JPH02215055A - Sealed lead storage battery - Google Patents
Sealed lead storage batteryInfo
- Publication number
- JPH02215055A JPH02215055A JP1035521A JP3552189A JPH02215055A JP H02215055 A JPH02215055 A JP H02215055A JP 1035521 A JP1035521 A JP 1035521A JP 3552189 A JP3552189 A JP 3552189A JP H02215055 A JPH02215055 A JP H02215055A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- positive
- sealed lead
- rate discharge
- silicon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/08—Selection of materials as electrolytes
- H01M10/10—Immobilising of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.
従来の技術とその課題
電池の充電中に発生する酸素ガスを負極で吸収させるタ
イプの密閉式鉛蓄電池にはリテーナ式とゲル式の二種類
がある。リテーナ式は正極板と負極板との間にm細ガラ
ス1It4維を素材とするマット状セパレータ(ガラス
セパレータ)を挿入し、これによって放電に必要な硫酸
電解液の保持と両極の隔離を行っており、近年、ポータ
プル機器やコンピューターのバックアップ電源として広
く用いられるようになってきた。しかし、リテーナ式は
ガラスセパレータが高価なことおよび充分な量の電解液
を保持できないために、低率放電では放電容量が電解液
量で制限されるという欠点があり、この種の密閉電池の
普及に障害となっている。Conventional technology and its problems There are two types of sealed lead-acid batteries, the retainer type and the gel type, in which the negative electrode absorbs oxygen gas generated during battery charging. In the retainer type, a matte separator (glass separator) made of m-fine glass 1It4 fiber is inserted between the positive and negative electrode plates, and this holds the sulfuric acid electrolyte necessary for discharge and isolates the two electrodes. In recent years, it has become widely used as a backup power source for portable devices and computers. However, the cage type has the drawback that the discharge capacity is limited by the amount of electrolyte at low rate discharge because the glass separator is expensive and cannot hold a sufficient amount of electrolyte, and this type of sealed battery is becoming popular. has become an obstacle.
一方、ゲル式はリテーナ式よりも安価であるが、電池性
能が液式やリテーナ式に劣るという欠点があった。On the other hand, although the gel type is cheaper than the retainer type, it has the disadvantage that its battery performance is inferior to the liquid type and retainer type.
そこで密閉式鉛蓄電池用セパレータとして二酸化珪素の
微粉末を主体としてバインダーを用いてシート状に成形
した多孔板を提案した。この二酸化珪素の微粉末を主体
とした多孔板は安価で容易に製造できる利点を有してい
るが、一方弾力性に乏しくそのため極板表面との接触が
充分でなく、電池に組み込んで使用すると放電容量はリ
テーナ式よりも優れているが放電電圧がわずかに劣ると
いう欠点があった。Therefore, as a separator for sealed lead-acid batteries, we proposed a perforated plate made of fine powder of silicon dioxide and a binder formed into a sheet. This porous plate, which is mainly made of fine powder of silicon dioxide, has the advantage of being cheap and easy to manufacture, but it also has poor elasticity and therefore does not make sufficient contact with the surface of the electrode plate, making it difficult to incorporate it into a battery. The discharge capacity was superior to the retainer type, but the discharge voltage was slightly inferior.
課題を解決するための手段
本発明は上述した従来の密閉式鉛蓄電池の欠点を除去し
、優れた放電性能を有する安価な密閉式鉛蓄電池を提供
するもので、その骨子とするところは、正極板と負極板
との間に二酸化珪素の微粉末を主体としてバインダーを
用いてシート状に成形した多孔板とその両面に当接する
微細ガラス繊維を主体とする薄いガラスセパレータとを
挿入して構成した極板群を電槽内に収納し、放電に必要
かつ充分な量の硫酸電解液を上記多孔板およびガラスセ
パレータに含浸、保持させることにある。Means for Solving the Problems The present invention eliminates the drawbacks of the conventional sealed lead-acid batteries mentioned above and provides an inexpensive sealed lead-acid battery with excellent discharge performance. A perforated plate formed into a sheet using a binder mainly made of fine silicon dioxide powder was inserted between the plate and the negative electrode plate, and a thin glass separator made mainly of fine glass fibers was inserted in contact with both sides of the porous plate. The electrode plate group is housed in a battery container, and the porous plate and glass separator are impregnated with and retained in a sufficient amount of sulfuric acid electrolyte necessary for discharge.
以下本発明を実施例に基づいて説明する。The present invention will be explained below based on examples.
実施例
二酸化珪素の微粉末20重量パーセントに水80重量パ
ーセントを加えてよく混練し、これに1重量パーセント
のカルボキシメチルセルロースをバインダーとして加え
た。これをシート状に成形して120℃で乾燥し厚さ2
.0nmおよび1.6nn (20Kg/d「加圧下
、以後厚さは20K(1/dl12加圧下での値を示す
)の多孔板を作製した。気孔率は約82%であった。こ
れらの多孔板を用いて密閉式鉛蓄電池を組み立てた。EXAMPLE 80 weight percent of water was added to 20 weight percent of fine powder of silicon dioxide and thoroughly kneaded, and 1 weight percent of carboxymethyl cellulose was added as a binder. Form this into a sheet and dry it at 120℃ to a thickness of 2
.. Porous plates with a thickness of 0 nm and 1.6 nn (under a pressure of 20 Kg/d, hereafter the thickness indicates the value under a pressure of 1/dl12) were prepared.The porosity was about 82%. A sealed lead-acid battery was assembled using plates.
すなわち、pb−Ca−3n合金より成る正および負極
格子体に通常の正極および負極ペーストをそれぞれ充填
した後、熟成を施して未化成極板を作製し、ついでこれ
らの正極および負極未化成極板を用い、上記の厚さ1.
.6nnの多孔板の両面に厚さ0゜2nnのガラスセパ
レータを当接して両極板の間に挿入して極板群とし、こ
れを電槽に収納し、フタを接着し排気弁を装着して本発
明による公称容量4.5Ahの密閉式鉛蓄電池を組み立
てた。同様に同じロットの正、負極板を用い、厚さ2.
0niの多孔板についてもそれ単独を両極板間に挿入し
従来品の密閉式鉛電池とした。That is, after filling positive and negative electrode grids made of pb-Ca-3n alloy with normal positive and negative electrode pastes, aging is performed to produce unformed electrode plates, and then these positive and negative electrode unformed plates are using the above thickness 1.
.. Glass separators with a thickness of 0°2nn are brought into contact with both sides of a 6nn perforated plate and inserted between the two electrode plates to form a group of electrode plates, which is then stored in a battery case, a lid is glued on, and an exhaust valve is attached to produce the present invention. A sealed lead-acid battery with a nominal capacity of 4.5 Ah was assembled. Similarly, using positive and negative electrode plates from the same lot, the thickness was 2.
Regarding the 0ni porous plate, it was inserted alone between the two electrode plates to form a conventional sealed lead-acid battery.
また、比較のために同じロットの正、負極板を用いたリ
テーナ式電池およびゲル式電池も組み立てた。これら4
種類の電池について5時間率放電試験および低温高率放
電試験を行った。その結果を第1表に示す。For comparison, a retainer type battery and a gel type battery were also assembled using positive and negative electrode plates from the same lot. these 4
A 5-hour rate discharge test and a low-temperature high rate discharge test were conducted on the various types of batteries. The results are shown in Table 1.
この試験結果より、リテーナ式とゲル式とを比較すると
、リテーナ式は電解液比重がやや高いためにゲル式より
も高率放電性能が優れていた。また、二酸化珪素の微粉
末を主体とする多孔板のみを両極板の間に挿入した従来
品はリテーナ式よりも放電容量は多かったが、低温高率
放電時の5秒目電圧はリテーナ式よりも劣っていた0本
発明品である二酸化珪素の微粉末を主体とする多孔板と
その両面に当接したガラスセパレータを両極板間に挿入
した本発明品は5時間率放電および高率放電とも容量が
増大し低率放電の5秒目電圧もリテーナ式を上回ってい
た。From this test result, when the retainer type and the gel type were compared, the retainer type had a slightly higher electrolyte specific gravity, so the high rate discharge performance was superior to the gel type. In addition, the conventional product, in which only a porous plate made mainly of fine powder of silicon dioxide was inserted between the two electrode plates, had a higher discharge capacity than the retainer type, but the 5th second voltage during low-temperature high-rate discharge was inferior to the retainer type. The product of the present invention, in which a porous plate mainly made of fine powder of silicon dioxide and glass separators in contact with both sides of the plate are inserted between the two electrode plates, has a high capacity for both 5-hour rate discharge and high rate discharge. The increased voltage at the 5th second of low rate discharge also exceeded that of the retainer type.
また、多孔板の片面にのみガラスセパレータを当接して
両極間に挿入しても多孔板だけを挿入したものに比べ低
温高率放電時の電圧を上げるのに有効であった。Furthermore, even if a glass separator was brought into contact with only one side of the perforated plate and inserted between the two electrodes, it was effective in increasing the voltage during low-temperature, high-rate discharge compared to inserting only the perforated plate.
発明の効果
上述の実施例から明らかなように、本発明による密閉式
鉛蓄電池は二酸化珪素の微粉末を主体としてシート状に
成形した多孔板と微細ガラス繊維を主体とするガラスセ
パレータを併用して電解液の保持と正、負極板間の隔離
を行うという簡単な操作で、従来の密閉式鉛蓄電池の放
電性能を大幅に改善できた点工業的価値は非常に大きい
。Effects of the Invention As is clear from the above embodiments, the sealed lead-acid battery according to the present invention uses a porous plate formed into a sheet shape mainly made of fine powder of silicon dioxide and a glass separator mainly made of fine glass fiber. This technology has great industrial value because it can greatly improve the discharge performance of conventional sealed lead-acid batteries by simply holding the electrolyte and isolating the positive and negative plates.
Claims (1)
る密閉式鉛蓄電池において、正極板と負極板との間に二
酸化珪素の微粉末を主体としてバインダーを用いてシー
ト状に成形した多孔板とその両面に当接する微細ガラス
繊維を主体とする薄いガラスセパレータとを挿入して構
成した極板群を電槽内に収納し、放電に必要かつ充分な
量の硫酸電解液を上記多孔板およびガラスセパレータに
含浸、保持させることを特徴とする密閉式鉛蓄電池。1. In a sealed lead-acid battery in which the negative electrode absorbs oxygen gas generated during battery charging, a porous plate formed into a sheet using a binder mainly composed of fine powder of silicon dioxide is used between the positive and negative electrode plates. A group of electrode plates made up of a thin glass separator mainly made of fine glass fibers that is in contact with both sides of the plate is housed in a battery case, and a sufficient amount of sulfuric acid electrolyte necessary for discharge is applied to the porous plate and the plate. A sealed lead-acid battery characterized by impregnation and retention in a glass separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1035521A JPH02215055A (en) | 1989-02-15 | 1989-02-15 | Sealed lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1035521A JPH02215055A (en) | 1989-02-15 | 1989-02-15 | Sealed lead storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02215055A true JPH02215055A (en) | 1990-08-28 |
Family
ID=12444054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1035521A Pending JPH02215055A (en) | 1989-02-15 | 1989-02-15 | Sealed lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02215055A (en) |
-
1989
- 1989-02-15 JP JP1035521A patent/JPH02215055A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH042060A (en) | Sealed type lead acid battery | |
JPH02215055A (en) | Sealed lead storage battery | |
CN102246344A (en) | Valve-regulated lead acid battery | |
JP3261417B2 (en) | Sealed lead-acid battery | |
JPH02165570A (en) | Closed lead battery | |
JPH0482155A (en) | Enclosed lead storage battery | |
JP2855677B2 (en) | Sealed lead-acid battery | |
JP3221154B2 (en) | Sealed lead-acid battery | |
JP2958790B2 (en) | Sealed lead-acid battery | |
JPH04160762A (en) | Sealed type lead storage battery | |
JPH02158063A (en) | Sealed lead-storage battery | |
JPH0432158A (en) | Closed lead acid battery | |
JPH0546067B2 (en) | ||
JP2794588B2 (en) | Sealed lead-acid battery | |
JPH04118854A (en) | Gel type lead storage battery | |
JPS5923457A (en) | Enclosed lead storage battery | |
JPS62170173A (en) | Sealed lead-acid battery | |
JPH1173985A (en) | Lead-acid battery | |
JPH03252063A (en) | Sealed type lead storage battery | |
JPH04141961A (en) | Gastight lead storage battery | |
JPH04149968A (en) | Sealed-type lead secondary battery | |
JPS62163271A (en) | Enclosed lead storage battery | |
JPH07326380A (en) | Sealed lead acid battery | |
JP2002343413A (en) | Seal type lead-acid battery | |
JPS59157968A (en) | Manufacturing method for sealed lead-acid batteries |