[go: up one dir, main page]

JPH02216895A - Semiconductor porcelain board with built-in capacitor - Google Patents

Semiconductor porcelain board with built-in capacitor

Info

Publication number
JPH02216895A
JPH02216895A JP1036325A JP3632589A JPH02216895A JP H02216895 A JPH02216895 A JP H02216895A JP 1036325 A JP1036325 A JP 1036325A JP 3632589 A JP3632589 A JP 3632589A JP H02216895 A JPH02216895 A JP H02216895A
Authority
JP
Japan
Prior art keywords
capacitor
conductor
built
glass
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1036325A
Other languages
Japanese (ja)
Inventor
Kazuhito Narumi
鳴海 一仁
Masato Nagano
長野 正登
Toshihiro Takei
武居 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP1036325A priority Critical patent/JPH02216895A/en
Publication of JPH02216895A publication Critical patent/JPH02216895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To prevent a decrease in capacitance of a built-in capacitor, an increase in dielectric loss and an increase in process capacity change by forming the capacitor of an electrode material in which predetermined amounts of sintering agent made of glass powder and metal oxide having specific melting point are added to conductive metal component. CONSTITUTION:A capacitor is formed of an electrode material in which 0.05-1.5wt.% of sintering agent made of glass power and metal oxide having 850 deg.C or lower of melting point are added to conductor metal component. Thus, a predetermined part of a semiconductor porcelain board with built-in capacitors to be used as a capacitor is coated with paste for electrodes made of metal component to become conductor, glass powder, low melting point metal oxide and organic vehicle, dried, and baked at 850-950 deg.C to form electrodes 3 for the capacitor. In order to avoid contact of an electrode except as desired with upper base wirings, it is coated with dielectric paste made of glass, and in order to connect the electrode to desired conductor wirings 9, it is coated with paste made of conductor. Then, it is baked at approx. 850 deg.C to form the dielectric glass and the conductor as an insulating layer 4 and viahole 5, and the steps are repeated predetermined times.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は誘電体磁器基板等の電子材料として利用するこ
とのできるコンデンサ内蔵型半導体磁器基板に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a capacitor-embedded semiconductor ceramic substrate that can be used as an electronic material such as a dielectric ceramic substrate.

〔従来の技術〕[Conventional technology]

近年、粒界絶縁型のコンデンサ内蔵基板が開発され、電
子機器の小型化が期待されている。この基板においては
、従来アルミナ基板用の導体配線に用いられている導体
ペーストを使用して、内蔵されているコンデンサ部の容
量を取り出していた。
In recent years, grain boundary insulated substrates with built-in capacitors have been developed, and are expected to help miniaturize electronic devices. In this board, the capacitance of the built-in capacitor section was taken out using a conductive paste conventionally used for conductor wiring for alumina boards.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来アルミナ基板用の導体配線に用いら
れている導体ペーストは、その導体金属成分に対し、ガ
ラス粉末からなる焼結剤及び低融点の金属酸化物を多量
に含有しており、そのものを、コンデンサ内蔵型半導°
体磁器基板のコンデンサ部の電極として使用した場合、
内蔵されたコンデンサをトリミング等によって、所定の
容量に調整しても、後続する絶縁層形成工程を経た後、
所定の容量から変化し、又、その変化率が大きいほど、
そのバラツキも大きくなり、コンデンサ内蔵型半導体磁
器基板においては良品率の上で無視できない問題点を有
していることが判明した。
However, the conductor paste conventionally used for conductor wiring for alumina substrates contains a large amount of a sintering agent made of glass powder and a low melting point metal oxide compared to its conductor metal components, and Semiconductor with built-in capacitor°
When used as an electrode for the capacitor part of a ceramic substrate,
Even if the built-in capacitor is adjusted to the specified capacity by trimming, etc., after the subsequent insulation layer formation process,
The more the capacitance changes from a predetermined value, and the larger the rate of change, the more
The variation has also increased, and it has been found that the semiconductor ceramic substrate with a built-in capacitor has a problem that cannot be ignored in terms of the yield rate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、コンデンサ容量のプロセス変化が減少可
能な電極材料を求めて、鋭意検討した結果、本発明を完
成させるに至った。即ち本発明は、導体金属成分に対し
、ガラス粉末からなる焼結剤と、融点が850℃以下の
金属酸化物とを0.05〜1.5重量%添加した電極材
料でコンデンサを形成したことを特徴とするコンデンサ
内蔵型半導体磁器基板である。
The present inventors have completed the present invention as a result of extensive research in search of an electrode material that can reduce process changes in capacitance. That is, the present invention forms a capacitor using an electrode material in which 0.05 to 1.5% by weight of a sintering agent made of glass powder and a metal oxide having a melting point of 850° C. or lower are added to the conductor metal component. This is a semiconductor ceramic substrate with a built-in capacitor.

コンデンサ内蔵型半導体磁器基板において、ガラス粉末
からなる焼結剤と、融点が850℃以下の金属酸化物と
を、導体金属成分に対し、0.05〜1.5重量%と限
定した理由は、次の通りである。
In the semiconductor ceramic substrate with a built-in capacitor, the reason why the sintering agent made of glass powder and the metal oxide with a melting point of 850°C or less are limited to 0.05 to 1.5% by weight based on the conductor metal component is as follows. It is as follows.

添加成分が0.05重量%未満であれば、コンデンサ内
蔵型磁器基板のコンデンサ部と電極との密着強度が弱い
。又、1.5重量%を超える場合は、コンデンサ容量の
プロセス変化及び誘電損失(tanδ)が悪化する。さ
らに変化前の容量自体も低下する。
If the additive component is less than 0.05% by weight, the adhesion strength between the capacitor portion of the capacitor built-in ceramic substrate and the electrode will be weak. Moreover, if it exceeds 1.5% by weight, process changes in capacitor capacity and dielectric loss (tan δ) will worsen. Furthermore, the capacitance itself before the change also decreases.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

l) コンデンサ内蔵半導体磁器基板(第1図)のコン
デンサとして用いる所定の部分に、導体となる金属成分
、ガラス粉末、低融点金属酸化物及び有機ビヒクルから
なる電極用ペーストを塗布し、乾燥後、850〜950
℃の温度範囲で焼成せしめ、内蔵コンデンサ用電極を形
成する(第2図)。尚、第1図の参照数字lは、コンデ
ンサ機能部分、参照数字2は、各々のコンデンサ機能を
分離する部分、第2図の参照数字3は、電極である。又
、電極3は所定容量範囲内に入れるためトリミングする
場合もある。
l) An electrode paste consisting of a metal component to be a conductor, glass powder, a low melting point metal oxide, and an organic vehicle is applied to a predetermined portion of a semiconductor ceramic substrate with a built-in capacitor (Fig. 1) to be used as a capacitor, and after drying, 850-950
The electrodes for the built-in capacitor are formed by firing at a temperature range of 10°C (Fig. 2). The reference numeral l in FIG. 1 is a capacitor functional part, the reference numeral 2 is a part separating each capacitor function, and the reference numeral 3 in FIG. 2 is an electrode. Further, the electrode 3 may be trimmed to fit within a predetermined capacitance range.

2)所望以外の前記電極と、上部基体配線との接触を避
ける目的で、ガラスよりなる誘電体ペーストを塗布し、
又、前記電極を所望の導体配線に接続する目的で、導体
よりなるペーストを塗布する。次に、約850℃で焼成
し、前記誘電体ガラスと導体を各々、絶縁層とビヤホー
ルにならしめる(第3図)。但し、各々別々に焼成して
も良い。
2) Applying a dielectric paste made of glass in order to avoid contact between the above-mentioned electrodes other than those desired and the upper substrate wiring,
Further, a paste made of a conductor is applied for the purpose of connecting the electrode to a desired conductor wiring. Next, it is fired at about 850° C. to form the dielectric glass and the conductor into an insulating layer and a via hole, respectively (FIG. 3). However, each may be fired separately.

尚、第3図の参照数字4は誘電体ガラスよりなる絶縁層
、参照数字5は導体よりなるビヤホールである。
In addition, reference numeral 4 in FIG. 3 is an insulating layer made of dielectric glass, and reference numeral 5 is a via hole made of a conductor.

3)次に、前記2)の工程を所定回数繰り返す(第4図
)。但し第3図は、3度繰り返した例である。
3) Next, repeat the step 2) a predetermined number of times (FIG. 4). However, FIG. 3 is an example in which the process is repeated three times.

なお、コンデンサ電極形成時のコンデンサ容量と、最終
絶縁層及びピアホール形成時のコンデンサ容量のずれ、
すなわちプロセス容量変化率は次式で表わす。
In addition, the difference between the capacitor capacitance at the time of forming the capacitor electrode and the capacitor capacitance at the time of forming the final insulating layer and the peer hole,
That is, the process capacity change rate is expressed by the following equation.

ハ A:コンデンサ電極形成時のコンデンサ容量B;最終絶
縁層及びビヤホール形成時のコンデンサ容量 第5図には、本発明のコンデンサ内蔵半導体基板を用い
た電子回路基体の一例を示す。第5図において参照数字
6はIC1同7はチップ部品、同8は抵抗体、同9は導
体配線を示す。
A: Capacitance of capacitor when forming capacitor electrode B: Capacitance of capacitor when forming final insulating layer and via hole FIG. 5 shows an example of an electronic circuit board using the semiconductor substrate with a built-in capacitor of the present invention. In FIG. 5, reference numeral 6 indicates an IC, 7 indicates a chip component, 8 indicates a resistor, and 9 indicates a conductor wiring.

コンデンサ内蔵型半導体磁器基板のコンデンサ容量を取
り出す電極材料において導体となる金属成分too、o
重量部に対する、焼結剤としてのガラス粉末と、融点が
850℃以下の低融点金属酸化物とが5.0重量部を超
えた場合、内蔵コンデンサ容量の低下、誘電損失の増大
、プロセス容量変化の増大が起こり好ましくない。
Metal components too, o that become conductors in the electrode material for extracting the capacitor capacity of the semiconductor ceramic substrate with a built-in capacitor
If the glass powder as a sintering agent and the low melting point metal oxide with a melting point of 850°C or less exceed 5.0 parts by weight, the built-in capacitor capacity will decrease, dielectric loss will increase, and process capacity will change. This is undesirable as an increase in

さらに本発明の実施例を比較例に対比して説明する。Further, examples of the present invention will be explained in comparison with comparative examples.

第6図に示したコンデンサ内蔵型半導体磁器基板を作成
した。第6図の1はコンデンサ機能部分、2はコンデン
サ機能を分離する部分であり、1の面積は16m5” 
、基板の厚さは0.635mmである。このコンデンサ
機能部分の両面に、第1表の「電極組成」の欄に示す比
率に調整した導体となる金属粉末と、ガラス粉末と、金
属酸化物粉末と、エチルセルロースと、溶剤とからなる
ペーストを塗布した。その後、乾燥し850℃,900
°c、  950℃で焼成した。次に内蔵コンデンサ特
性として、容量(μF)、 tanδ(%)を測定し、
この容量を、プロセス容量変化率の式中のコンデンサ電
極形成時のコンデンサ容量とした。次に絶縁層としての
ガラスペーストと、ビヤホールとしての導体ペーストを
印刷し、乾燥後850℃で焼成した。この操作を3回繰
り返し、約45μmの絶縁層を形成した。次に内蔵コン
デンサ特性として、容量(μF)、tanδ(%)を測
定し、この容量を、プロセス容量変化率の式中の最終絶
縁層及びビヤホール形成時のコンデンサ容量とした。次
に、プロセス容量変化率の式に従い、プロセス容量変化
率を算出した。これらの測定結果を第1表に示す。なお
、第1表において*印は比較例を示し、他のものは実施
例を示す。
A semiconductor ceramic substrate with a built-in capacitor shown in FIG. 6 was prepared. In Figure 6, 1 is the capacitor function part, 2 is the part that separates the capacitor function, and the area of 1 is 16m5"
, the thickness of the substrate is 0.635 mm. A paste consisting of metal powder, glass powder, metal oxide powder, ethyl cellulose, and solvent, which will become a conductor, adjusted to the ratio shown in the "Electrode Composition" column of Table 1 is applied to both sides of this capacitor functional part. Coated. After that, it was dried at 850℃ and 900℃.
°C, fired at 950 °C. Next, measure the capacitance (μF) and tanδ (%) as the built-in capacitor characteristics.
This capacitance was taken as the capacitor capacitance at the time of capacitor electrode formation in the process capacitance change rate formula. Next, glass paste as an insulating layer and conductive paste as a via hole were printed, dried and fired at 850°C. This operation was repeated three times to form an insulating layer with a thickness of about 45 μm. Next, as built-in capacitor characteristics, capacitance (μF) and tan δ (%) were measured, and this capacitance was used as the capacitance at the time of forming the final insulating layer and via hole in the formula for process capacitance change rate. Next, the process capacity change rate was calculated according to the process capacity change rate formula. The results of these measurements are shown in Table 1. In Table 1, * marks indicate comparative examples, and others indicate examples.

なお、密着強度試験方法(第7図参照)は次の如くであ
る。
The adhesion strength test method (see Figure 7) is as follows.

基板10の上に2mmX2mmに電極11を形成し、図
に示すように半田付12によって0.65111mφ径
のリード線13を設け、L型引張り試験を行った。
An electrode 11 of 2 mm x 2 mm was formed on the substrate 10, and a lead wire 13 with a diameter of 0.65111 mφ was provided by soldering 12 as shown in the figure, and an L-shaped tensile test was conducted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プロセス容量変化が少なく、かつ誘電
体損失が小さいコンデンサを内蔵するコンデンサ内蔵型
半導体磁器基板を、高良品率で得ることができた。
According to the present invention, a capacitor-embedded semiconductor ceramic substrate having a built-in capacitor with little process capacitance change and low dielectric loss could be obtained at a high yield rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施測高を示す断面図であり、 第2図は、第1図に示す実施測高のコンデンサ機能部分
に電極を設けた一例を示す断面図であり、第3図は、絶
縁層とビヤホールを形成した本発明の一実施測高の一例
を示す断面図であり、第4図は、絶縁層とビヤホールを
3層形成した本発明実施測高の一例を示す断面図であり
、第5図は、本発明の一実施測高を用いた電子回路基体
の一例を示す断面図であり、 第6図は、実施例に用いたコンデンサ内蔵型半導体磁器
基板の斜視図であり、さらに、第7図は、本発明に係る
密着強度試験方法を示す説明略図である。 1・・・コンデンサ機能部分 2・・・各コンデンサ機能を分離する部分3・・・電極 4・・・誘電体ガラスよりなる絶縁層 5・・・導体よりなるビヤホール 6・・・IC7・・・チップ部品 8・・・抵抗体      9・・・導体配線lO・・
・基板       11・・・電極12・・・半田付
      13・・・リード線特許出願人  日本油
脂株式会社 第5図 第6図
FIG. 1 is a cross-sectional view showing an example of height measurement according to the present invention, and FIG. 2 is a cross-sectional view showing an example of the height measurement shown in FIG. FIG. 3 is a sectional view showing an example of the height measurement according to the present invention in which an insulating layer and a via hole are formed, and FIG. 4 is a sectional view showing an example of the height measurement according to the present invention in which an insulating layer and a via hole are formed in three layers. FIG. 5 is a cross-sectional view showing an example of an electronic circuit board using one embodiment of the height measurement method of the present invention, and FIG. 6 is a perspective view of a semiconductor ceramic board with a built-in capacitor used in the example. Furthermore, FIG. 7 is a schematic explanatory diagram showing the adhesion strength testing method according to the present invention. 1... Capacitor functional part 2... Part separating each capacitor function 3... Electrode 4... Insulating layer made of dielectric glass 5... Via hole made of conductor 6... IC7... Chip parts 8...Resistor 9...Conductor wiring lO...
・Substrate 11... Electrode 12... Soldering 13... Lead wire Patent applicant Nippon Oil & Fats Co., Ltd. Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1.コンデンサ内蔵型半導体磁器基板において、良導体
金属成分に対し、ガラス粉末からなる焼結剤と、融点が
850℃以下の金属酸化物とを0.05〜1.5重量%
添加した電極材料でコンデンサを形成したことを特徴と
するコンデンサ内蔵型半導体磁器基板。
1. In a semiconductor ceramic substrate with a built-in capacitor, a sintering agent made of glass powder and a metal oxide having a melting point of 850°C or less are added in an amount of 0.05 to 1.5% by weight based on the good conductor metal component.
A semiconductor ceramic substrate with a built-in capacitor, characterized in that a capacitor is formed using an added electrode material.
JP1036325A 1989-02-17 1989-02-17 Semiconductor porcelain board with built-in capacitor Pending JPH02216895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036325A JPH02216895A (en) 1989-02-17 1989-02-17 Semiconductor porcelain board with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036325A JPH02216895A (en) 1989-02-17 1989-02-17 Semiconductor porcelain board with built-in capacitor

Publications (1)

Publication Number Publication Date
JPH02216895A true JPH02216895A (en) 1990-08-29

Family

ID=12466687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036325A Pending JPH02216895A (en) 1989-02-17 1989-02-17 Semiconductor porcelain board with built-in capacitor

Country Status (1)

Country Link
JP (1) JPH02216895A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142869A (en) * 1993-11-18 1995-06-02 Nippondenso Co Ltd Multilayer ceramic substrate with built-in capacitor
US5996219A (en) * 1997-01-31 1999-12-07 The Board Of Trustees Of The Leland Stanford Junior University Method for embedding electric or optical components in high-temperature metals
JP2002118367A (en) * 1999-09-02 2002-04-19 Ibiden Co Ltd Printed wiring board and manufacturing method thereof
JP2006156934A (en) * 2004-12-01 2006-06-15 Samsung Electro Mech Co Ltd Printed board with built-in capacitor and its manufacturing method
JP2018133362A (en) * 2017-02-13 2018-08-23 Tdk株式会社 Electronic component built-in substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142869A (en) * 1993-11-18 1995-06-02 Nippondenso Co Ltd Multilayer ceramic substrate with built-in capacitor
US5996219A (en) * 1997-01-31 1999-12-07 The Board Of Trustees Of The Leland Stanford Junior University Method for embedding electric or optical components in high-temperature metals
JP2002118367A (en) * 1999-09-02 2002-04-19 Ibiden Co Ltd Printed wiring board and manufacturing method thereof
JP2006156934A (en) * 2004-12-01 2006-06-15 Samsung Electro Mech Co Ltd Printed board with built-in capacitor and its manufacturing method
JP2018133362A (en) * 2017-02-13 2018-08-23 Tdk株式会社 Electronic component built-in substrate

Similar Documents

Publication Publication Date Title
US5827605A (en) Ceramic multilayer substrate and method of producing the same
JP2002260959A (en) Multilayer capacitor, its manufacturing method and semiconductor device comprising it, electronic circuit board
JPH09180957A (en) Multilayer ceramic capacitors
JP5617833B2 (en) Multilayer ceramic electronic components
JP2020072263A (en) Multilayer ceramic electronic component and manufacturing method thereof
JPS61288498A (en) Electronic component-built-in multilayer ceramic substrate
US5091820A (en) Ceramic piezoelectric element with electrodes formed by reduction
JP2007214549A (en) Thick film capacitors on ceramic interconnect substrates.
JPH02216895A (en) Semiconductor porcelain board with built-in capacitor
JP2006510233A (en) Printed wiring board having low-inductance embedded capacitor and manufacturing method thereof
JP3679529B2 (en) Terminal electrode paste and multilayer ceramic capacitor
JP3327045B2 (en) Dielectric paste and thick film capacitor using the same
JPH025019B2 (en)
JPH09190950A (en) Outer electrode of electronic part
JPH10209328A (en) Flip chip ceramic substrate
US4987515A (en) Ceramic capacitor with electrodes formed by reduction
KR0166446B1 (en) Glass compositions for insulators, insulator pastes, and thick film printed circuits
JPS63122295A (en) Multilayer ceramic board with built-in electronic component
JPH04236412A (en) Electronic component of ceramic
JP2996016B2 (en) External electrodes for chip-type electronic components
JPS63169798A (en) Multilayer ceramic board with built-in electronic parts
JPH04273417A (en) Laminated ceramic capacitor
JP2996015B2 (en) External electrodes for chip-type electronic components
JP2001023438A (en) Conductive paste and ceramic electronic component
JPS6092697A (en) Composite laminated ceramic part