JPH02120213A - Silicon nitride block - Google Patents
Silicon nitride blockInfo
- Publication number
- JPH02120213A JPH02120213A JP24886889A JP24886889A JPH02120213A JP H02120213 A JPH02120213 A JP H02120213A JP 24886889 A JP24886889 A JP 24886889A JP 24886889 A JP24886889 A JP 24886889A JP H02120213 A JPH02120213 A JP H02120213A
- Authority
- JP
- Japan
- Prior art keywords
- source gas
- silicon nitride
- substrate
- gas
- depositing source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052581 Si3N4 Inorganic materials 0.000 title abstract description 27
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 10
- 238000000151 deposition Methods 0.000 abstract description 28
- 239000000758 substrate Substances 0.000 abstract description 23
- 230000008021 deposition Effects 0.000 abstract description 22
- 239000000463 material Substances 0.000 abstract description 16
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 abstract description 5
- 230000004907 flux Effects 0.000 abstract description 4
- 239000012808 vapor phase Substances 0.000 abstract description 4
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 229910003074 TiCl4 Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 229910003910 SiCl4 Inorganic materials 0.000 abstract 1
- 238000007664 blowing Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 abstract 1
- 239000010936 titanium Substances 0.000 description 56
- 239000007789 gas Substances 0.000 description 30
- 238000004519 manufacturing process Methods 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 229910052710 silicon Inorganic materials 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910005091 Si3N Inorganic materials 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000012159 carrier gas Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- -1 silicon halides Chemical class 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017665 NH4HF2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910010068 TiCl2 Inorganic materials 0.000 description 1
- 229910010342 TiF4 Inorganic materials 0.000 description 1
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本°発明は、化学気相析出法により生成される窒化珪素
塊状体に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a silicon nitride block produced by a chemical vapor deposition method.
(従来の技術及び発明が解決しようとする課B)従来化
学気相析出法によって窒化珪素を製造する方法が知られ
ている。その際前記方法において使用される原料ガスと
してケイ素を含有し、かつ気相析出するケイ素沈積源ガ
ス、例えば、5iCj!n。(Problem B to be Solved by the Prior Art and the Invention) Conventionally, a method of manufacturing silicon nitride by a chemical vapor deposition method is known. In this case, the raw material gas used in the above method is a silicon deposition source gas that contains silicon and is deposited in a vapor phase, such as 5iCj! n.
SiH2,5iBrn+ 51g4などと、窒素を含有
し、かつ気相析出する窒素沈積源ガス、例えば、MHz
、NtHaなどとが使用されており、上記2種類のガス
を減圧下で、かつ高温度で反応させると窒化珪素が析出
し、その際例えば炭素板が存在するとその上に窒化珪素
が板状に沈積して非晶質あるいは結晶質からなる窒化珪
素塊状体を得ることができることが知られている。SiH2, 5iBrn+ 51g4, etc., and a nitrogen deposition source gas that contains nitrogen and precipitates in the vapor phase, for example, MHz
, NtHa, etc. are used, and when the above two types of gases are reacted under reduced pressure and at high temperature, silicon nitride is precipitated. At this time, if a carbon plate is present, silicon nitride is formed into a plate shape on top of it. It is known that amorphous or crystalline silicon nitride blocks can be obtained by deposition.
なお、窒化珪素塊状体のほかに、析出条件を変えること
により、非晶質窒化珪素粉末体を生成させることができ
ることも知られている。It is also known that in addition to silicon nitride lumps, amorphous silicon nitride powder can be produced by changing the precipitation conditions.
ところで、Tiを含む窒化珪素については、米国特許第
4.145.224号公報により化学気相析出法を用い
て粉末体が得られることが開示されている。By the way, regarding silicon nitride containing Ti, US Pat. No. 4,145,224 discloses that a powder body can be obtained using a chemical vapor deposition method.
すなわち同公報によれば、1100〜1350″Cの反
応領域にSiCj! a、Tic l a、NH3を導
入することによりTiNを含んだ非晶質窒化珪素粉末体
が得られ、TiNを含まない非晶質窒化珪素粉末体の結
晶化には1500〜1600°Cの熱処理温度が必要で
あるのに対し、TiNを含む非晶質窒化珪素粉末体は1
400’Cとより低い温度で、N2中、2時間の熱処理
により60重四%が結晶化し、この結晶は97重量%の
α型窒化珪素と3重量%のβ型窒化珪素から成る。なお
、Tiの含有量は1.5〜5重量%が好ましいが、0.
01重量%のTiの含有でも1400°Cで非晶質窒化
珪素が結晶化されることが記載されている。That is, according to the same publication, amorphous silicon nitride powder containing TiN can be obtained by introducing SiCj! Crystalline silicon nitride powder requires a heat treatment temperature of 1500 to 1600°C for crystallization, whereas amorphous silicon nitride powder containing TiN requires a heat treatment temperature of 1500 to 1600°C.
Heat treatment at a lower temperature of 400'C in N2 for 2 hours results in 60% crystallization, which consists of 97% by weight of alpha silicon nitride and 3% by weight of beta silicon nitride. Note that the Ti content is preferably 1.5 to 5% by weight, but 0.5% by weight.
It is described that amorphous silicon nitride is crystallized at 1400°C even when Ti is contained in an amount of 0.01% by weight.
さらに前記米国特許公報によれば、析出生成されるTi
を含む窒化珪素は粉末体であり、これを塊状体とするた
めには前記粉末状析出生成物を成形して焼結する必要が
あると記載されている。Furthermore, according to the above-mentioned US patent publication, Ti is precipitated and generated.
It is described that silicon nitride containing .
本発明は、従来知られていない、粒状のTiNを含み、
実質的に非晶質からなる窒化珪素塊状体、を提供するこ
とを目的とするものである。The present invention includes granular TiN, which has not been previously known,
The object of the present invention is to provide a silicon nitride block that is substantially amorphous.
(課題を解決するための手段) 次に、本発明の詳細な説明する。(Means for solving problems) Next, the present invention will be explained in detail.
本発明は、粒状のTiNを含み、実質的に非晶質からな
る窒化珪素塊状体に関するものである。The present invention relates to a substantially amorphous silicon nitride block containing granular TiN.
前述の如く、主として非晶質からなり、かつTiを含む
窒化珪素粉末体は知られており、また結晶質からなりT
iを含む窒化珪素粉末の焼結成形体も知られているが、
本発明のように粒状に析出したTiNを含み、実質的に
非晶質からなる窒化珪素塊状体は従来知られていない。As mentioned above, silicon nitride powders that are mainly amorphous and contain Ti are known, and silicon nitride powders that are mainly crystalline and contain Ti are known.
Although sintered bodies of silicon nitride powder containing i are also known,
A substantially amorphous silicon nitride block containing granularly precipitated TiN as in the present invention has not been known.
というのは、米国特許第4,145,224号公報によ
れば、Tiを含む非晶質の窒化珪素粉末体が得られ、一
方この粉末体を成形し、焼成するとTiを含む結晶質の
窒化珪素焼結成形体が得られることが開示されているが
、本発明のものは非晶質であり粉末焼結成形体でない点
において前記公報のそれと異なるものである。This is because, according to U.S. Pat. No. 4,145,224, an amorphous silicon nitride powder containing Ti is obtained, whereas when this powder is molded and fired, crystalline nitride containing Ti is obtained. Although it is disclosed that a silicon sintered compact can be obtained, the present invention differs from that of the above-mentioned publication in that it is amorphous and is not a powder sintered compact.
本発明の塊状体は後述する気相析出による製造方法によ
って製造されるが、その製造条件を制御することによっ
て、非晶質のみからなりTiを含む窒化珪素(以下窒化
珪素をSi3N4と略記する)塊状体と、実質的に非晶
質からなり小量のα型結晶が混在しているTiを含むS
i3N4塊状体の2種類とすることができるが、勿論こ
れら2種類の塊状体は何れも従来全く知られていない。The lumps of the present invention are manufactured by a manufacturing method using vapor phase precipitation, which will be described later. By controlling the manufacturing conditions, silicon nitride consisting only of an amorphous substance and containing Ti (silicon nitride is hereinafter abbreviated as Si3N4) can be produced. S containing Ti that is substantially amorphous and contains a small amount of α-type crystals.
There can be two types of i3N4 aggregates, but of course, both of these two types of aggregates are completely unknown in the past.
次に本発明のTiを含むSi3N、塊状体の組織、性状
ならびに性質について説明する。Next, the structure, properties, and properties of the Ti-containing Si3N of the present invention and the aggregate will be explained.
本発明の塊状体は前述の如く■非晶質のものをいい、全
部あるいは大部分が非晶質からなるものをいい、小量例
えば約10重量%以下のα型結晶が混在する場合を含む
。またTiはTiNとして含有されており、その含有量
はTiNとして魂状体全量に対し5〜30重量%の範囲
内であり、その量は後述の如く製造条件によって制御す
ることができる。As mentioned above, the aggregate of the present invention refers to an amorphous substance, and refers to one that is entirely or mostly amorphous, including cases in which a small amount of α-type crystals, for example, about 10% by weight or less, is mixed. . Further, Ti is contained in the form of TiN, and its content is within the range of 5 to 30% by weight based on the total amount of TiN, and the amount can be controlled by manufacturing conditions as described below.
含有されるTiNの存在状態は透過電子顕微鏡によって
容易に確認できるが、その結果、TiNは非晶質基地中
に数十大径の微細粒として分散析出してい名ことがわか
った。The state of the contained TiN can be easily confirmed using a transmission electron microscope, and the results show that TiN is dispersed and precipitated in the amorphous matrix as fine grains of several tens of diameters.
本発明の塊状体の密度は製造条件によって異なるが、3
.24〜3.35g/cm’の範囲内である。ところで
例えばα型SiJ、の理論密度は3.18g/cm3、
β型Si3N4のそれは3.19g/am3、TiNの
それは5.43g/cm’であるのでTiNの含有量の
上昇と共に密度は上昇する。The density of the agglomerates of the present invention varies depending on manufacturing conditions, but
.. It is within the range of 24 to 3.35 g/cm'. By the way, for example, the theoretical density of α-type SiJ is 3.18 g/cm3,
Since the density of β-type Si3N4 is 3.19 g/am3 and that of TiN is 5.43 g/cm', the density increases as the TiN content increases.
本発明の塊状体の室温における硬度(荷重100g)は
1900〜2gQQkg/mm”の範囲内にあり、後述
する如(、この硬度は塊状体が製造されるときの温度に
よって異なる。前記硬度を有する本発明の塊状体は切削
工具として十分使用することができる。The hardness of the lump of the present invention at room temperature (load: 100 g) is within the range of 1900 to 2 gQQkg/mm'', and as will be described later (this hardness varies depending on the temperature at which the lump is manufactured). The mass of the present invention can be satisfactorily used as a cutting tool.
本発明のTiを含む5tJ4塊状体は、純粋のSi3N
。The Ti-containing 5tJ4 mass of the present invention is pure Si3N
.
塊状体より電気伝導度が高い0例えば第1図に示すよう
に、Tiを含む非晶質Si山()の300°Cにおける
電気伝導度は、同温度のTiを含まないα型St、N4
■のそれより7桁も高く、しかもその電気伝導度の温
度係数が小さいという特徴を有する。0 For example, as shown in Figure 1, the electrical conductivity of an amorphous Si mountain ( ) containing Ti at 300°C is higher than that of α-type St, N4, which does not contain Ti at the same temperature.
It is seven orders of magnitude higher than that of (2), and is characterized by a small temperature coefficient of electrical conductivity.
上記電気伝導度ならびに特異な電気伝導度の温度係数を
有することから、これらの性質を利用する電気材料とし
ての応用が予測される。Since it has the above-mentioned electrical conductivity and a unique temperature coefficient of electrical conductivity, it is expected that it will be applied as an electrical material utilizing these properties.
次に本発明の製造方法を第2図について説明する。Next, the manufacturing method of the present invention will be explained with reference to FIG.
本発明によれば500〜1900℃の温度範囲内に加熱
した基体2上に窒素沈積源ガス、珪素沈積源ガスおよび
チタン沈積源ガスとを組合せ管4を用いてそれぞれ吹付
け、その際前記基体2上に吹付けられる窒素沈積ガス流
束の周囲を珪素沈積源ガスとチタン沈積源ガスの混合ガ
スにより包囲し、前記両ガスの気相分解反応を基体2上
あるいは基体2付近で生起させてTiを含む5ilN4
を生成させ、かつ前記生成Tiを含む5t3N、塊状体
として基体上に沈積させることができる。According to the present invention, a nitrogen deposition source gas, a silicon deposition source gas, and a titanium deposition source gas are each sprayed onto a substrate 2 heated within a temperature range of 500 to 1900° C. using a combination tube 4, and at this time, the substrate 2 is heated to a temperature range of 500 to 1900° C. The nitrogen deposition gas flux blown onto the substrate 2 is surrounded by a mixed gas of a silicon deposition source gas and a titanium deposition source gas, and a gas phase decomposition reaction of both gases is caused on or near the substrate 2. 5ilN4 containing Ti
5t3N containing the produced Ti can be deposited as a lump on the substrate.
なお、前記組合せ管の少なくとも先端部ならびに基体は
共に雰囲気ならびに圧力を調整することのできる密閉容
器内に設置することは有利である。Note that it is advantageous that at least the tip end and the base of the combination tube are both placed in a closed container where the atmosphere and pressure can be adjusted.
本発明のTiを含むSi+Na製造用出発原料の1つで
ある珪素沈積源化合物としては、珪素のハロゲン化物(
sicz4.5tF4. SiBr4.5i14+ 5
izC1h+Si、Br、、 Si、1.、5iBrC
l 3.5iBr3Cl 、 5iBr、Cl +5i
ICj!z)、水素化物(SiH4+5i4H+o+S
i:+Hs、5iJb)、水素ハロゲン化物(Sill
Cl 3.5iHBr3,5iHF++ 5iHIs)
のうちから選ばれる何れか1種または2種以上を用いる
ことができ、好適には室温でガス状である5iHn、あ
るいは室温における蒸気圧が高い5iHCfi+5iC
jl!4を有利に使用することができる。また窒素沈積
源化合物としては窒素の水素化合物(HN3゜NH:+
、NzH4)、アンモニウムハロゲン化物(NH,Cl
。As a silicon deposition source compound which is one of the starting materials for producing Si+Na containing Ti in the present invention, silicon halides (
sicz4.5tF4. SiBr4.5i14+ 5
izC1h+Si, Br, Si, 1. , 5iBrC
l 3.5iBr3Cl, 5iBr, Cl +5i
ICj! z), hydride (SiH4+5i4H+o+S
i: +Hs, 5iJb), hydrogen halide (Sill
Cl 3.5iHBr3, 5iHF++ 5iHIs)
Any one or two or more selected from these can be used, preferably 5iHn which is gaseous at room temperature, or 5iHCfi+5iC which has a high vapor pressure at room temperature.
jl! 4 can be used advantageously. Also, as a nitrogen deposition source compound, a hydrogen compound of nitrogen (HN3゜NH: +
, NzH4), ammonium halide (NH, Cl
.
NH4F、 NH4HF2. NH41)のうちから選
ばれる何れか1種または2種以上を用いることができ、
NH3,N2114は比較的安価でありまた入手が容易
である為に好適に使用することができる。また、チタン
沈積源化合物としてはチタンのハロゲン化物(TrCf
41TiBr4+ TiF4+ Ti14)のうちか
ら選ばれる何れか1種または2種以上を用いることがで
き、TiCl4は比較的安価でありまた入手が容易であ
る為に好適に使用することができる。NH4F, NH4HF2. Any one type or two or more types selected from NH41) can be used,
NH3 and N2114 are relatively inexpensive and easily available, so they can be preferably used. In addition, titanium halide (TrCf) is used as a titanium deposition source compound.
41TiBr4+ TiF4+ Ti14) can be used. TiCl4 is relatively inexpensive and easily available, so it can be preferably used.
珪素沈積源化合物、チタン沈積源化合物、窒素沈積源化
合物からTiを含むSi、N、を得る基体の温度は50
0〜1900°Cの範囲内にあるが、1000〜160
0°Cの温度範囲を用いることが好適である。The temperature of the substrate from which Si and N containing Ti are obtained from the silicon deposition source compound, titanium deposition source compound, and nitrogen deposition source compound is 50
Within the range of 0 to 1900°C, but 1000 to 160
It is preferred to use a temperature range of 0°C.
なお前記窒素沈積源化合物、珪素沈積源化合物およびチ
タン沈積源化合物の1種または2種を搬送するためNz
、 Ar、 l(e+ Hzの何れか1種または2種以
上をキャリアーガスとして必要になり使用することがで
きる。このうちN2は窒素の沈積源原料にもなり得るし
、N2は珪素およびチタン沈積源化合物の気相分解の際
反応に関与することがある。In order to convey one or two of the nitrogen deposition source compound, silicon deposition source compound, and titanium deposition source compound, Nz
, Ar, l(e+ Hz). One or more of the following can be used as a carrier gas. Of these, N2 can also be a source material for nitrogen deposition, and N2 can be used for silicon and titanium deposition. May participate in reactions during gas phase decomposition of source compounds.
キャリアーガスは基体を収容する容器内の全ガス圧力の
調節、珪素、チタンおよび窒素沈積源原料の蒸気の混合
比の調節、容器内におけるガスの流束形状の調節、およ
びまたはN、、 H,のように一部反応に関与させるた
めに用いることができ、またキャリアーガスを使用しな
くともTiを含む5iJ4を生成させることができる。The carrier gas is used to control the total gas pressure in the container containing the substrate, to control the mixing ratio of the vapors of the silicon, titanium, and nitrogen deposition source materials, to control the gas flux shape in the container, and/or N, H, 5iJ4 containing Ti can be generated without using a carrier gas.
次に5iC14+ TiCj2a とNH3を原料とし
、かつキャリアーガスとして■2を用いる場合について
、Tiを含むSi3N、の製造方法を説明する。Next, a method for producing Si3N containing Ti will be described in the case where 5iC14+ TiCj2a and NH3 are used as raw materials and 2 is used as a carrier gas.
前記5iCj!4. TiCl2.とN11.を、例え
ば第2回に示す如き組合せ管4を用いてそれぞれ容器内
に導入するがN113は前記組合せ管4の内管8を経て
、5iCj!4とT1Cf4の混合ガスは外管9を経て
導入し、NH3の流束の周囲を5iCj!aとTi(I
14の混合ガスで包囲しつつ容器内基体2上に前記両ガ
スを吹付ける。この際キャリアーガスであるN2は外管
9を経て吹付けられ5iC14およびTiCj!aと予
め混合させておくことは有利である。Said 5iCj! 4. TiCl2. and N11. are respectively introduced into the container using, for example, the combination tube 4 as shown in the second example, but N113 passes through the inner tube 8 of the combination tube 4, and 5iCj! A mixed gas of 4 and T1Cf4 is introduced through the outer tube 9, and the surrounding flux of NH3 is 5iCj! a and Ti(I
Both gases are sprayed onto the substrate 2 in the container while surrounding it with a mixed gas of No. 14. At this time, carrier gas N2 is blown through the outer tube 9 and 5iC14 and TiCj! It is advantageous to premix with a.
N2の流量は100〜7000cc/ minの範囲内
が良(,100(1〜4000cc/minが最も適当
である。5iCfaの流量(蒸気状態)は20〜100
0cc/ akinの範囲内が良<、50〜500c/
winの範囲内が最も適当である。The flow rate of N2 is preferably within the range of 100 to 7000 cc/min (100 (1 to 4000 cc/min is most appropriate).
Good within the range of 0cc/akin<, 50~500c/
The most appropriate range is within the win range.
TiCj!、の流量(蒸気状B)は0.1〜100 c
c/1lIinの範囲内が良く、1〜50cc/lll
1nの範囲内が最も適当である。NH3の流量は50〜
500 cc/minの範囲内が良(,80〜400c
c/lll1nの範囲内が最も適当である。TiCj! , the flow rate (vapor B) is 0.1 to 100 c
It is good within the range of c/1lIin, 1 to 50cc/lll
A range of 1n is most appropriate. The flow rate of NH3 is 50~
Good within the range of 500 cc/min (80 to 400 c
The most suitable range is c/lll1n.
基体2を収容する容器内の全ガス圧力は1〜760mm
Hgの範囲内が良く、5〜100 mmHgが最適であ
る。The total gas pressure in the container housing the substrate 2 is 1 to 760 mm
Hg is preferably within the range, and 5 to 100 mmHg is optimal.
なお1気圧以上のガス圧力でも本発明のTiを含む5i
J4は製造することができる。Note that even if the gas pressure is 1 atm or more, the 5i containing Ti of the present invention
J4 can be manufactured.
(実施例)
次に製造条件と製造される塊状体との関係について説明
する。(Example) Next, the relationship between the manufacturing conditions and the manufactured lumps will be explained.
第1表はTiを含む本発明のSi、N、塊状体とTiを
含まないSi3N4塊状体を製造するときの製造温度が
Si3N<の結晶状態に及ぼす影響の1例を示す表であ
る。ここで製造温度以外の製造条件として、Tiを含む
場合には容器内のガス圧力を30+r+mHg、5iC
ffi4流量を136 cc/min (蒸気状態)
、T1Cf4流量を18cc/min (蒸気状!り
、NHz流量を120cc/min 。Table 1 is a table showing an example of the influence of the manufacturing temperature on the crystal state of Si3N< when producing the Si, N, and agglomerates of the present invention containing Ti and the Si3N4 agglomerates not containing Ti. Here, as manufacturing conditions other than the manufacturing temperature, if Ti is included, the gas pressure in the container is 30+r+mHg, 5iC
ffi4 flow rate to 136 cc/min (steam state)
, T1Cf4 flow rate is 18cc/min (steam-like!
, the NHz flow rate was 120cc/min.
N2流量を2720cc/winとし、Tiを含まない
場合には容器内のガス圧力を30閣Hg、 5iC1a
流量を136cc/win (蒸気状態) 、NH3
流量を120 cc/min、N2流量を2720cc
/lll1nとした。The N2 flow rate is 2720 cc/win, and if Ti is not included, the gas pressure in the container is 30 KHg, 5iC1a.
Flow rate 136cc/win (steam state), NH3
Flow rate: 120 cc/min, N2 flow rate: 2720 cc
/lll1n.
第1表
第1表から明らかなように、Tiを含む場合はTiを含
まない場合と比較してα型結晶の生成する温度が300
°C低くなり、かつ従来から化学気相析出法によっては
製造が困難とされたβ型結晶が容易に生成することが判
る。Table 1 As is clear from Table 1, when Ti is included, the temperature at which α-type crystals are formed is 300°C compared to when Ti is not included.
It can be seen that β-type crystals, which have traditionally been difficult to produce by chemical vapor deposition, can be easily formed as the temperature decreases.
本発明において、塊状体中のTiN含有量は、第3図に
その1例を示すように製造温度が1100°Cのときは
28重量%であるが、温度がさらに上り1500°Cに
なると4.2重量%へ減少する。In the present invention, the TiN content in the agglomerates is 28% by weight when the manufacturing temperature is 1100°C, as shown in FIG. .2% by weight.
本発明のTiを含むSi3N、の密度は、第4図にその
1例を示すように、製造温度1100°Cにおける3、
33 g/cm3から製造温度1500°Cにおける3
、24g / cm ’へと製造温度の上昇とともに減
少するが、これらの密度値は、TiN (理論密度:
5.43g/cm3)を含むためにα型5iJ4の論理
密度3.18g/cm3、β型5isNaの論理密度3
.19 g/cm”よりも高い。As shown in FIG. 4, the density of Si3N containing Ti of the present invention is 3 at a manufacturing temperature of 1100°C.
3 at a manufacturing temperature of 1500°C from 33 g/cm3
, to 24 g/cm', which decreases with increasing production temperature, but these density values are similar to those of TiN (theoretical density:
5.43 g/cm3), the logical density of α type 5iJ4 is 3.18 g/cm3, and the logical density of β type 5isNa is 3.
.. 19 g/cm”.
次に、本発明の塊状体を製造する際の製造温度とマイク
ロビッカース硬度の関係を第5図について説明する。製
造温度が1300°Cまでは、温度が高いほど前記硬度
は大であるが、1300°Cを越えると硬度は減少する
。Next, the relationship between the manufacturing temperature and the micro-Vickers hardness when manufacturing the mass of the present invention will be explained with reference to FIG. When the manufacturing temperature is up to 1300°C, the higher the temperature, the higher the hardness, but when it exceeds 1300°C, the hardness decreases.
次に、本発明のTiを含むSi3N4塊状体ならびにT
iを含まないSi、N、塊状体の製造温度と容器内ガス
圧力が塊状体の結晶状態に及ぼす影響を第6図に比較し
て示す。同図により、本発明のTiを含むSi3N、塊
状体では、非晶質からなるものA、主として非晶質と小
量のα型結晶からなるものB、主としてα型結晶からな
るものとD、主としてβ型結晶からなるものEの何れも
、Tiを含まないSt 3N4塊状体に比し、より低い
温度で製造することができることが判る。Next, the Ti-containing Si3N4 lump of the present invention and T
FIG. 6 shows a comparison of the effects of the manufacturing temperature and the gas pressure in the container on the crystalline state of Si, N, and lumps that do not contain i. According to the same figure, in the Si3N containing Ti of the present invention, in the lumps, A is made of amorphous, B is mainly made of amorphous and a small amount of α-type crystals, D is mainly made of α-type crystals, It can be seen that both of the materials E mainly consisting of β-type crystals can be produced at a lower temperature than the St 3N4 lumps that do not contain Ti.
次に、本発明を更に具体的な実施例によって説明する。Next, the present invention will be explained using more specific examples.
裏施皿工
第7図に示す装置を用いて銅製電極3の間に人造黒鉛か
ら成る板状基体2をはさみ、炉内を予め10−”mmH
gに減圧し、基体に通電して基体を500°C以上に加
熱し、基体の脱ガスを行なった。次いで基体を1100
°Cに保熱した。これにアンモニアガスを120 cc
/minで内管より流出させ、同時に0°Cの四塩化珪
素(蒸気圧76mmHg)中を通過させた水素ガス(流
量1360cc/m1n)と、20°Cの四塩化チタン
(蒸気圧10 mm Hg )中を通過させた水素ガス
(流量1360cc/m1n)の混合ガスを外管より流
出させた。Back plate construction Using the device shown in Fig. 7, a plate-shaped substrate 2 made of artificial graphite is sandwiched between copper electrodes 3, and the inside of the furnace is heated to 10 mmH in advance.
The pressure was reduced to 1.5 g, and the substrate was heated to 500° C. or higher by applying electricity to the substrate to degas the substrate. Then the base was heated to 1100
It was kept warm at °C. Add 120 cc of ammonia gas to this
Hydrogen gas (flow rate 1360 cc/ml) was flowed out from the inner tube at 20 °C (flow rate 1360 cc/ml) and simultaneously passed through silicon tetrachloride (vapor pressure 76 mm Hg) at 0 °C and titanium tetrachloride (vapor pressure 10 mm Hg) at 20 °C. ) The mixed gas of hydrogen gas (flow rate: 1360 cc/ml) was allowed to flow out from the outer tube.
この条件における四塩化珪素ガスの流量は136c/m
in、四塩化チタンガスの流量は18cc/winであ
った。その時の容器内圧力を30mmHgとした。8時
間ガスを流した後、電流を切り、冷却し、中の基体2を
取り出したところ、基体2の表面上に0.7鵬厚さの板
状、黒色のTiを含むSi3N4を得た。X線解析の結
果、この5isN4板中に存在するTiはTiNとして
存在することがわかり、また透過電子顕微鏡により径約
30人の粒子形状で非晶質物質中に均一に分散したTi
N結晶が確認された。このTiを含む5isNaの他の
特性を測定したところ次のようであった。結晶構造:非
晶質、密度3.33g/cm’、TiN含有含有1垂8
重100 g)。The flow rate of silicon tetrachloride gas under these conditions is 136 c/m
In, the flow rate of titanium tetrachloride gas was 18 cc/win. The pressure inside the container at that time was 30 mmHg. After flowing gas for 8 hours, the electric current was turned off, the mixture was cooled, and the substrate 2 inside was taken out, and a plate-like black Si3N4 containing Ti with a thickness of 0.7 mm was obtained on the surface of the substrate 2. As a result of X-ray analysis, it was found that Ti present in this 5isN4 plate existed as TiN, and transmission electron microscopy revealed that Ti was uniformly dispersed in the amorphous material with a particle shape of approximately 30 mm in diameter.
N crystals were confirmed. Other properties of this Ti-containing 5isNa were measured and found to be as follows. Crystal structure: amorphous, density 3.33 g/cm', containing TiN (100 g).
1隻皿主
実施例1と同様の装置を使用し、同様の操作を行ってT
iを含むSi3N,を製造した。まず基体温度を120
0°Cに保っておき、これにアンモニアガスを内管より
120 cc/minで流出させ、同時に、0°Cの四
塩化珪素(蒸気圧76mmHg)中を通過させた水素ガ
ス(流量1360cc/Iwin)と20℃の四塩化チ
タン(蒸気圧10mmh)中を通過させた水素ガス(流
量1360cc/m1n)の混合ガスを外管より流出さ
せた。Using the same equipment as in Example 1 and performing the same operations, T
Si3N containing i was produced. First, set the substrate temperature to 120
The temperature was maintained at 0°C, and ammonia gas was flowed out from the inner tube at a rate of 120 cc/min, and at the same time, hydrogen gas (flow rate 1360 cc/Iwin) was passed through silicon tetrachloride (vapor pressure 76 mmHg) at 0°C. ) and hydrogen gas (flow rate: 1,360 cc/ml) passed through titanium tetrachloride (vapor pressure: 10 mmh) at 20° C., and then flowed out from the outer tube.
その時の容器内の圧力を3 0 mm l gとした。The pressure inside the container at that time was 30 mm lg.
8時間ガスを流した後、電流を切り、冷却し、中の基体
2を取出したところ、基体2の表面上に0.8mm厚さ
のTiを含む黒色5iJnを得た。X線解析の結果、こ
のSi3N4板中に存在するTiはTiNとして存在す
ることがわかり、また透過電子顕微鏡により径約30人
の粒子形状で非晶質物質中に均一に分散したTiN結晶
が確認された。このTiを含む5isN4の他の特性は
次のようであった。結晶構造:非晶質であったが、基体
側には若干のα型の・存在が確認された。密度3.27
g/cm3、TiN含有量11重量%、室温硬度:
2600kg/閣2(荷重100 g)、直流電気伝導
度3X10−’Ω−’cm−’ (700°C)。After flowing gas for 8 hours, the electric current was turned off, the mixture was cooled, and the substrate 2 inside was taken out, and a black 5iJn containing Ti with a thickness of 0.8 mm was obtained on the surface of the substrate 2. As a result of X-ray analysis, it was found that the Ti present in this Si3N4 plate existed as TiN, and transmission electron microscopy confirmed TiN crystals uniformly dispersed in the amorphous material with a particle shape of approximately 30 mm in diameter. It was done. Other properties of this Ti-containing 5isN4 were as follows. Crystal structure: It was amorphous, but the presence of some α-type was confirmed on the substrate side. Density 3.27
g/cm3, TiN content 11% by weight, room temperature hardness:
2600kg/kaku2 (load 100g), DC electrical conductivity 3X10-'Ω-'cm-' (700°C).
なお本発明のTiを含むSi、N、塊状体を製造するた
めの各種要因とその範囲の大要を挙げると第2表のよう
である。Table 2 shows a summary of various factors and their ranges for producing the Ti-containing Si, N, and agglomerates of the present invention.
第2表
以上のような優れた特性を利用して、本発明のTiを含
むSi2N4は下記の方面に利用できる。Utilizing the excellent properties shown in Table 2 and above, the Ti-containing Si2N4 of the present invention can be used in the following fields.
1、被覆材として
(イ) バイト、ダイス、ドリル、カッター等の工具材
の表面に被覆することによって工具の寿命を延ばし、自
動加ニジステムの管理を容易ならしめる。1. As a coating material (a) By coating the surface of tools such as bits, dies, drills, cutters, etc., it extends the tool life and facilitates the management of automatic machining systems.
(ロ) ベアリング、歯車、回転軸等の耐摩耗性を要す
る機械部品の表面に被覆することによって摩耗及び高温
焼付を防止する。(b) Prevent wear and high-temperature seizure by coating the surfaces of mechanical parts that require wear resistance, such as bearings, gears, and rotating shafts.
(ハ) 金属、化合物、セラミックス、黒鉛等の諸材料
の表面に被覆することによって、高硬度の表面をもたせ
、さらに高温における機械的性質を向上させる(エンジ
ン部品、タービン部品等)。(c) By coating the surfaces of various materials such as metals, compounds, ceramics, graphite, etc., they are provided with highly hard surfaces and further improve mechanical properties at high temperatures (engine parts, turbine parts, etc.).
(ニ) 任意材料の基体の表面に被覆することにより、
絶縁性物質からなる基体にも導電性を附与する。(d) By coating the surface of a substrate made of arbitrary material,
Conductivity is also imparted to a base made of an insulating material.
(ホ) 絶縁体の表面に被覆することにより、静電気の
発生を防止する。(e) Prevent the generation of static electricity by coating the surface of the insulator.
2、 ブロック材として
(へ) 超硬バイト、超硬ダイス等の工具材として有用
である。2. As a block material (f) It is useful as a tool material for carbide bits, carbide dies, etc.
(ト) 高い硬度が要求される硬質理化学器具に用い
られる。(g) Used for hard physical and chemical instruments that require high hardness.
(チ) 高い硬度が要求され、しかも高温度でその硬度
を保持する必要のあるベアリング、回転軸、軸受、シー
ル材に有用である。(H) It is useful for bearings, rotating shafts, bearings, and sealing materials that require high hardness and need to maintain that hardness at high temperatures.
(す) 高温で用いられる構造材として、エンジン部品
、タービン部品として利用できる。(S) Can be used as a structural material used at high temperatures, such as engine parts and turbine parts.
(ヌ) 軽量で高い温度が要求される発熱体、例えば記
録用熱ペンに利用できる。(n) It can be used in heating elements that are lightweight and require high temperatures, such as thermal recording pens.
(ル) 静電印刷装置の記録計に利用できる。(Le) Can be used as a recorder for electrostatic printing equipment.
(ヲ) 高温用フィラメントとして用いられる。(wo) Used as a high-temperature filament.
(ワ) 高温用発熱体として用いられる。(W) Used as a heating element for high temperatures.
第1図は本発明のTiを含むSi3N4とTiを含まな
い5isNaの直流電気伝導度と温度との関係を比較し
た図、
第2図は本発明の吹付は管の斜視図、
第3図は本発明のTiを含むSi3N4中のTiN含有
量と製造温度との関係を示す図、
第4図は本発明のTiを含むSi3N4の密度と製造温
度の関係を示す図、
第5図は本発明のTiを含むSi3N4沈積面の室温に
おける硬度と製造温度の関係を示す図、第6図は製造温
度と容器内ガス圧力が5iJnの結晶状態に及ぼす影響
を示す図、
第7図は本発明によるTiを含むSi3N、の製造装置
の1例を示す破砕断面図である。
1・・・容器 2・・・基体・・・把持棒
・・・真空計配置口
・・・排出口
・・・外管Figure 1 is a diagram comparing the relationship between the DC electrical conductivity and temperature of Si3N4 containing Ti and 5isNa not containing Ti according to the present invention, Figure 2 is a perspective view of the spray pipe according to the present invention, and Figure 3 is a A diagram showing the relationship between the TiN content and manufacturing temperature in Si3N4 containing Ti according to the present invention, Figure 4 is a diagram showing the relationship between the density and manufacturing temperature of Si3N4 containing Ti according to the present invention, and Figure 5 is a diagram showing the relationship between the manufacturing temperature in Si3N4 containing Ti according to the present invention. Figure 6 is a diagram showing the influence of manufacturing temperature and gas pressure in the container on the crystalline state of 5iJn. 1 is a fragmentary cross-sectional view showing an example of a manufacturing apparatus for Si3N containing Ti. 1...Container 2...Base...Gripping rod...Vacuum gauge placement port...Discharge port...Outer tube
Claims (1)
なる窒化珪素塊状体。1. A substantially amorphous silicon nitride block containing TiN precipitated in granular form.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24886889A JPH02120213A (en) | 1989-09-25 | 1989-09-25 | Silicon nitride block |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24886889A JPH02120213A (en) | 1989-09-25 | 1989-09-25 | Silicon nitride block |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55121690A Division JPS5747706A (en) | 1980-09-04 | 1980-09-04 | Lump of silicon nitride containing ti and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02120213A true JPH02120213A (en) | 1990-05-08 |
JPH0357043B2 JPH0357043B2 (en) | 1991-08-30 |
Family
ID=17184619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24886889A Granted JPH02120213A (en) | 1989-09-25 | 1989-09-25 | Silicon nitride block |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02120213A (en) |
-
1989
- 1989-09-25 JP JP24886889A patent/JPH02120213A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0357043B2 (en) | 1991-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4469801A (en) | Titanium-containing silicon nitride film bodies and a method of producing the same | |
US4224296A (en) | Super hard-highly pure silicon nitrides, and a process and apparatus for producing the same | |
JPS6221867B2 (en) | ||
US4594330A (en) | Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide | |
JPS6112844B2 (en) | ||
JPS5913442B2 (en) | Manufacturing method of high purity type silicon nitride | |
JPS61232269A (en) | Manufacture of boron-containing silicon carbide powder | |
JPH02120213A (en) | Silicon nitride block | |
JP2721678B2 (en) | β-silicon carbide molded body and method for producing the same | |
JPS62182105A (en) | Improved silicon nitride and manufacture | |
JPS5930645B2 (en) | Manufacturing method of high purity α-type silicon nitride | |
JPH02217394A (en) | Massive body of crystalline silicon nitride | |
JPH06184750A (en) | Composite body and its production | |
JPH02217395A (en) | Massive body of crystalline silicone nitride | |
JPS6111885B2 (en) | ||
JPH01252780A (en) | Boron nitride coated body and production thereof | |
JPH0454610B2 (en) | ||
JPH03247506A (en) | Polycrystal silicon carbide | |
JPS6048592B2 (en) | Manufacturing method of ultra-hard high-purity silicon nitride | |
JPH0310562B2 (en) | ||
JPS63159204A (en) | Amorphous spherical composite powder and production thereof | |
JP2528928B2 (en) | Method for producing silicon carbide-silicon nitride composite film | |
JPS6077114A (en) | Production of spherical sic powder | |
JPS63230508A (en) | Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder | |
JPS61127616A (en) | Manufacturing method of silicon carbide fine powder |