[go: up one dir, main page]

JPH02217395A - Massive body of crystalline silicone nitride - Google Patents

Massive body of crystalline silicone nitride

Info

Publication number
JPH02217395A
JPH02217395A JP24887089A JP24887089A JPH02217395A JP H02217395 A JPH02217395 A JP H02217395A JP 24887089 A JP24887089 A JP 24887089A JP 24887089 A JP24887089 A JP 24887089A JP H02217395 A JPH02217395 A JP H02217395A
Authority
JP
Japan
Prior art keywords
massive body
beta
crystal
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24887089A
Other languages
Japanese (ja)
Other versions
JPH0357075B2 (en
Inventor
Toshio Hirai
平井 敏雄
Shinsuke Hayashi
林 真輔
Akira Okubo
昭 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP55121690A external-priority patent/JPS5747706A/en
Application filed by Individual filed Critical Individual
Priority to JP24887089A priority Critical patent/JPH02217395A/en
Publication of JPH02217395A publication Critical patent/JPH02217395A/en
Publication of JPH0357075B2 publication Critical patent/JPH0357075B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a massive body mainly comprising beta-crystal, containing columnar TiN and orienting beta-crystal by directly generating massive body in making Ti-containing Si3N4 by chemical vapor phase deposition method. CONSTITUTION:The subject crystalline Si3N4 massive body is composed of >=50 wt.% beta-type crystal and contains columnarly separated TiN along c-axis direction of beta-type crystal and preferentially oriented (00l) plane in beta-crystal. Although hardness of said massive body is different with temperature at production, the massive body is able to be sufficiently used as cutting tool. Besides, as said massive body has high electric conductivity and small temperature coefficient of electric conductivity, application as electric material utilizing said properties is expected. Said massive body is obtained, for instance, NH3 gas is blown through inner tube 8 of combined tube 4 and mixed gas of SiCl4 and TiCl4 is blown through outer tube 9 onto a substrate heated at 1400 deg.C with respectively fixed conditions and deposited.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、化学気相析出法により生成される結晶質窒化
珪素塊状体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a crystalline silicon nitride mass produced by chemical vapor deposition.

(従来の技術及び発明が解決しようとする課題)従来化
学気相析出法によって窒化珪素を製造する方法が知られ
ている。その際前記方法において使用される原料ガスと
してケイ素を含有し、かつ気相析出するケイ素沈積源ガ
ス、例えば、5iC14゜SiH,、SiBr4. S
iF、などと、窒素を含有し、かつ気相析出する窒素沈
積源ガス、例えば、N11s、Ntllnなどとが使用
されており、上記2種類のガスを減圧下で、かつ高温度
で反応させると窒化珪素が析出し、その際例えば炭素板
が存在するとその上に窒化珪素が板状に沈積して非晶質
あるいは結晶質からなる窒化珪素塊状体を得ることがで
きることが知られている。
(Prior Art and Problems to be Solved by the Invention) Conventionally, a method of manufacturing silicon nitride using a chemical vapor deposition method is known. In this case, the raw material gas used in the above method is a silicon deposition source gas containing silicon and depositing in a vapor phase, such as 5iC14°SiH, SiBr4. S
iF, etc., and nitrogen deposition source gases that contain nitrogen and precipitate in the gas phase, such as N11s and Ntlln, are used. When the two types of gases are reacted under reduced pressure and at high temperature, It is known that when silicon nitride is precipitated, for example, if a carbon plate is present, silicon nitride is deposited in the form of a plate on top of the carbon plate to obtain an amorphous or crystalline silicon nitride block.

なお、窒化珪素塊状体のほかに、析出条件を変えること
により、非晶質窒化珪素粉末体を生成させることができ
ることも知られている。
It is also known that in addition to silicon nitride lumps, amorphous silicon nitride powder can be produced by changing the precipitation conditions.

ところで、Tiを含む窒化珪素については、米国特許第
4.145.224号公報により化学気相析出法を用い
て粉末体が得られることが開示されている。
By the way, regarding silicon nitride containing Ti, US Pat. No. 4,145,224 discloses that a powder body can be obtained using a chemical vapor deposition method.

すなわち同公報によれば、1100〜1350°Cの反
応領域にStCEl rtc E 41 N113を導
入することによりTiNを含んだ非晶質窒化珪素粉末体
が得られ、TiNを含まない非晶質窒化珪素粉末体の結
晶化には1500〜1600″Cの熱処理温度が必要で
あるのに対し、TiNを含む非晶質窒化珪素粉末体は1
400°Cとより低い温度で、N2中、2時間の熱処理
により60重量%が結晶化し、この結晶は97重量%の
α型窒化珪素と31i量%のβ型窒化珪素から成る。な
お、Tiの含有量は1.5〜5重量%が好ましいが、0
.01重量%のTiの含有でも1400″Cで非晶質窒
化珪素が結晶化されることが記載されている。
That is, according to the same publication, by introducing StCEl rtc E 41 N113 into a reaction region of 1100 to 1350°C, an amorphous silicon nitride powder containing TiN can be obtained, and an amorphous silicon nitride powder containing no TiN can be obtained. Crystallization of powder requires a heat treatment temperature of 1500 to 1600"C, whereas amorphous silicon nitride powder containing TiN requires a heat treatment temperature of 1500 to 1600"C.
At a lower temperature of 400° C. in N2 for 2 hours, 60% by weight crystallizes, consisting of 97% by weight of α-type silicon nitride and 31% by weight of β-type silicon nitride. Note that the Ti content is preferably 1.5 to 5% by weight, but 0.
.. It is described that amorphous silicon nitride is crystallized at 1400''C even when Ti is contained in an amount of 0.1% by weight.

さらに前記米国特許公報によれば、析出生成されるTi
を含む窒化珪素は粉末体であり、これを塊状体とするた
めには前記粉末状析出生成物を成形して焼結する必要が
あると記載されている。
Furthermore, according to the above-mentioned US patent publication, Ti is precipitated and generated.
It is described that silicon nitride containing .

本発明は、従来知られていない少なくとも50重量%の
β型結晶からなり、その結晶のC軸方向に沿って柱状に
析出したTiNを含み、かつ前記β型結晶の(00ff
i)面が結晶配向してなる結晶質窒化珪素塊状体を提供
することを目的とするものである。
The present invention consists of at least 50% by weight of β-type crystals, which have not been known in the past, and includes TiN precipitated in a columnar manner along the C-axis direction of the crystals, and the β-type crystals (00ff
i) It is an object of the present invention to provide a crystalline silicon nitride block whose planes are crystal oriented.

(課題を解決するための手段) 次に、本発明の詳細な説明する。(Means for solving problems) Next, the present invention will be explained in detail.

本発明は、少なくとも50重量%のβ型結晶からなり、
その結晶のC軸方向に沿って柱状に析出したTiNを含
み、かつ前記β型の(002>面が結晶配向してなる結
晶質窒化珪素塊状体に関するものである。
The present invention consists of at least 50% by weight of β-type crystals,
The present invention relates to a crystalline silicon nitride block containing TiN precipitated in a columnar manner along the C-axis direction of the crystal, and in which the β-type (002> plane is crystal oriented).

前述の如く、主として非晶質からなるTiを含む窒化珪
素粉末体は知られており、また結晶質からなりTiを含
む窒化珪素焼結成形体も知られているが、本発明のよう
に、少なくとも50重量%のβ型結晶からなり、Tiを
含む結晶質窒化珪素塊状体は従来全く知られていない、
米国特許第4.145,224号公報によれば、非晶質
のTiを含む窒化珪素粉末体が得られ、一方この粉末体
を成形し、焼成するとTiを含む結晶質の窒化珪素焼結
成形体が得られることが開示されている。しかし、前記
米国特許公報によっても判る如く、これは粉末体を成形
、焼成して得たものであってもともと塊状体ではなく、
しかもその成形体中に含まれる結晶質5iCffi4の
大部分、すなわち97重量%はα型結晶であり、β型結
晶はわずかな量すなわち3重量%である。
As mentioned above, silicon nitride powder bodies containing Ti that are mainly amorphous are known, and silicon nitride sintered bodies that are crystalline and contain Ti are also known, but as in the present invention, at least A crystalline silicon nitride block consisting of 50% by weight β-type crystals and containing Ti has been completely unknown.
According to U.S. Pat. No. 4,145,224, a silicon nitride powder containing amorphous Ti is obtained, and when this powder is molded and fired, a crystalline silicon nitride sintered body containing Ti is obtained. It is disclosed that this can be obtained. However, as can be seen from the above-mentioned US patent publication, this was obtained by molding and firing a powder, and was not originally a lump.
Moreover, most of the crystalline 5iCffi4 contained in the molded body, ie, 97% by weight, is α-type crystal, and the β-type crystal is in a small amount, ie, 3% by weight.

本発明は少なくとも50重量%のβ型結晶からなり、そ
の結晶のC軸方向に沿って柱状に析出したTiNを含み
、かつ前記β型結晶の(001)面が結晶配向してなる
Tiを含むSi3N4塊状体であって、かかる塊状体は
全く新規なものである。
The present invention comprises at least 50% by weight of β-type crystals, includes TiN precipitated in columnar shapes along the C-axis direction of the crystals, and includes Ti in which the (001) plane of the β-type crystals is oriented. Si3N4 agglomerates, such agglomerates are completely new.

次に本発明のTiを含む5iJn塊状体の組織、性状な
らびに性質について説明する。
Next, the structure, properties, and properties of the Ti-containing 5iJn aggregate of the present invention will be explained.

本発明の塊状体は少なくとも50重量%のβ型結晶から
なり、その結晶のC軸方向に沿って柱状に析出したTi
Nを含み、第1図のX線回折図に示すように前記β型結
晶の(002)面が極めて良く結晶配向しており、この
結晶配向は第2図の表面走査型電子顕微鏡写真において
β型Si3N、の板状の0面が積み重なった組織と極め
て良く一敗している。
The agglomerate of the present invention is composed of at least 50% by weight of β-type crystals, and Ti is precipitated in columnar shapes along the C-axis direction of the crystals.
As shown in the X-ray diffraction diagram of FIG. 1, the (002) plane of the β-type crystal is extremely well oriented, and this crystal orientation is shown in the surface scanning electron micrograph of FIG. The plate-like zero surface of type Si3N is very well matched with the stacked structure.

本発明の塊状体中のTiはTiNとして存在するが、第
3図(^)のβ型5iJaの0面の高分解能電子顕微鏡
写真と第3図(B)のβ型Si3N、のC軸を含む面の
高分解能電子顕微鏡写真に示すように、TiNが数十大
径でβ型Si3N、のC軸方向に伸びた柱状介在物とし
て析出している。TiNの塊状体中の含有量は後述する
如くこの塊状体が製造される条件、なかでも製造温度に
よって異なり、4〜5重量%の範囲内である。
Ti in the agglomerates of the present invention exists as TiN. As shown in the high-resolution electron micrograph of the containing surface, TiN is precipitated as columnar inclusions of several tens of diameters and extending in the C-axis direction of β-type Si3N. The content of TiN in the agglomerate varies depending on the conditions under which the agglomerate is produced, especially the production temperature, as will be described later, and is within the range of 4 to 5% by weight.

本発明の塊状体の密度は製造条件によって異なるが、3
.24〜3.35g/cm”の範囲内である。ところで
α型Si3N、の理論密度は3.18g/cm3、β型
5iJ4のそれは3.19g/cm’ 、TiNのそれ
は5.43g/cm’であるのでTiNの含有量の上昇
と共に密度は上昇する0本発明の塊状体の室温における
硬度(荷重10h)は1900〜2900kg/aua
tの範囲内にあり、後述する如く、この硬度は塊状体が
製造されるときの温度によってことなる。前記硬度を有
する本発明の塊状体は切削工具として充分使用すること
ができる。
The density of the agglomerates of the present invention varies depending on manufacturing conditions, but
.. The theoretical density of α-type Si3N is 3.18 g/cm3, that of β-type 5iJ4 is 3.19 g/cm', and that of TiN is 5.43 g/cm'. Therefore, the density increases as the TiN content increases. The hardness at room temperature (load 10 hours) of the lump of the present invention is 1900 to 2900 kg/aua.
The hardness is within the range of t, and as will be described later, this hardness varies depending on the temperature at which the lump is produced. The block of the present invention having the above-mentioned hardness can be satisfactorily used as a cutting tool.

本発明のTiを含むSiJ、塊状体は、純粋の5iJn
塊状体より電気伝導度が高い0例えば第4図に示すよう
に、Tiを含む非晶質5izN4■の300°Cにおけ
る電気伝導度は、同温度のTiを含まないα型Si3N
、■のそれぞれ7桁も高く、しかもその電気伝導度の温
度係数が小さいという特徴を有する。
The Ti-containing SiJ lump of the present invention is pure 5iJn
For example, as shown in Figure 4, the electrical conductivity of amorphous 5izN4 containing Ti at 300°C is higher than that of α-type Si3N not containing Ti at the same temperature.
, (2) are each seven orders of magnitude higher, and the temperature coefficient of electrical conductivity is small.

上記電気伝導度ならびに特異な電気伝導度の温度係数を
有することから、これらの性質を利用する電気材料とし
ての応用が予測される。
Since it has the above-mentioned electrical conductivity and a unique temperature coefficient of electrical conductivity, it is expected that it will be applied as an electrical material utilizing these properties.

次に本発明の製造方法を第5図について説明する。Next, the manufacturing method of the present invention will be explained with reference to FIG.

本発明によれば500〜1900’Cの温度範囲内に加
熱した基体2上に窒素沈積源ガス、珪素沈積源ガスおよ
びチタン沈積源ガスとを組合せ管4を用いてそれぞれ吹
付け、その際前記基体2上に吹付けられる窒素沈積ガス
流束の周囲を珪素沈積源ガスとチタン沈積源ガスの混合
ガスにより包囲し、前記両ガスの気相分解反応を基体2
上あるいは基体2付近で生起させてTiを含むSi3N
、を生成させ、かつ前記生成Tiを含むSi3N、塊状
体として基体上に沈積させることができる。
According to the present invention, a nitrogen deposition source gas, a silicon deposition source gas and a titanium deposition source gas are each sprayed onto a substrate 2 heated within a temperature range of 500 to 1900'C using a combination tube 4, at which time the The periphery of the nitrogen deposition gas flux blown onto the substrate 2 is surrounded by a mixed gas of the silicon deposition source gas and the titanium deposition source gas, and the gas phase decomposition reaction of both gases is caused to occur on the substrate 2.
Si3N containing Ti generated on or near the substrate 2
, and the Si3N containing the formed Ti can be deposited as a lump on a substrate.

なお、前記組合せ管の少なくとも先端部ならびに基体は
共に雰囲気ならびに圧力を調整することのできる密閉容
器内に設置することは有利である。
Note that it is advantageous that at least the tip end and the base of the combination tube are both placed in a closed container where the atmosphere and pressure can be adjusted.

本発明のTiを含むSi3N、製造用出発原料のlツで
ある珪素沈積源化合物としては、珪素のハロゲン化物(
StCln、 5tp4. SiBr、、 51141
 S+2Cf6゜5izBrh、 5izla+ 5i
BrC1,3,5iFlr3C1、5iBr2Cl 。
As a silicon deposition source compound which is one of the starting materials for producing Si3N containing Ti in the present invention, silicon halides (
StCln, 5tp4. SiBr, 51141
S+2Cf6゜5izBrh, 5izla+ 5i
BrC1,3,5iFlr3C1, 5iBr2Cl.

5ilCf3)、水素化物(SiHn、 SiJ+ 0
.5ii)Is、 5izll、)、水素ハロゲン化物
(SiHCl 3.5iHBr3. SiHF3.5i
HI 2)のうちから選ばれる何れか1種または2種以
上を用いることができ、好適には室温でガス状であるS
iH,、あるいは室温における蒸気圧が高い5iHCf
、。
5ilCf3), hydrides (SiHn, SiJ+ 0
.. 5ii) Is, 5izll, ), hydrogen halide (SiHCl 3.5iHBr3. SiHF3.5i
Any one or two or more selected from HI2) can be used, preferably S which is gaseous at room temperature.
iH, or 5iHCf with high vapor pressure at room temperature
,.

5iCffi、を有利に使用することができる。また窒
素沈積源化合物としては窒素の水素化合物(HN3゜N
II+、NJn)、アンモニウムハロゲン化物(Nl(
4(l。
5iCffi, can be used advantageously. Also, as a nitrogen deposition source compound, a hydrogen compound of nitrogen (HN3゜N
II+, NJn), ammonium halide (Nl(
4 (l.

NH4F、 NH4HF!、 N1141)のうちから
選ばれる何れか1種または2種以上を用いることができ
、NH3゜NlH4は比較的安価でありまた入手が容易
である為に好適に使用することができる。また、チタン
沈積源化合物としてはチタンのハロゲン化物(TiCr
4゜TiBr4. TiF4. Ti1a)のうちから
選ばれる何れか1種または2種以上を用いることができ
、TiCr2.は比較的安価でありまた入手が容易であ
る為に好適に使用することができる。
NH4F, NH4HF! , N1141) can be used, and NH3°NlH4 can be preferably used because it is relatively inexpensive and easily available. In addition, titanium halides (TiCr) are used as titanium deposition source compounds.
4°TiBr4. TiF4. Any one or two or more selected from Ti1a) can be used; TiCr2. Since it is relatively inexpensive and easily available, it can be suitably used.

珪素沈積源化合物、チタン沈積源化合物、窒素沈積源化
合物からTiを含むSi、N、を得る基体の温度は50
0〜1900°Cの範囲内にあるが、1000〜160
0°Cの温度範囲を用いることが好適である。
The temperature of the substrate from which Si and N containing Ti are obtained from the silicon deposition source compound, titanium deposition source compound, and nitrogen deposition source compound is 50
Within the range of 0 to 1900°C, but 1000 to 160
It is preferred to use a temperature range of 0°C.

なお前記窒素沈積源化合物、珪素沈積源化合物およびチ
タン沈積源化合物の1種または2種を搬送するためN2
.^r、 He、 It□の何れか1種または2種以上
をキャリアーガスとして必要により使用することができ
る。このうちN2は窒素の沈積源原料にもなり得るし、
N2は珪素およびチタン沈積源化合物の気相分解の際反
応に関与することがある。
Note that N2 is used to transport one or both of the nitrogen deposition source compound, silicon deposition source compound, and titanium deposition source compound.
.. One or more of ^r, He, and It□ can be used as a carrier gas, if necessary. Of these, N2 can also be a source material for nitrogen deposition,
N2 may participate in reactions during gas phase decomposition of silicon and titanium source compounds.

キャリアーガスは基体を収容する容器内の全ガス圧力の
調節、珪素、チタンおよび窒素沈積源原料の蒸気の混合
比の調節、容器内におけるガスの流束形状の調節、およ
びまたはN2+ N2のように一部反応に関与させるた
めに用いることができ、またキャリアーガスを使用しな
くともTiを含むSi3N4を生成させることができる
The carrier gas is used to control the total gas pressure in the vessel containing the substrate, to control the mixing ratio of the vapors of the silicon, titanium, and nitrogen deposition source materials, to control the gas flux shape in the vessel, and or as N2+N2. It can be used to partially participate in the reaction, and Si3N4 containing Ti can be generated without using a carrier gas.

次に5t(J 141 TiCl 4 とNH,を原料
とし、かつキャリアーガスとしてN2を用いる場合につ
いて、Tiを含む5iJ4の製造方法を説明する。
Next, a method for producing 5iJ4 containing Ti will be described in the case where 5t (J 141 TiCl 4 and NH) are used as raw materials and N2 is used as a carrier gas.

前記5iCj! 4+ ’ricp 4 とN)1.を
、例えば第5図に示す如き組合せ管4を用いてそれぞれ
容器内に導入するがNI+3は前記組合せ管4の内管8
を経て、5iCffi4とTiC1,の混合ガスは外管
9を経て導入し、NH3の流束の周囲を5iC14の混
合ガスで包囲しつつ容器内基体2上に前記両ガスを吹付
ける。
Said 5iCj! 4+ 'ricp 4 and N)1. are respectively introduced into the containers using, for example, a combination tube 4 as shown in FIG.
After that, the mixed gas of 5iCffi4 and TiC1 is introduced through the outer tube 9, and while surrounding the NH3 flux with the mixed gas of 5iC14, both gases are sprayed onto the substrate 2 in the container.

この際キャリアーガスであるH!は外管9を経て吹付け
られ5iCjl!4およびTiCJl!aと予め混合さ
せておくことは有利である。
At this time, the carrier gas H! is sprayed through the outer tube 9 and 5iCjl! 4 and TiCJl! It is advantageous to premix with a.

N2の流量は100〜7000cc/ Minの範囲内
が良く、1000〜4000cc/ winが最も適当
である。5sCI!aの流量(蒸気状態)は20〜10
00cc/minの範囲内が良<、50〜500c/w
inの範囲内が最も適当である。
The flow rate of N2 is preferably within the range of 100 to 7000 cc/min, and most suitably 1000 to 4000 cc/win. 5sCI! The flow rate (vapor state) of a is 20 to 10
Good within the range of 00cc/min, 50 to 500c/w
A range of in is most appropriate.

TiC1aの流量(蒸気状jlJt)は0.1〜100
 cc/sinの範囲内が良く、1〜50cc/sin
の範囲内が最も適当である。 NH3の流量は50〜5
000c/n1inの範囲内が良<、80〜400 c
c/II+inの範囲内が最も適当である。
The flow rate of TiC1a (vapor state jlJt) is 0.1 to 100
Good within the range of cc/sin, 1 to 50 cc/sin
The most appropriate range is . The flow rate of NH3 is 50-5
Good within the range of 000c/n1in<, 80~400c
The most suitable range is c/II+in.

基体2を収容する容器内の全ガス圧力は1〜760mm
Hgの範囲内が良く、5〜1100IIIIiHが最適
である。
The total gas pressure in the container housing the substrate 2 is 1 to 760 mm
Hg is preferably within the range, and 5 to 1100IIIiH is optimal.

なお1気圧以上のガス圧力でも本発明のTiを含むSi
3N4は製造することができる。
Note that even if the gas pressure is 1 atm or more, the Ti-containing Si of the present invention
3N4 can be manufactured.

(実施例) 次に製造条件と製造される塊状体との関係について説明
する。
(Example) Next, the relationship between the manufacturing conditions and the manufactured lumps will be explained.

第1表はTiを含む本発明のSi3N4塊状体とTiを
含まないSi3N4塊状体を製造するときの製造温度が
Si3N4の結晶状態に及ぼす影響の1例を示す表であ
る。ここで製造温度以外の製造条件として、Tiを含む
場合には容器内のガス圧力を39++nHg、Si(/
! 4流量を136 cc/a+tn  (蒸気状B)
 、TiCff1.流量を18cc/sin (蒸気状
態) 、NH,流量を120cc/+in、11、流量
を2720cc/ sinとし、Tiを含まない場合に
は容器内のガス圧力を30+maHg、 5i(I2.
流量を136cc/5hin  (蒸気状態) 、NH
I流量を120 cc/akin 。
Table 1 is a table showing an example of the influence of the manufacturing temperature on the crystal state of Si3N4 when producing the Si3N4 lumps of the present invention containing Ti and the Si3N4 lumps not containing Ti. Here, as manufacturing conditions other than the manufacturing temperature, if Ti is included, the gas pressure in the container is 39++nHg, Si (/
! 4 flow rate to 136 cc/a+tn (vapor B)
, TiCff1. The flow rate is 18 cc/sin (vapor state), NH, the flow rate is 120 cc/+in, 11, the flow rate is 2720 cc/sin, and when Ti is not included, the gas pressure in the container is 30+maHg, 5i (I2.
Flow rate: 136cc/5hin (steam state), NH
I flow rate is 120 cc/akin.

H8流量を2720cc/ 5hinとした。The H8 flow rate was set to 2720 cc/5 h.

第1表 製造温度と5iJnの結晶状態の関係を示す1例第1表
から明らかなように、Tiを含む場合はTiを含まない
場合と比較してα型結晶の生成する温度が300°C低
くなり、かつ従来から化学気相析出法によっては製造が
困難とされたβ型結晶が容易に生成することが判る。
Table 1 An example showing the relationship between manufacturing temperature and crystalline state of 5iJn As is clear from Table 1, when Ti is included, the temperature at which α-type crystals are formed is 300°C compared to when Ti is not included. It can be seen that β-type crystals, which have traditionally been difficult to produce by chemical vapor deposition, can be easily produced.

本発明において、塊状体中のTiN含有量は第6図にそ
の1例を示すように製造温度が1100″Cのときは2
8重量%であるが、温度がさらに上がり1500℃にな
ると4.2重量%へ減少する。
In the present invention, the TiN content in the agglomerates is 2 when the manufacturing temperature is 1100"C, as shown in FIG.
It is 8% by weight, but decreases to 4.2% by weight as the temperature rises further to 1500°C.

本発明のTiを含むSi3N、の密度は、第7図にその
1例を示すように、製造温度1100″Cにおける3、
33 g/cs3から製造温度1500’Cにおける3
、24g / cva ’へと製造温度の上昇とともに
減少するが、これらの密度値は、TiN (理論密度:
 5.43g/ cm3)を含むためにα型533N、
の論理密度3.18g/cm3、β型5i3Nnの論理
密度3.19 g/cm3よりも高い。
The density of Si3N containing Ti according to the present invention is 3 at a manufacturing temperature of 1100''C, as shown in FIG.
3 at a manufacturing temperature of 1500'C from 33 g/cs3
, to 24 g/cva', which decreases with increasing manufacturing temperature, but these density values are similar to those of TiN (theoretical density:
α-type 533N to contain 5.43 g/cm3);
The logical density of 3.18 g/cm3 is higher than that of β-type 5i3Nn, which is 3.19 g/cm3.

次に、本発明の塊状体を製造する際の製造温度とマイク
ロビッカース硬度の関係を第8図について説明する。製
造温度が1300°Cまでは、温度が高いほど前記硬度
は大であるが、1300’Cを超えると硬度は減少する
Next, the relationship between the manufacturing temperature and the micro-Vickers hardness when manufacturing the lump of the present invention will be explained with reference to FIG. When the manufacturing temperature is up to 1300°C, the higher the temperature, the higher the hardness, but when it exceeds 1300'C, the hardness decreases.

次に、本発明のTiを含むSi 、N、塊状体ならびに
Tiを含まない5iJ4塊状体の製造温度と容器内ガス
圧力が塊状体の結晶状態に及ぼす影響を第9図に比較し
て示す。同図により、本発明のTiを含むSiJ、塊状
体では、非晶質からなるものA、主として非晶質と小量
のα型結晶からなるものB、主としてα型結晶からなる
ものとD、主としてβ型結晶からなるものEの何れも、
Tiを含まないSi、N。
Next, FIG. 9 shows a comparison of the influence of the production temperature and gas pressure in the container on the crystalline state of the Ti-containing Si, N, agglomerates and the Ti-free 5iJ4 agglomerates of the present invention. According to the same figure, in the SiJ containing Ti of the present invention, in the lumps, A is made of amorphous, B is mainly made of amorphous and a small amount of α-type crystals, and D is mainly made of α-type crystals. Any of those E mainly consisting of β-type crystals,
Si, N which does not contain Ti.

塊状体に比し、より低い温度で製造することができるこ
とが判る。
It can be seen that it can be produced at a lower temperature compared to lumps.

次に、本発明を更に具体的な実施例によって説明する。Next, the present invention will be explained using more specific examples.

夫施貫 第10図に示す装置を用いて銅製電極3の間に人造黒鉛
から成る板状基体2をはさみ、炉内を予め10−3mm
Hgニ減圧し、基体に通電、基体を500°C以上に加
熱し、基体の脱ガスを行なった。次いで基体温度を14
00°Cに保っておき、これにアンモニアガスを内管よ
り120 cc/ minで流出させ、同時に0°Cの
四塩化珪素(蒸気圧76 mm Hg )中を通過させ
た水素ガス(流量1360cc/win)と、20°C
の四塩化チタン(蒸気圧10 txa Hg )中を通
過させた水素ガス(流量1360cc/5in)の混合
ガスを外管より流出させた。この条件における四塩化珪
素ガスの流量は136cc/min 、四塩化チタンガ
スの流量は18cc/+ninであった。また、その時
の容器内の圧力を30mmHgとした。4時間ガスを流
した後、電流を切り、冷却し、中の基体2を取り出した
ところ、基体2の表面上に1.6m厚さのTiを含む黒
色5iJ4を得た。
Using the apparatus shown in Fig. 10, a plate-shaped substrate 2 made of artificial graphite was sandwiched between copper electrodes 3, and the inside of the furnace was preliminarily 10-3 mm deep.
The Hg pressure was reduced, electricity was applied to the substrate, the substrate was heated to 500° C. or higher, and the substrate was degassed. Then the substrate temperature was increased to 14
Ammonia gas was flowed out from the inner tube at 120 cc/min, and at the same time hydrogen gas (flow rate 1360 cc/min) was passed through silicon tetrachloride (vapor pressure 76 mm Hg) at 0°C. win) and 20°C
A mixed gas of hydrogen gas (flow rate 1360 cc/5 in) passed through titanium tetrachloride (vapor pressure 10 txa Hg) was flowed out from the outer tube. Under these conditions, the flow rate of silicon tetrachloride gas was 136 cc/min, and the flow rate of titanium tetrachloride gas was 18 cc/+nin. Moreover, the pressure inside the container at that time was 30 mmHg. After flowing gas for 4 hours, the electric current was turned off, the mixture was cooled, and the substrate 2 inside was taken out, and a black 5iJ4 containing Ti with a thickness of 1.6 m was obtained on the surface of the substrate 2.

このTiを含むSi3N、の特性は次のようであった。The characteristics of this Ti-containing Si3N were as follows.

結晶構造=X線回折によって測定したところ91重量%
のβ型と9重量%のα型の混在物であった。
Crystal structure = 91% by weight as determined by X-ray diffraction
It was a mixture of β type and α type at 9% by weight.

結晶配向:β型の(002)面が基体と平行に配向して
いた。TiNの含有量は4.3重量%であり、TiNは
β型Si3N4のC軸方向に沿って柱状に析出している
ことが高分解能電子顕微鏡により確認された。このTi
を含む5iJaの他の特性を測定した結果は次のようで
あった。密度3.24 g/cm3、室温硬度: 20
00  kg / m in (荷fE100g)、直
流電気伝度二 8 ×10−雫Ω−’c+s−’(70
0’C)  eなお本発明のTiを含むSi3N4塊状
体を製造するための各種要因とその範囲の大要を挙げる
と第2表のようである。
Crystal orientation: The (002) plane of the β type was oriented parallel to the substrate. The content of TiN was 4.3% by weight, and it was confirmed by a high-resolution electron microscope that TiN was precipitated in a columnar manner along the C-axis direction of β-type Si3N4. This Ti
The results of measuring other properties of 5iJa including 5iJa were as follows. Density 3.24 g/cm3, room temperature hardness: 20
00 kg/min (load fE100g), DC electrical conductivity 2 8 × 10-drop Ω-'c+s-' (70
0'C) eTable 2 provides a summary of various factors and their ranges for producing the Ti-containing Si3N4 agglomerates of the present invention.

第2表 以上のような優れた特性を利用して、本発明のTiを含
む5iaNaは下記の方面に利用できる。
Utilizing the excellent properties shown in Table 2 and above, the Ti-containing 5iaNa of the present invention can be used in the following fields.

1、 被覆材として (イ) バイト、ダイス、ドリル、カッター等の工具材
の表面に被覆することによって工具の寿命を延ばし、自
動加ニジステムの管理(ロ) ベアリング、歯車、回転
軸等の耐摩耗性を要する機械部品の表面に被覆すること
によって摩耗及び高温焼付を防止する。
1. As a coating material (a) By coating the surface of tool materials such as bits, dies, drills, cutters, etc., it extends the tool life and manages automatic machining systems (b) Wear resistance of bearings, gears, rotating shafts, etc. By coating the surfaces of mechanical parts that require high performance, it prevents wear and high-temperature seizure.

(ハ) 金属、化合物、セラミックス、黒鉛等の諸材料
の表面に被覆することによって、高硬度の表面をもたせ
、さらに高温における機械的性質を向上させる(エンジ
ン部品、タービン部品等)。
(c) By coating the surfaces of various materials such as metals, compounds, ceramics, graphite, etc., they are provided with highly hard surfaces and further improve mechanical properties at high temperatures (engine parts, turbine parts, etc.).

(ニ) 任意材料の基体の表面に被覆することにより、
絶縁性物質からなる基体にも導電性を附与する。
(d) By coating the surface of a substrate made of arbitrary material,
Conductivity is also imparted to a base made of an insulating material.

(ホ) 絶縁体の表面に被覆することにより、静電気の
発生を防止する。
(e) Prevent the generation of static electricity by coating the surface of the insulator.

2、 ブロック材として (へ) 超硬バイト、超硬ダイス等の工具材として有用
である。
2. As a block material (f) It is useful as a tool material for carbide bits, carbide dies, etc.

(ト)  高い硬度が要求される硬質理化学器具に用い
られる。
(g) Used for hard physical and chemical instruments that require high hardness.

(チ) 高い硬度が要求され、しかも高温度でその硬度
を保持する必要のあるベアリング、回転軸、軸受、シー
ル材に有用である。
(H) It is useful for bearings, rotating shafts, bearings, and sealing materials that require high hardness and need to maintain that hardness at high temperatures.

(す) 高温で用いられる構造材として、エンジン部品
、タービン部品として利用できる。
(S) Can be used as a structural material used at high temperatures, such as engine parts and turbine parts.

(ヌ) 軽量で高い温度が要求される発熱体、例えば記
録用熱ペンに利用できる。
(n) It can be used in heating elements that are lightweight and require high temperatures, such as thermal recording pens.

(ル) 静電印刷装置の記録計に利用できる。(Le) Can be used as a recorder for electrostatic printing equipment.

(ヲ) 高温用フィラメントとして用いられる。(wo) Used as a high-temperature filament.

(ワ) 高温用発熱体として用いられる。(W) Used as a heating element for high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のT1を含むSi3N4の沈積面のX線
回折図形であり、(00f )面が基体と平行に配向し
た主にβ型からなるsi、N4に関する図、第2図は本
発明のTiを含む5iJ4の表面走査型電子顕微鏡写真
であり、(001)面が基体と平行に配向した主にβ型
から成る5isNaに関する図、第3図は本発明のTi
を含むβ型Si3N、の高分解能電子顕微鏡写真であり
、(A)はβ型Si3N、の0面、(B)はC軸を含む
面をそれぞれ観察した写真、第4図は本発明のTiを含
む5isNaとTiを含まない51g4の直流電気伝導
度と温度との関係を比較した図、 第5図は本発明の吹付は管の斜視図、 第6図は本発明のTiを含む5iJn中のTiN含有量
と製造温度との関係を示す図、 第7図は本発明のTiを含むSi、N、の密度と製造温
度の関係を示す図、 第8図は本発明のTiを含む5iJn沈積面の室温にお
ける硬度と製造温度の関係を示す図、第9図は製造温度
と容器内ガス圧力がSi3N4の結晶状態に及ぼす影響
を示す図、 第1O図は本発明によるTiを含むSi3N4の製造装
置の1例を示す破砕断面図である。 1・・・容器       2・・・基体3・・・把持
棒      4・・・吹付は管5・・・真空計配置口
   6・・・扉7・・・排出口      8・・・
内管9・・・外管 図面の浄書 第4図 り度(6C) IO:/Trgカ マイ70どツh−ズJ更度 (K藝ゎリ 一54?− 第6図 ν1ぷ戻 (C) 寓1(涜−) 第9図
Figure 1 is an X-ray diffraction pattern of the deposited surface of Si3N4 containing T1 of the present invention, and Figure 2 is a diagram related to Si and N4, which are mainly composed of β type with the (00f) plane oriented parallel to the substrate. FIG. 3 is a surface scanning electron micrograph of 5iJ4 containing Ti of the invention, and is a view related to 5isNa mainly composed of β type with the (001) plane oriented parallel to the substrate.
4 is a high-resolution electron micrograph of β-type Si3N containing β-type Si3N, (A) is a photograph of the 0-plane of β-type Si3N, (B) is a photograph of the plane containing the C-axis, and FIG. 4 is a photograph of the Ti of the present invention. Figure 5 is a perspective view of the spray pipe of the present invention, and Figure 6 is the 5iJn medium containing Ti of the present invention. FIG. 7 is a diagram showing the relationship between the density of Si and N containing Ti of the present invention and manufacturing temperature. FIG. 8 is a diagram showing the relationship between the density of Si and N containing Ti of the present invention and manufacturing temperature. A diagram showing the relationship between the hardness of the deposited surface at room temperature and the manufacturing temperature, FIG. 9 is a diagram showing the influence of the manufacturing temperature and the gas pressure in the container on the crystalline state of Si3N4, and FIG. It is a fragmentary cross-sectional view showing one example of a manufacturing device. 1... Container 2... Base 3... Gripping rod 4... Spraying tube 5... Vacuum gauge placement port 6... Door 7... Discharge port 8...
Inner tube 9... Outer tube drawing 4th degree of engraving (6C) IO: / Trg Kamai 70 Dotsu h-zu J further degree (K arti 154?- Figure 6 ν1 return (C) Fable 1 (Sacrilege) Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも50重量%のβ型結晶からなり、β型結
晶のc軸方向に沿って柱状に析出したTiNを含み、か
つ前記β型結晶の(00l)面が結晶配向してなる結晶
質窒化珪素塊状体。
1. Crystalline nitride consisting of at least 50% by weight of β-type crystals, including TiN precipitated in columnar shapes along the c-axis direction of the β-type crystals, and in which the (00l) plane of the β-type crystals is crystal oriented. Silicon block.
JP24887089A 1980-09-04 1989-09-25 Massive body of crystalline silicone nitride Granted JPH02217395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24887089A JPH02217395A (en) 1980-09-04 1989-09-25 Massive body of crystalline silicone nitride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP55121690A JPS5747706A (en) 1980-09-04 1980-09-04 Lump of silicon nitride containing ti and its manufacture
JP24887089A JPH02217395A (en) 1980-09-04 1989-09-25 Massive body of crystalline silicone nitride

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55121690A Division JPS5747706A (en) 1980-09-04 1980-09-04 Lump of silicon nitride containing ti and its manufacture

Publications (2)

Publication Number Publication Date
JPH02217395A true JPH02217395A (en) 1990-08-30
JPH0357075B2 JPH0357075B2 (en) 1991-08-30

Family

ID=26458984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24887089A Granted JPH02217395A (en) 1980-09-04 1989-09-25 Massive body of crystalline silicone nitride

Country Status (1)

Country Link
JP (1) JPH02217395A (en)

Also Published As

Publication number Publication date
JPH0357075B2 (en) 1991-08-30

Similar Documents

Publication Publication Date Title
US4118539A (en) Super hard-highly pure silicon nitrides having a preferred crystal face orientation
US4469801A (en) Titanium-containing silicon nitride film bodies and a method of producing the same
EP0216932B1 (en) Rhombohedral polycrystalline boron nitride and process for its production
US4585704A (en) Electrically conductive Si3 N4 --C series amorphous material and a method of processing the same
US4594330A (en) Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
Lin et al. The growth characteristics of chemical vapour-deposited β-SiC on a graphite substrate by the SiCl 4/C 3 H 8/H 2 system
JPH02217395A (en) Massive body of crystalline silicone nitride
JPH02217394A (en) Massive body of crystalline silicon nitride
JPH025712B2 (en)
JPH02120213A (en) Silicon nitride block
JPS58199707A (en) Manufacture of crystalline silicon nitride powder
JPS58115011A (en) Amorphous silicone nitride having high hardnes and high purity and its preparation
JPH01252780A (en) Boron nitride coated body and production thereof
JPS5988306A (en) Method and device for producing ultrahard silicon nitride having high purity
JPH03247506A (en) Polycrystal silicon carbide
JPH0310562B2 (en)
Kato Vapour phase synthesis of ultrafine non-oxide powders and their sintering behaviour
JPS63159204A (en) Amorphous spherical composite powder and production thereof
JP2528928B2 (en) Method for producing silicon carbide-silicon nitride composite film
JPH01252520A (en) Fiber consisting of boron, carbon and nitrogen and production thereof
JPH0624877A (en) Method for forming carbonaceous film on carbon substrate
JPS6048447B2 (en) Ultra-hard, high-purity fine-grained polycrystalline silicon nitride
JPS60221311A (en) Amorphous composition
Mi et al. Silicon carbide growth using laser chemical vapor deposition