol A/diacrylate (Tg of cured product; 105°C) at a ratio of 30 g/m'' using a solvent coater, and then dried with hot air. As in Example 1, the back surface was laminated with polyethylene, and the surface was coated with low-density polyethylene (density 0.918 g/cm3, MI 1
8.5> 30 parts of a masterbatch kneaded with 30% by weight of titanium oxide, low density polyethylene (density α9 1
8 g/am3, MI5) 45 parts, high density polyethylene (density 0.96 5 g/Cm3, MI 7) 25
A resin composition consisting of 300 ml of resin was laminated and coated with a thickness of 20 μm. After that, the absorbed dose is 4 from the opaque resin coating layer side.
A photographic support was obtained by curing the electron beam curable resin by irradiating it with an electron beam so that it became Mrad. Example 3 Tris(2-hydroxyethyl)isocyanuric acid acrylic ester (Tg of cured product: 166°C) was applied as an electron beam curable resin to the surface of the same paper support as in Example 1 at 208° C.
/m2, low density polyethylene (density 0.918 g/c+a', M
I5) 75 parts, high density polyethylene (density CL 9 6
5 g/cm', MI7) was laminated to a thickness of 7 μm. After the corona treatment, the same electron beam curable composition as in Example 1 was applied as an opaque resin coating layer, and the electron beam curable composition was cured by electron beam irradiation at an absorbed dose of 4 Mrad. A photographic support was obtained by curing the composition. Comparative Example 1 A photographic support was obtained in the same manner as in Example 1 except that the proportion of the electron beam curable resin was 3 g/m2. Comparative Example 2 A photographic support was prepared in the same manner as in Example 2, except that the electron beam curable resin for inclusion was changed to 8 mol of propylene oxide modified pentaerythritol tetraacrylate whose Tg of the cured product was 0°C or less. I got it. Comparative Example 3 A photographic support was prepared in the same manner as in Example 3, except that the electron beam curable resin to be contained was changed to 8 mol of brobylene oxide-modified pentaerythritol tetraacrylate whose Tg of the cured product was 0°C or less. I got a body. Comparative Example 4 A photographic product was prepared in the same manner as in Example 3, except that the electron beam curable resin for inclusion was changed to polyoxyalkylene (02-3) bisphenol A diacrylate whose cured product had a Tg of 75°C. I got a support. A photographic support was obtained in the same manner as in Example 3, except that the electron beam curable resin used in Comparative Example was changed to tripropylene glycol diacrylate whose cured product had a Tg of 90°C. The photographic supports obtained in Examples and Comparative Examples were
After corona treatment, a color silver halide photographic emulsion was coated and hardened in the usual manner to produce photographic paper, and after a series of development treatments, adhesion was measured. Adhesion was measured by making cuts in a grid pattern with a razor on dried photographic paper, pressing a standard adhesive tape onto the cut, and then instantly peeling it off to determine the surface condition of the photographic paper. (Peeling of emulsion layer, opaque resin coating layer, base paper, etc. B) was evaluated. The dimensional stability of photographic paper was judged especially from the relationship between the tensile strength and elongation of the support when wet. Curl characteristics are determined at 20'C and humidity 5 after development.
Evaluation was made based on the average curl height at the four corners of a photographic paper support that was left in an atmosphere with a controlled humidity of 0%. Table 1 summarizes the results regarding the adhesion, dimensional stability, and curl of the photographic supports prepared in Examples and Comparative Examples. (Margin below) Table 1 Good adhesion can be maintained. In addition, the electron beam curable resin contained in the paper support improves dimensional stability and curling, making it possible to obtain a high-quality photographic support, and as a result, high-quality photographic paper can be produced. .. CG) Effect of invention

Claims (3)

【特許請求の範囲】[Claims] (1)紙支持体中にガラス転移温度が100℃以上であ
る電子線硬化された樹脂が紙支持体の重量に対して10
乃至30重量%の割合で含有され、かつ前記の紙支持体
の上に白色顔料を含む不透明樹脂被覆層が設けられたこ
とを特徴とする写真用支持体。
(1) The electron beam-cured resin with a glass transition temperature of 100°C or higher is contained in the paper support at a rate of 10% by weight based on the weight of the paper support.
1. A photographic support, characterized in that the opaque resin coating layer containing a white pigment is provided on the paper support.
(2)不透明樹脂被覆層と紙支持体との間に溶融押し出
しポリオレフィン樹脂からなるプライマー層が設けられ
ていることを特徴とする請求項1記載の写真用支持体。
(2) The photographic support according to claim 1, further comprising a primer layer made of a melt-extruded polyolefin resin between the opaque resin coating layer and the paper support.
(3)不透明樹脂被覆層が白色顔料と電子線硬化性樹脂
より構成され、電子線照射により硬化した層であること
を特徴とする請求項1または2記載の写真用支持体。
(3) The photographic support according to claim 1 or 2, wherein the opaque resin coating layer is composed of a white pigment and an electron beam curable resin, and is a layer cured by electron beam irradiation.
JP5570089A 1989-03-07 1989-03-07 Photographic support Pending JPH02234153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5570089A JPH02234153A (en) 1989-03-07 1989-03-07 Photographic support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5570089A JPH02234153A (en) 1989-03-07 1989-03-07 Photographic support

Publications (1)

Publication Number Publication Date
JPH02234153A true JPH02234153A (en) 1990-09-17

Family

ID=13006172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5570089A Pending JPH02234153A (en) 1989-03-07 1989-03-07 Photographic support

Country Status (1)

Country Link
JP (1) JPH02234153A (en)

Similar Documents

Publication Publication Date Title
JPS59124336A (en) Water resistant photographic paper carrier and making thereof
JPH04320257A (en) Support for photographic paper
JPH02234153A (en) Photographic support
US5374508A (en) Support sheet for photographic printing sheet
JP2680333B2 (en) Photographic support and method for producing the same
US4579815A (en) Process for producing photographic supports by electron beam exposure
JP3291798B2 (en) Photographic paper support
EP0661590B1 (en) Support sheet for photographic printing sheet
US5470652A (en) Support sheet for photographic printing paper and process for producing the sheet
JP2749088B2 (en) Method for producing a support for photographic printing paper
JP2737565B2 (en) Method for producing a support for photographic printing paper
JP3041679B2 (en) Method for producing electron beam cured resin coated sheet
JPS60126649A (en) Photographic printing paper base
JPH01257844A (en) Photographic support and its manufacturing method
JPH0980690A (en) Support for photographic paper
JP2593167B2 (en) Method for producing a support for photographic printing paper
JPH0247A (en) Supporting body for photographic printing paper
JPH02161426A (en) Water-resistant photographic paper support and manufacturing method thereof
JPH02223484A (en) Image receiving paper for thermal transfer and its manufacturing method
JP2638310B2 (en) Photographic paper support
JPH09152679A (en) Photographic paper support
JPH01219739A (en) Photographic base and its production
JPH03111843A (en) Support for photographic paper
JPH08240881A (en) Support for photographic paper
JPH095931A (en) Support for photographic paper