JPH0221702Y2 - - Google Patents
Info
- Publication number
- JPH0221702Y2 JPH0221702Y2 JP1982050087U JP5008782U JPH0221702Y2 JP H0221702 Y2 JPH0221702 Y2 JP H0221702Y2 JP 1982050087 U JP1982050087 U JP 1982050087U JP 5008782 U JP5008782 U JP 5008782U JP H0221702 Y2 JPH0221702 Y2 JP H0221702Y2
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- supply pipe
- air supply
- heat
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 65
- 239000000567 combustion gas Substances 0.000 claims description 35
- 239000007787 solid Substances 0.000 claims description 28
- 239000000446 fuel Substances 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 23
- 230000005855 radiation Effects 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
Landscapes
- Gas Burners (AREA)
- Cookers (AREA)
Description
【考案の詳細な説明】
産業上の利用分野
この考案は、輻射促進加熱こんろに関し、更に
詳細には、各種燃料の燃焼時における輻射熱の発
生を促進して、対流熱伝達と前記の促進された輻
射熱伝達との相乗効果により、被加熱物に対する
熱効率を顕著に増大させ得る「こんろ」に関する
ものである。[Detailed description of the invention] Industrial application field This invention relates to a radiation-enhanced heating stove, and more specifically, it promotes the generation of radiant heat during the combustion of various fuels, thereby promoting convective heat transfer and the aforementioned accelerated heating stove. This invention relates to a "stove" that can significantly increase thermal efficiency for heated objects through a synergistic effect with radiant heat transfer.
従来技術と考案が解決すべき課題
被加熱物の加熱装置、例えばガスこんろでは、
一般にバーナに点火された高温の燃焼ガスが被加
熱物(例えば鍋)の底面に接触し、この燃焼ガス
の対流熱伝達により被加熱物は主として加熱され
る。しかし燃焼ガスは、被加熱物の底面に短時間
接触するだけであつて、比較的高温(約350℃)
の熱エネルギーを内在したまま上方へ逃げてしま
う。このため従来のガスこんろの熱利用効率は、
著しく低いものであつた。また、このように有効
に熱利用可能な高温の燃焼ガスが上方に流出して
しまう結果として、ガスこんろを設置した周囲の
環境温度が高くなる等の欠点も指摘される。Problems to be solved by conventional technology and ideas In heating devices for heated objects, such as gas stoves,
Generally, high-temperature combustion gas ignited in a burner comes into contact with the bottom surface of an object to be heated (for example, a pot), and the object to be heated is mainly heated by convective heat transfer of the combustion gas. However, the combustion gas only comes into contact with the bottom of the heated object for a short time, and has a relatively high temperature (approximately 350℃).
It escapes upward while retaining its thermal energy. For this reason, the heat utilization efficiency of conventional gas stoves is
It was extremely low. In addition, as a result of the high temperature combustion gas that can be effectively used as heat flowing upward, there are also drawbacks such as an increase in the environmental temperature around the gas stove.
考案の目的
本考案は、このような従来技術に係る被加熱物
の加熱こんろに内在している前記問題点に鑑み、
これを好適に解決するべく案出されたものであつ
て、こんろの燃焼帯域に供給された燃料を、予熱
空気の供給による充分な酸素の存在下に燃焼させ
て燃焼効率を高めると共に、高温の燃焼ガスを固
体伝熱変換素子として知られる通気性固体からな
る輻射板に通過させて、燃焼ガスの顕熱を固体輻
射熱に変換し、前記対流熱伝達と促進された輻射
熱伝達との相乗作用により加熱装置の熱効率を向
上させると共に、もつて周囲環境の温度上昇を極
力抑制することを目的とする。Purpose of the invention In view of the above-mentioned problems inherent in the conventional heating stove for heated objects, the present invention
This was devised to solve this problem in a suitable manner, and the fuel supplied to the combustion zone of the stove is combusted in the presence of sufficient oxygen by supplying preheated air to increase combustion efficiency and to achieve high temperature. The combustion gas is passed through a radiant plate made of an air-permeable solid known as a solid-state heat transfer conversion element to convert the sensible heat of the combustion gas into solid-state radiant heat, resulting in a synergistic effect between the convective heat transfer and the promoted radiant heat transfer. The purpose is to improve the thermal efficiency of the heating device and to suppress the temperature rise in the surrounding environment as much as possible.
課題を解決するための手段
前記課題を克服し、所期の目的を達成するため
本考案に係る輻射促進加熱こんろは、こんろ本体
の略中央に形成した円筒状の落としに同心的に内
挿されて直立する燃焼筒と、
通気性固体からなる板材を皿状に湾曲形成し、
前記燃焼筒の内部に水平に配設されて凹面が上方
を指向している輻射板と、
前記燃焼筒の内部でかつ前記輻射板の下方に位
置し、所要形状に湾曲されて延在する相互に分離
した燃料供給管および空気供給管と、
前記燃焼筒の内部でかつ前記輻射板の上方に環
状に配設され、前記空気供給管に連通する空気供
給ノズルと、
前記燃焼筒の内部でかつ前記空気供給ノズルの
真上に同心的に配設され、前記燃料供給管に連連
する燃焼用バーナと、
前記燃焼筒の頂部に載置されて、該燃焼筒の内
部で前記輻射板および燃焼用バーナの間に画成さ
れる燃焼加熱帯域を上方から被蓋し、その上面に
被加熱物が載置される耐熱性の熱透過板とからな
り、
前記燃料供給管および空気供給管28中の流体
と燃焼用バーナでの燃焼ガスとの熱交換を行なつ
て、前記流体を予熱した状態で燃焼用バーナおよ
び空気供給ノズルに夫々供給し得るよう構成した
ことを特徴とする。Means for Solving the Problems In order to overcome the above problems and achieve the intended purpose, the radiation-enhanced heating stove according to the present invention has a cylindrical drop formed approximately in the center of the stove body. The combustion tube is inserted into the cylinder to stand upright, and the board made of breathable solid material is curved into a dish shape.
a radiant plate disposed horizontally inside the combustion tube and having a concave surface facing upward; and a radiant plate located inside the combustion tube and below the radiation plate and extending in a curved manner into a desired shape. a fuel supply pipe and an air supply pipe separated into; an air supply nozzle arranged annularly inside the combustion cylinder and above the radiation plate and communicating with the air supply pipe; an air supply nozzle inside the combustion cylinder and above the radiation plate; a combustion burner disposed concentrically right above the air supply nozzle and connected to the fuel supply pipe; and a combustion burner placed on the top of the combustion tube and arranged inside the combustion tube to connect the radiant plate and the combustion burner. It is comprised of a heat-resistant heat transmitting plate that covers the combustion heating zone defined between the burners from above and on which the object to be heated is placed; The present invention is characterized in that the fluid is configured to perform heat exchange with the combustion gas in the combustion burner and to supply the fluid in a preheated state to the combustion burner and the air supply nozzle, respectively.
なお本考案では、輻射板の材質として所謂「通
気性固体」を使用するので、この通気性固体の概
略につき予め説明しておく。ここに「通気性固
体」とは、金属、セラミツクス等の耐熱性材料を
網状、ハニカム状、繊維状、多孔質状等に成形し
て、通気性を持たせた適宜厚さの固体をいう。こ
の通気性固体は、細線または細粒が多数集合して
構成されたものと考えられ、その実質的な表面積
は極めて大きい。そして、固体の輻射射出能力は
気体よりも充分高いものであるから、前記通気性
固体に燃焼ガスを通過させると、燃焼ガスの顕熱
が表面積の極めて大きい固体と接触して高効率の
熱交換が行なわれ、大量の固体輻射熱を発生す
る。このような特性を有する固体伝熱変換素子
を、「通気性固体」と称する。この通気性固体は、
燃焼ガスの下流で熱交換により熱を奪つても、上
流側には殆んど影響がでない、という特性があ
る。 In the present invention, a so-called "breathable solid" is used as the material of the radiant plate, so an outline of this breathable solid will be explained in advance. Here, the term "breathable solid" refers to a solid having an appropriate thickness that is made of a heat-resistant material such as metal or ceramics and formed into a net shape, honeycomb shape, fiber shape, porous shape, etc. to give it breathability. This air-permeable solid is considered to be composed of a large number of fine wires or fine grains, and its substantial surface area is extremely large. Since the radiation emission ability of a solid is sufficiently higher than that of a gas, when the combustion gas is passed through the air-permeable solid, the sensible heat of the combustion gas comes into contact with the solid, which has an extremely large surface area, resulting in highly efficient heat exchange. is carried out, generating a large amount of solid-state radiant heat. A solid heat transfer element having such characteristics is referred to as a "breathable solid". This breathable solid is
It has the characteristic that even if heat is removed by heat exchange downstream of the combustion gas, it has almost no effect on the upstream side.
前記通気性固体Sの輻射熱射出状態につき、第
1図に示す模式図により説明する。通気性固体S
は、燃焼ガスGの流通方向に厚さXを有するた
め、燃焼ガスGが固体Sを通過すると、その層内
で対流熱伝達が行なわれ、曲線Cで示す温度勾配
を生ずる。そして各層x1……x5において、燃焼ガ
スの顕熱は固体輻射熱y1……y5,z1……z5に変換
され、夫々燃焼ガスGの上流側Yおよび下流側Z
に向かうが、この固体輻射熱の内でy4,y5および
z1,z2は、通気性固体Sの前後方向の厚みに応じ
て遮蔽されて減衰し、その結果として大部分の輻
射熱Rが燃焼ガスGの上流側Yに射出される。 The radiant heat emission state of the breathable solid S will be explained with reference to the schematic diagram shown in FIG. Breathable solid S
has a thickness X in the flow direction of the combustion gas G, so when the combustion gas G passes through the solid S, convective heat transfer takes place within that layer, producing a temperature gradient shown by a curve C. In each layer x 1 ...
However, within this solid radiant heat, y 4 , y 5 and
z 1 and z 2 are shielded and attenuated according to the thickness of the breathable solid S in the front-rear direction, and as a result, most of the radiant heat R is emitted to the upstream side Y of the combustion gas G.
実施例
次に、本考案に係る輻射促進加熱こんろにつ
き、好適な実施例を挙げて、添付図面を参照しな
がら以下説明する。第2図は、本考案に係る輻射
促進加熱こんろの1部切欠縦断面を示すものであ
つて、この実施例ではガスこんろを想定している
が、これに限られるものでなく、石油をバーナ燃
焼させる石油こんろ等も好適に使用し得る。Embodiments Next, preferred embodiments of the radiation-enhanced heating stove according to the present invention will be described below with reference to the accompanying drawings. FIG. 2 shows a partially cutaway longitudinal section of the radiation-enhanced heating stove according to the present invention. In this embodiment, a gas stove is assumed, but the stove is not limited to this. An oil stove or the like that burns the oil with a burner can also be suitably used.
添付図面において、参照符号10はこんろ本体
を示し、このこんろ本体10の略中央に大径の円
筒状落とし12が形成されている。また肉厚の耐
熱性金属を材質とする燃焼筒14が、前記落とし
12に同心的に内挿されて、その底部16に直立
的に着座している。前記燃焼筒14の下部外周に
はスリツト状の排気孔18が多数穿設されると共
に、該燃焼筒14の外部直径は前記円筒状落とし
12の内部直径よりも充分小さく設定されて、落
とし12と燃焼筒14との間に、第2図に示す所
定寸法の環状空隙20が形成されている(この環
状空隙20は、後述するように排気ガスの逃出路
として機能する。)なお、前記燃焼筒14の内部
中央部分は、後述するように供給された燃料ガス
の燃焼加熱帯域となるものであり、また該燃焼筒
14の頂部外周には、逆フランジ状の環状部材2
4が被着されている。 In the accompanying drawings, reference numeral 10 indicates a stove body, and a large diameter cylindrical droplet 12 is formed approximately in the center of the stove body 10. Further, a combustion tube 14 made of a thick heat-resistant metal is inserted concentrically into the droplet 12 and is seated upright on the bottom 16 thereof. A large number of slit-shaped exhaust holes 18 are bored on the outer periphery of the lower part of the combustion tube 14, and the outer diameter of the combustion tube 14 is set to be sufficiently smaller than the inner diameter of the cylindrical droplet 12. An annular gap 20 of a predetermined size shown in FIG. 2 is formed between the combustion tube 14 (this annular gap 20 functions as an escape path for exhaust gas as described later). The inner central portion of the cylinder 14 serves as a combustion heating zone for the supplied fuel gas as will be described later, and an inverted flange-shaped annular member 2 is provided on the outer periphery of the top of the combustion cylinder 14.
4 is attached.
前記燃焼筒14における燃焼加熱帯域(参照記
号CZで示す)には、前記通気性固体を皿状に湾
曲形成してなる輻射板26が、その凹面が上方に
向くようにして配設固定されている。この固定方
法としては、種々の手段が適宜採用されるが、本
実施例では、第2図に示すように渦巻状の空気供
給管(後述)上に載置されるようになつている。
前記輻射板26を構成する「通気性固体」の具体
例として、線径0.6mmで16メツシユのステンレス
金網を4枚積層重合したものを採用し、これを皿
状に湾曲形成して使用したところ好結果が得られ
た。 In the combustion heating zone (indicated by reference symbol CZ) of the combustion tube 14, a radiant plate 26 made of the air permeable solid curved into a dish shape is arranged and fixed with its concave surface facing upward. There is. Various means can be used as appropriate for this fixing method, but in this embodiment, as shown in FIG. 2, it is placed on a spiral air supply pipe (described later).
As a specific example of the "breathable solid" constituting the radiant plate 26, four sheets of 16-mesh stainless wire mesh with a wire diameter of 0.6 mm were laminated and polymerized, and this was used by forming it into a curved dish shape. Good results were obtained.
前記輻射板26の上方には、燃料供給バーナが
配設されている。この燃料供給バーナは、本実施
例の場合、空気供給管28と燃料供給管44との
複合構造になつているが、必要に応じて燃料供給
管単体または燃料・空気混合供給管単体としても
よい。本実施例では、耐熱性金属を材質とする空
気供給管28は、その一端部がガスこんろ10の
空気導入口30に接続されると共に、本体部は前
記燃焼筒14の内部に水平に延在した後、燃焼筒
14の底部中央で垂直に若干距離立上がり、前記
輻射板26の下方において、第4図に示す如く、
中心から半径方向外方に向けて渦巻状に巻回され
ている。そして該空気供給管28は、燃焼筒14
の内壁に最も近接している最終の巻回部におい
て、符号32で示す如く再度垂直に立上がり、前
記輻射板26の切欠部34を介して輻射板上方に
導出され、ここで環状の空気供給ノズル36に形
成されている。この空気供給ノズル36は、内周
部にスリツト状の空気供給孔38が適宜数穿設さ
れ、図示しない送風源(図示せず)から強制的に
空気の供給が行なわれるようになつている。 A fuel supply burner is arranged above the radiation plate 26. In the case of this embodiment, this fuel supply burner has a composite structure of the air supply pipe 28 and the fuel supply pipe 44, but it may be a single fuel supply pipe or a single fuel/air mixture supply pipe as necessary. . In this embodiment, the air supply pipe 28 made of a heat-resistant metal has one end connected to the air inlet 30 of the gas stove 10, and a main body extending horizontally into the combustion tube 14. After that, it rises vertically for some distance at the center of the bottom of the combustion tube 14, and below the radiant plate 26, as shown in FIG.
It is spirally wound radially outward from the center. The air supply pipe 28 is connected to the combustion tube 14.
At the final winding portion closest to the inner wall of the radiator, it rises vertically again as shown by reference numeral 32, and is led out above the radiator plate through the notch 34 of the radiator plate 26, where the annular air supply nozzle 36. This air supply nozzle 36 has an appropriate number of slit-shaped air supply holes 38 bored in its inner peripheral portion, so that air is forcibly supplied from an air blowing source (not shown).
更に前記空気供給ノズル36の上方に、これと
同径の環状に形成した燃焼用バーナ40が同心配
置され、この燃焼用バーナ40は内周部に多数の
燃料吹出孔42が穿設されると共に、その一端部
は燃料供給管44に接続されている。この場合、
当該燃料供給管44は、第2図に示す如く、輻射
板26の下方に渦巻状に巻回させた状態で配置さ
れ、管中を送給される燃料を予熱するように構成
されている。すなわち燃料供給管44は、こんろ
10のホース接続口46に接続され、本体部は前
記燃焼筒14の内部に水平に臨まされた後、空気
供給管28の渦巻部の下方において、半径方向外
方から中心部に向けて渦巻状に巻回されている。
次いで第2図に参照符号48で示す如く、燃料供
給管44は垂直に立上げられた後、前記輻射板2
6の上方に導出され、ここで前記燃焼用バーナ4
0に接続されている。 Further, above the air supply nozzle 36, a combustion burner 40 formed in an annular shape having the same diameter is concentrically arranged, and this combustion burner 40 has a large number of fuel blowing holes 42 bored in its inner circumference. , one end thereof is connected to a fuel supply pipe 44. in this case,
As shown in FIG. 2, the fuel supply pipe 44 is arranged in a spiral manner below the radiant plate 26, and is configured to preheat the fuel fed through the pipe. That is, the fuel supply pipe 44 is connected to the hose connection port 46 of the stove 10, and after the main body faces horizontally inside the combustion tube 14, it is radially outwardly located below the spiral part of the air supply pipe 28. It is wound in a spiral from the front to the center.
Next, as shown by reference numeral 48 in FIG. 2, the fuel supply pipe 44 is vertically raised, and then the radiant plate
6, where the combustion burner 4
Connected to 0.
このように構成したことによつて、前記輻射板
26と燃料供給バーナとの間に、該バーナの燃焼
ガスが輻射板を通過するに際し燃焼ガス上流側へ
の輻射を促進する前記燃焼加熱帯域CZが形成さ
れる。この燃焼加熱帯域CZは、第2図に示すよ
うに、例えば石英ガラスや雲母の如き耐熱性材料
からなる熱透過板50で被蓋され塞がれた状態に
なつている。これにより前記帯域CZ中にある高
温の燃焼ガスが、帯域上方から外部へ無駄に逃出
するのが防止され、全て輻射板26を通過して有
効に熱交換される。この場合、鍋22等の被加熱
物の重量を支持する円形の五徳乃至ロストル52
を配設しておくのが、熱透過板50の保護上好ま
しい。 With this configuration, the combustion heating zone CZ is provided between the radiation plate 26 and the fuel supply burner to promote radiation of the combustion gas to the upstream side when the combustion gas of the burner passes through the radiation plate. is formed. As shown in FIG. 2, this combustion heating zone CZ is covered and closed with a heat transmitting plate 50 made of a heat-resistant material such as quartz glass or mica. This prevents the high temperature combustion gas in the zone CZ from wastefully escaping from above the zone to the outside, and all of it passes through the radiant plate 26 and is effectively heat exchanged. In this case, a circular trivet or roaster 52 that supports the weight of the object to be heated such as the pot 22
It is preferable to provide this in order to protect the heat transmitting plate 50.
なお、前記燃料供給バーナに接続され、かつ輻
射板26の燃焼ガス下流側(すなわち燃焼加熱帯
域CZの反対側)に近接配置される配管系は、前
記のように渦巻状に巻回した形状とする以外に、
燃焼ガスとの接触面積が充分大きくなるような別
の形状、例えば角巻状や蛇行状としてもよい。 The piping system connected to the fuel supply burner and arranged close to the combustion gas downstream side of the radiation plate 26 (that is, the opposite side of the combustion heating zone CZ) has a spirally wound shape as described above. In addition to doing
It is also possible to use another shape that provides a sufficiently large contact area with the combustion gas, such as a square-wound shape or a meandering shape.
実施例の作用
次に、前述した実施例に係る輻射促進加熱こん
ろの使用の実際につき説明する。被加熱物として
鍋22を、燃焼筒14の頂部に配設したロストル
52に載置し、燃料供給バーナに点火する。すな
わち密閉型の本実施例において、空気供給ノズル
36から空気を強制供給すると共に、燃焼用バー
ナ40から燃料ガスを吹出させてこれに点火する
と、前記燃焼帯域CZに高温の燃焼ガスが得られ
る。この燃焼ガスは、主として輻射熱伝達により
前記熱透過板50を介して鍋22を好適に加熱す
ると共に、通気性固体からなる前記輻射板26を
下方に通過した後、燃焼筒14の下部に形成した
排気孔18を経て排ガスとして逃出する。Effects of the Embodiment Next, the actual use of the radiation-enhanced heating stove according to the embodiment described above will be explained. The pot 22 as an object to be heated is placed on the roaster 52 disposed at the top of the combustion tube 14, and the fuel supply burner is ignited. That is, in this embodiment of the closed type, when air is forcibly supplied from the air supply nozzle 36 and fuel gas is blown out from the combustion burner 40 and ignited, high-temperature combustion gas is obtained in the combustion zone CZ. This combustion gas suitably heats the pot 22 through the heat transmission plate 50 mainly by radiant heat transfer, and after passing downward through the radiant plate 26 made of a breathable solid, the combustion gas is formed at the lower part of the combustion tube 14. It escapes as exhaust gas through the exhaust hole 18.
そして前記燃焼ガスが輻射板26を通過する際
に、先に説明したように燃焼ガスの顕熱が表面積
の極めて大きい固体と接触することにより高効率
の熱交換が行なわれ、前記輻射板26は大量の幅
射熱を射出する。しかも、第1図の模式図で理輪
説明した如く、前記輻射板26で射出された大量
の輻射熱の大部分は、燃焼ガスの上流側(すなわ
ち本考案の場合燃焼帯域CZ側)に射出されるの
で、鍋22は更にこの輻射熱伝達によつても追加
的に加熱されることになり、極めて高い熱効率が
達成される。 When the combustion gas passes through the radiant plate 26, the sensible heat of the combustion gas comes into contact with a solid having an extremely large surface area, resulting in highly efficient heat exchange, and the radiant plate 26 Emits a large amount of radiant heat. Moreover, as explained in the schematic diagram of FIG. 1, most of the large amount of radiant heat emitted by the radiant plate 26 is emitted to the upstream side of the combustion gas (that is, the combustion zone CZ side in the case of the present invention). Therefore, the pot 22 is additionally heated by this radiant heat transfer, achieving extremely high thermal efficiency.
また、輻射板26を通過した燃焼ガスは、顕熱
を奪われることにより50〜100℃程度の温度低下
を来し、比較的低温(約250℃)の排ガスとなつ
て排気孔18および環状空隙20から外部へ放散
されるものである。従つて、このガスこんろの使
用によつても、周囲環境の温度上昇は有効に抑制
される。この場合、大径の鍋22を使用しても、
その底部により前記環状空隙20を塞いでしまう
ことのないよう、第2図に示す如く、鍋22の底
面レベルよりもこんろ本体10の頂面54のレベ
ルが下方になるよう設定しておくのが好ましい。
またこれによつて、環状空隙から放散した燃焼ガ
スは上昇し、再度鍋22に接触して加熱を行なう
ので有効な熱利用が達成される。 Furthermore, the combustion gas that has passed through the radiation plate 26 is deprived of sensible heat, resulting in a temperature drop of about 50 to 100 degrees Celsius, and becomes comparatively low-temperature (approximately 250 degrees Celsius) exhaust gas. 20 to the outside. Therefore, even by using this gas stove, the temperature rise in the surrounding environment can be effectively suppressed. In this case, even if a large diameter pot 22 is used,
In order to prevent the bottom from blocking the annular gap 20, the level of the top surface 54 of the stove body 10 is set to be lower than the bottom surface level of the pot 22, as shown in FIG. is preferred.
Further, due to this, the combustion gas dissipated from the annular gap rises and comes into contact with the pot 22 again to heat it, thereby achieving effective heat utilization.
なお図示の実施例の場合、環状空隙20から燃
焼廃ガスは上方へ逃出して室内に放散されるが、
前記環状空隙20を密閉し、これに屋外排気管
(図示せず)を連通して、排気フアンにより強制
的に燃焼廃ガスを屋外へ排出するようにすれば、
室内の空気は全く汚染されることがなく極めて好
適である。また、このように燃焼廃ガスをフアン
で掃引する場合は、空気供給管28の側に前述し
た送風源を接続する必要はなくなる。 In the case of the illustrated embodiment, the combustion waste gas escapes upward from the annular gap 20 and is dissipated into the room.
If the annular gap 20 is sealed, an outdoor exhaust pipe (not shown) is connected to the annular gap 20, and the combustion waste gas is forcibly discharged outdoors by an exhaust fan,
The indoor air is completely uncontaminated and is extremely suitable. Furthermore, when the combustion waste gas is swept by a fan in this manner, there is no need to connect the above-mentioned blowing source to the air supply pipe 28 side.
なお、前述したように輻射板26を通過した後
の燃焼ガスは温度低下を伴うものであるが、それ
でも相当の熱エネルギーは有している。また焼燃
ガスの下流側となる輻射板26下方にも、輻射熱
は量は多くなくても射出されるものであるから
(第1図参照)、前記輻射板26の下方に渦巻状に
巻回配置した空気供給管28の周りはかなりの高
温環境となる。従つて、この空気供給管28中を
送給される空気は充分予熱されて燃焼帯域CZへ
供給されることになり、燃焼効率の向上に寄与す
ることができる。同様に燃料供給管44も輻射板
26の下方に巻回配置したときは、当該燃料の予
熱がなされて燃焼効率を向上させる(燃料が液体
系の場合特にその効果が認められる)。 Note that, as described above, although the combustion gas after passing through the radiant plate 26 is accompanied by a temperature drop, it still has considerable thermal energy. Furthermore, since radiant heat is emitted below the radiant plate 26, which is the downstream side of the combustion gas, even if the amount is not large (see Fig. 1), the radiant heat is spirally wound below the radiant plate 26. The environment around the arranged air supply pipe 28 becomes quite high temperature. Therefore, the air fed through the air supply pipe 28 is sufficiently preheated and supplied to the combustion zone CZ, which can contribute to improving combustion efficiency. Similarly, when the fuel supply pipe 44 is arranged in a winding manner below the radiant plate 26, the fuel is preheated and the combustion efficiency is improved (this effect is particularly noticeable when the fuel is a liquid type).
考案の効果
以上説明したように、本考案に係る輻射促進加
熱こんろによれば、燃焼用バーナからの燃焼ガス
は、熱透過性に優れた熱透過板を介して、この熱
透過板に載置された鍋等の被加熱物を主として輻
射熱伝達により加熱する。また、高温の前記燃焼
ガスは、通気性固体からなる輻射板に接触した後
これを通過し、当該輻射板において顕熱が大量の
固体輻射熱に変換される。この固体輻射熱は、第
1図の模式図に関して説明した如く、その大部分
は燃焼ガスの上流側である燃焼加熱帯域側に射出
されるので、前記被加熱物は燃焼加熱帯域側に射
出された固体輻射熱の伝達によつても更に加熱さ
れる。Effects of the Invention As explained above, according to the radiation-enhanced heating stove according to the present invention, the combustion gas from the combustion burner passes through the heat transmission plate with excellent heat permeability, and is transferred to the heat transmission plate. The placed object to be heated, such as a pot, is heated mainly by radiant heat transfer. Furthermore, the high-temperature combustion gas passes through a radiant plate made of a breathable solid, and the sensible heat is converted into a large amount of solid radiant heat in the radiant plate. As explained with reference to the schematic diagram in Fig. 1, most of this solid radiant heat is injected to the combustion heating zone side, which is the upstream side of the combustion gas, so the object to be heated is injected to the combustion heating zone side. Further heating is achieved by the transfer of solid-state radiant heat.
また燃焼筒の内部で、かつ輻射板および燃焼用
バーナの間に画成される燃焼加熱帯域を、耐熱性
の熱透過板で上方から被蓋するようになつている
ので、高温の燃焼ガスは前記帯域中に封じ込めら
れて外部へ無駄に逃出するのが防止される。この
ため、高温の燃焼ガスの殆どが通気性固体からな
る輻射板に接触して、顕熱が大量の固体輻射熱に
変換され、有効なエネルギーの利用がなされる。 In addition, the combustion heating zone defined inside the combustion tube and between the radiant plate and the combustion burner is covered from above with a heat-resistant heat transmitting plate, so that high-temperature combustion gas is It is confined within the zone and is prevented from escaping to the outside. Therefore, most of the high-temperature combustion gas comes into contact with the radiant plate made of a breathable solid, converting sensible heat into a large amount of solid radiant heat, and effectively utilizing energy.
更に、燃焼帯域に供給される空気および燃料
は、輻射板を通過した燃焼ガスとの間で熱交換が
なされて予熱されるため、燃焼効率が改善され
る。しかも、燃焼後の排ガスは顕熱を奪取されて
比較的低温となつているため、周囲環境の温度上
昇を適切に抑制することができる等、多くの有益
な効果を奏する。 Furthermore, since the air and fuel supplied to the combustion zone are preheated by heat exchange with the combustion gas that has passed through the radiant plate, combustion efficiency is improved. In addition, since the exhaust gas after combustion has sensible heat taken away and has a relatively low temperature, it has many beneficial effects, such as being able to appropriately suppress a rise in the temperature of the surrounding environment.
第1図は通気性固体の輻射熱射出状態を示す模
式図、第2図は本考案に係る輻射促進加熱こんろ
の1部切欠縦断面図、第3図は第2図の−線
断面図、第4図は第2図の−線断面図、第5
図は第2図に示す装置の1部切欠斜視図、第6図
は本考案の別の実施例の1部切欠縦断面図であ
る。
26……輻射板、28……空気供給管、36…
…空気供給ノズル、40……燃焼用バーナ、44
……燃料供給管、50……熱透過板。
Fig. 1 is a schematic diagram showing the radiant heat emission state of a breathable solid, Fig. 2 is a partially cutaway longitudinal cross-sectional view of the radiation-enhanced heating stove according to the present invention, Fig. 3 is a cross-sectional view taken along the - line in Fig. 2, Figure 4 is a sectional view taken along the - line in Figure 2;
The figure is a partially cutaway perspective view of the device shown in FIG. 2, and FIG. 6 is a partially cutaway vertical sectional view of another embodiment of the present invention. 26...Radiation plate, 28...Air supply pipe, 36...
... Air supply nozzle, 40 ... Combustion burner, 44
...Fuel supply pipe, 50...Heat transmission plate.
Claims (1)
とし12に同心的に内挿されて直立する燃焼筒1
4と、 通気性固体からなる板材を皿状に湾曲形成し、
前記燃焼筒14の内部に水平に配設されて凹面が
上方を指向している輻射板26と、 前記燃焼筒14の内部でかつ前記輻射板26の
下方に位置し、所要形状に湾曲されて延在する相
互に分離した燃料供給管44および空気供給管2
8と、 前記燃焼筒14の内部でかつ前記輻射板26の
上方に環状に配設され、前記空気供給管28に連
通する空気供給ノズル36と、 前記燃焼筒14の内部でかつ前記空気供給ノズ
ル36の真上に同心的に配設され、前記燃料供給
管44に連連する燃焼用バーナ40と、 前記燃焼筒14の頂部に載置されて、該燃焼筒
14の内部で前記輻射板26および燃焼用バーナ
40の間に画成される燃焼加熱帯域CZを上方か
ら被蓋し、その上面に被加熱物が載置される耐熱
性の熱透過板50とからなり、 前記燃料供給管44および空気供給管28中の
流体と燃焼用バーナ40での燃焼ガスとの熱交換
を行なつて、前記流体を予熱した状態で燃焼用バ
ーナ40および空気供給ノズル36に夫々供給し
得るよう構成したことを特徴とする輻射促進加熱
こんろ。[Claims for Utility Model Registration] A combustion tube 1 that stands upright and is concentrically inserted into a cylindrical drop 12 formed approximately at the center of the stove body 10.
4. A board made of breathable solid is curved into a dish shape.
A radiant plate 26 is arranged horizontally inside the combustion tube 14 and has a concave surface facing upward; Extending, mutually separated fuel supply pipe 44 and air supply pipe 2
8, an air supply nozzle 36 disposed annularly inside the combustion tube 14 and above the radiation plate 26 and communicating with the air supply pipe 28; and an air supply nozzle 36 inside the combustion tube 14 and above the radiation plate 26; A combustion burner 40 is disposed concentrically right above the combustion tube 36 and is connected to the fuel supply pipe 44; It consists of a heat-resistant heat transmitting plate 50 that covers the combustion heating zone CZ defined between the combustion burners 40 from above and on which the object to be heated is placed, and the fuel supply pipe 44 and The fluid in the air supply pipe 28 and the combustion gas in the combustion burner 40 exchange heat, and the fluid is supplied in a preheated state to the combustion burner 40 and the air supply nozzle 36, respectively. A radiation-enhanced heating stove featuring the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5008782U JPS58153921U (en) | 1982-04-06 | 1982-04-06 | Radiation-enhanced heating stove |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5008782U JPS58153921U (en) | 1982-04-06 | 1982-04-06 | Radiation-enhanced heating stove |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58153921U JPS58153921U (en) | 1983-10-14 |
JPH0221702Y2 true JPH0221702Y2 (en) | 1990-06-12 |
Family
ID=30060898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5008782U Granted JPS58153921U (en) | 1982-04-06 | 1982-04-06 | Radiation-enhanced heating stove |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58153921U (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5416775B2 (en) * | 1976-05-31 | 1979-06-25 | ||
JPS5746706B2 (en) * | 1977-09-28 | 1982-10-05 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5534483Y2 (en) * | 1977-07-07 | 1980-08-15 | ||
JPS5746706U (en) * | 1980-09-01 | 1982-03-15 |
-
1982
- 1982-04-06 JP JP5008782U patent/JPS58153921U/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5416775B2 (en) * | 1976-05-31 | 1979-06-25 | ||
JPS5746706B2 (en) * | 1977-09-28 | 1982-10-05 |
Also Published As
Publication number | Publication date |
---|---|
JPS58153921U (en) | 1983-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3936045B2 (en) | Gas burner | |
US6823859B2 (en) | Flat heating surface type gas stove | |
JP2682362B2 (en) | Exhaust heat recovery type combustion device | |
JPH0221702Y2 (en) | ||
JPS6048442A (en) | Infrared ray heating system exhaust gas down flow type gas water boiler | |
CN212673206U (en) | Stove burner and stove | |
JPS6151204B2 (en) | ||
CN218237576U (en) | Gas stove pot rack and gas stove | |
CN221881556U (en) | Pot rack and kitchen range | |
CN113551226B (en) | Cooker burner and cooker | |
CN207279593U (en) | One kind is without burner hearth steam boiler | |
JPS6034883Y2 (en) | burner | |
CN2313161Y (en) | Efficient energy-saving firewood-burning stove | |
JPS6172941A (en) | Combustion promotion device in fluid fuel burner | |
JPS6260605B2 (en) | ||
JPS5818037A (en) | Method and device for promoting heating in portable cooking stove | |
JPS6347781Y2 (en) | ||
JP4085219B2 (en) | Combustion device | |
JPS6123853A (en) | Combustion apparatus for stirling engine | |
JPH0428977B2 (en) | ||
JPH0157243B2 (en) | ||
CN2304828Y (en) | Pipe style heating stove | |
JPS6347779Y2 (en) | ||
JPS63116006A (en) | Oil burning room heater and its operation | |
JPH0311527Y2 (en) |