JPH02213335A - Orthodontic wire - Google Patents
Orthodontic wireInfo
- Publication number
- JPH02213335A JPH02213335A JP1033725A JP3372589A JPH02213335A JP H02213335 A JPH02213335 A JP H02213335A JP 1033725 A JP1033725 A JP 1033725A JP 3372589 A JP3372589 A JP 3372589A JP H02213335 A JPH02213335 A JP H02213335A
- Authority
- JP
- Japan
- Prior art keywords
- temp
- remainder
- treatment
- orthodontic
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、歯科における歯列矯正ワイヤーに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to orthodontic wires in dentistry.
[従来の技術]
歯列矯正器具は不規則及び不正常な歯を修正するために
使用される。この修正操作は、変形応力の荷重除荷に伴
い可逆的にエネルギーを吸収したり、放出したりさせる
ことが可能なワイヤーを用いた器具に使用して行われる
。この矯正器具に使用されるワイヤーは、主に18・8
ステンレス鋼ワイヤーであった。18・8ステンレス鋼
ワイヤーを用いた場合、矯正に供し得る伸び及び歪みは
、略1%である。このため、過度の伸び或いは曲げを与
えると、本来、目的に必要とされる可逆的エネルギの吸
収・放出機能が損なわれてしまう。BACKGROUND OF THE INVENTION Orthodontic appliances are used to correct irregular and abnormal teeth. This correction operation is performed using a wire-based instrument that can reversibly absorb and release energy as the deformation stress is unloaded. The wire used for this orthodontic appliance is mainly 18.8
It was stainless steel wire. When using 18.8 stainless steel wire, the elongation and strain that can be subjected to straightening is approximately 1%. For this reason, if excessive stretching or bending is applied, the reversible energy absorption and release function originally required for the purpose will be impaired.
これに対して、TiNi合金ワイヤーは、従来のステン
レスワイヤーと比較して、異常な弾性限界があることが
、見出されている。In contrast, TiNi alloy wires have been found to have unusual elastic limits compared to conventional stainless steel wires.
即ち、加工上り材の弾性限界(伸び歪みの最大値)は約
4%を示す。Unitclc (米)は、この合金ワ
イヤー(加工上り材)を矯正ワイヤーとして実用化して
いる。That is, the elastic limit (maximum value of elongation strain) of the processed material is approximately 4%. Unitclc (USA) is commercializing this alloy wire (processed material) as an orthodontic wire.
しかしながら、このワイヤーは、加工上り材のため、脆
いという難点及び伸び変形の増加と伴に、変形に必要な
荷重も略直線的に増加するため、矯正治療を受ける患者
への生理的苦痛を余儀なくする難点があった。この苦痛
を和らげるためには、所要の歯移動は、比較的軽く連続
的な矯正力を供給することができる最適の力付与装置を
形成することによって、最も良好に達成されることが、
Angel Qrthodentist、第31巻(1
961年発行)に報告されている。この目的を達成する
ためには、変形に要する力の大きさが小さいこと、口腔
組織に最大限の応答を与えるべく器具が非機能状態にな
るまで力のレベルが一定であること、等が挙げられる。However, since this wire is a processed material, it is brittle, and the load required for deformation increases almost linearly as the elongation deformation increases, causing physiological pain to patients undergoing orthodontic treatment. There were some difficulties. To alleviate this pain, it has been established that the required tooth movement is best achieved by creating an optimal force application device capable of delivering a relatively light and continuous orthodontic force.
Angel Qrthodentist, Volume 31 (1
(published in 1961). To achieve this goal, the magnitude of the force required for deformation must be small and the level of force must be constant until the appliance becomes non-functional to provide maximum response to the oral tissues. It will be done.
このアプローチの一例として、NfTi含Tiイヤーの
焼鈍材を使用することに見出すことができる。この焼鈍
材は、通常30〜40%の冷間加工減面率が施されたの
ち、400〜500℃の熱処理を行うことによって得ら
れる。かかる処理を行われたワイヤーは、少なくとも口
腔内温度において、ゴムの如き弾性挙動を振舞うことが
可能となる。すなわち、伸び歪みで5〜6%、且つ変形
に要する力の大きさが小さく一定変形力によっても伸び
が可能なこと、歯移動に伴う軽い連続的な矯正力を供給
することができる。即ち、ワイヤーの弾性変形によって
、可逆的なエネルギーの吸収・放出が容易となり得る。An example of this approach can be found in the use of NfTi-containing Ti-ear annealed material. This annealed material is obtained by performing a heat treatment at 400 to 500° C. after being subjected to a cold working area reduction rate of usually 30 to 40%. A wire subjected to such treatment can exhibit rubber-like elastic behavior at least at intra-oral temperatures. That is, the elongation strain is 5 to 6%, the amount of force required for deformation is small, and elongation is possible even with a constant deformation force, and a light continuous orthodontic force accompanying tooth movement can be supplied. That is, the elastic deformation of the wire can facilitate reversible absorption and release of energy.
しかしながら、このワイヤーは、加温されることによる
形状の復元、もしくは、ゴムの如きしなやかさによる自
発的形状の復元のいずれがもしくは、双方を併せ持つこ
とのために、歯列矯正用の形状に冷間臼げすることがで
きず、所要の形状に固定するために、400℃程度以上
の温度まで加熱される必要があった。このため、閉ルー
プ等の矯正器具に使用することができず、設計上がなり
の湾曲を要する器具の使用することががなり制限される
。However, this wire cannot be cooled into an orthodontic shape because it either restores its shape by being heated or spontaneously restores its shape due to its rubber-like flexibility, or both. It could not be milled and had to be heated to a temperature of about 400°C or higher in order to fix it into the desired shape. For this reason, it cannot be used in closed-loop correction devices or the like, and the use of devices that require a certain degree of curvature due to design is restricted.
そこで、本発明の技術的課題は、ステンレス鋼あるいは
、TiNi合金を使用した場合の問題点を解決し最適の
歯列矯正力を供給するのを容易にするものである。Therefore, the technical object of the present invention is to solve the problems when stainless steel or TiNi alloy is used and to facilitate the supply of optimal orthodontic force.
更に、詳しくは、NiTi焼鈍材のもつ、口腔組織が最
大限に応答し、且つその組織が最小限にしか損傷を受け
ない状態にて、連続的に比較的無痛状態にて、歯の移動
を行うべく、好ましいほどの力の大きさが小さく、且つ
長期間に亘って力が一定となる特長を保持しつつ、歯列
矯正器具が、歯の歯冠に作用して、それが移動される際
に、その歯の正確な固転中心を与えるように最適の力に
対するモーメントの比を与えるべく簡単なものから非常
に複雑な歯列矯正用の形状まで広範囲の歯列矯正器具に
形成することを、80℃以下で可能にした歯列矯正ワイ
ヤーを提供することにある。More specifically, the NiTi annealed material allows tooth movement to occur continuously and relatively painlessly, with maximum response from the oral tissues and minimal damage to the tissues. To achieve this, the orthodontic appliance acts on the crown of the tooth to displace it while maintaining the characteristics of a preferably small force magnitude and constant force over a long period of time. When forming orthodontic appliances, from simple to very complex orthodontic shapes, it can be formed into a wide range of orthodontic shapes to provide the optimum force-to-moment ratio to provide the correct center of rotation for the tooth. An object of the present invention is to provide an orthodontic wire that can perform the following at temperatures below 80°C.
[課題を解決するための手段]
上記課題を解決するために、本発明の歯列矯正ワイヤー
においては、原子パーセントでNLを50.3〜52.
0at%、残部が実質的にTiよりなるTiNi合金に
おいて、溶体化処理後400〜550℃の熱処理によっ
て、少なくとも口腔内温度(37℃)で超弾性を示し、
且つ80℃以下で塑性加工が可能なことを特徴としてい
る。[Means for Solving the Problems] In order to solve the above problems, the orthodontic wire of the present invention has a NL of 50.3 to 52.
A TiNi alloy consisting of 0 at% and the remainder substantially of Ti exhibits superelasticity at least at oral cavity temperature (37 °C) by heat treatment at 400 to 550 °C after solution treatment,
It is also characterized by being able to be plastically worked at temperatures below 80°C.
特開昭58−151445号公報に示されるような、時
効によって、変態温度をシフトさせることができるN1
濃度は、50.3at%以上であることが判明している
。よって、本発明の効果は、Niで50.3at%以上
のTiNi合金について、適用できることは、明らかで
ある。一方、Niが52.0at%を越えた合金は、冷
間加工が難しいため、実用材としては、適当ではないの
で、本発明の範囲より除外した。N1, which can shift the transformation temperature by aging, as shown in Japanese Patent Application Laid-Open No. 58-151445.
The concentration was found to be 50.3 at% or more. Therefore, it is clear that the effects of the present invention can be applied to TiNi alloys containing 50.3 at% or more of Ni. On the other hand, alloys containing more than 52.0 at % of Ni are difficult to cold work and are therefore not suitable for practical use, and are therefore excluded from the scope of the present invention.
本発明の歯列矯正ワイヤーにおいて、熱処理温度を、4
00〜550℃と限定したのは、400℃未満では、時
効効果が殆ど得られないためであり、550℃を越える
と溶体化処理後の時効の効果が薄れるためである。In the orthodontic wire of the present invention, the heat treatment temperature is 4
The reason why the range is limited to 00 to 550°C is that if the temperature is less than 400°C, hardly any aging effect is obtained, and if it exceeds 550°C, the effect of aging after solution treatment is weakened.
ここで、残部実質的にTLなる表現は、Tiのみからな
るものを意味するものではなく、Tiの一部を他の金属
で置換したものも含むものである。Here, the expression that the remainder is substantially TL does not mean that it consists only of Ti, but also includes those in which a part of Ti is replaced with another metal.
置換物としては、Cr、Mn、V、Zr、Cu等がある
。これらの置換物を用いたTiNi系合金については、
TiNi合金及びTiN1X(XはCuSCr、VSM
n)が熱弾性マルテンサイト変態の逆変態に付随して、
顕著な形状記憶効果を示すことは、良く知られている(
「金属J 19H年2月13日号、44「日本金属学会
会報」第12a2第3 号(1973)、157、「日
本金属学会誌」第30巻、第2号(1975) 、 1
75、)。Substituents include Cr, Mn, V, Zr, Cu, and the like. Regarding TiNi alloys using these substitutes,
TiNi alloy and TiN1X (X is CuSCr, VSM
n) is accompanied by a reverse transformation of the thermoelastic martensitic transformation,
It is well known that it exhibits a remarkable shape memory effect (
“Metals J February 13, 19H issue, 44 “Bulletin of the Japan Institute of Metals” No. 12a2 No. 3 (1973), 157, “Journal of the Japan Institute of Metals” Vol. 30, No. 2 (1975), 1
75,).
これと同時にTiNi合金にゴムのようなしなやかさを
示す超弾性機能があることも良く知られでいる(J、
Appl、 Phys、、34(1983)、475
、東北大学選研量報、 27(1971)、245.
’)。At the same time, it is well known that TiNi alloys have superelastic properties, exhibiting rubber-like flexibility (J,
Appl, Phys, 34 (1983), 475
, Tohoku University Research Report, 27 (1971), 245.
').
[実施例] 次に、本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.
Tt−51at%Ni合金は、高周波真空溶解法によっ
て、溶解された後、900℃の溶体化処理後、熱間ロー
ル、冷間加工によって、0.7mmφまで加工された。The Tt-51 at% Ni alloy was melted by high frequency vacuum melting, then solution treated at 900°C, and processed to a diameter of 0.7 mm by hot rolling and cold working.
その後、900℃の溶体化処理を行い、0.5mmφま
で冷間加工された。Thereafter, it was subjected to solution treatment at 900°C and cold worked to a diameter of 0.5 mm.
得られた試料は、900℃×1時間の熱処理の後、40
0℃、500℃及び600℃の夫々の温度で、15分〜
100時間の時効処理が行われた。これらの試料は、測
定温度を変えながら、引張り試験を行われ、形状記憶域
、超弾性域及び塑性変形域の温度帯が求められた。The obtained sample was heat treated at 900°C for 1 hour, and then heated at 40°C.
At each temperature of 0℃, 500℃ and 600℃, 15 minutes ~
Aging treatment was performed for 100 hours. These samples were subjected to a tensile test while changing the measurement temperature, and the temperature ranges of the shape memory region, superelastic region, and plastic deformation region were determined.
第1図は、900℃×1時間処理材の引張りテストによ
って得られた応カー歪み曲線を示す図、第2図は、50
0℃×1時間処理材の応カー歪み曲線を示す図である。Figure 1 shows stress strain curves obtained by tensile tests of materials treated at 900°C for 1 hour, and Figure 2 shows stress strain curves obtained at 900°C for 1 hour.
It is a figure which shows the stress strain curve of the material treated at 0° C. for 1 hour.
第1図において、900℃×1時間処理材は、−40℃
から超弾性が現れ、0℃では、消失し、0℃以上になる
と、塑性変形域に入ってしまう。In Figure 1, the material treated at 900°C for 1 hour is -40°C.
Superelasticity appears at 0°C, disappears at 0°C, and enters the plastic deformation region at temperatures above 0°C.
口腔内温度(37℃)で超弾性を示し、且つ、37℃を
越え150℃以内で塑性変形するワイヤーを考えると、
900℃×1時間処理材は、本発明の目的よりはずれる
。Ni過剰側TiNi合金は、時効によって、TiNi
、の如きNi過剰の析出物が生成し、変態温度が高温側
ヘシフトすることが、第2図の応力歪み曲線からも伺え
る。即ち、超弾性の現れる温度は、時効による変態温度
の上昇に伴い、20℃となっており、消失する温度は、
40℃を越えている。これは、本発明の目的とする37
℃における超弾性と37℃を越えた温度での塑性変形域
の双方を保持している。Considering a wire that exhibits superelasticity at intraoral temperature (37°C) and deforms plastically at temperatures above 37°C and within 150°C,
Materials treated at 900° C. for 1 hour are beyond the scope of the present invention. The TiNi alloy on the Ni-excessive side becomes TiNi due to aging.
It can be seen from the stress strain curve in FIG. 2 that excessive Ni precipitates such as , are formed, and the transformation temperature shifts to the higher temperature side. In other words, the temperature at which superelasticity appears is 20°C as the transformation temperature increases due to aging, and the temperature at which superelasticity disappears is:
It's over 40℃. This is the objective of the present invention.
It retains both superelasticity at temperatures above 37°C and a plastic deformation range at temperatures above 37°C.
第1表に本実施例によって得られた各熱処理条件での3
7℃における超弾性の有無と塑性変形が起き始める温度
について示している。第1表中で、X印は無し、Oは有
りを示す。Table 1 shows the results of heat treatment under each heat treatment condition obtained in this example.
The presence or absence of superelasticity at 7°C and the temperature at which plastic deformation begins are shown. In Table 1, an X mark indicates absence and an O mark indicates presence.
900℃溶体化処理材及び600℃時効材は、いずれも
37℃での超弾性を示さない。一方、冷間加工後、溶体
化処理なしで時効された試料No。Neither the 900°C solution treated material nor the 600°C aged material exhibits superelasticity at 37°C. On the other hand, sample No. was aged without solution treatment after cold working.
11〜No、16は、37℃では、良好な超弾性は得ら
れているが、塑性変形が起きる温度は、・いずれも80
℃を越えている。塑性変形が80℃を越えなければ、起
きないことは、通常歯科医が、患者の歯列に応じて歯列
矯正ワイヤーを加工する場合、特定された加熱炉を必要
とされる。For Nos. 11 to 16, good superelasticity was obtained at 37°C, but the temperature at which plastic deformation occurred was 80°C.
It's over ℃. Plastic deformation does not occur unless it exceeds 80° C. Usually, when a dentist processes orthodontic wire according to the patient's dentition, a specified heating furnace is required.
これに対して、本発明に係る試料 No、2〜No、7
では、塑性加工温度は、いずれも80℃以下となってお
り、特定される加熱炉を必要とせずに、お湯、ドライヤ
ー等による加熱によって、所望の加工ができる。On the other hand, samples No. 2 to No. 7 according to the present invention
In this case, the plastic working temperature is 80° C. or lower in all cases, and desired processing can be performed by heating with hot water, a dryer, etc., without requiring a specified heating furnace.
第1表中の試料No、2は、時効時間が不足しているた
め、超弾性特性の高温側へのシフトは、顕著に認められ
てはいない。これは、本実施例合金が、T i−51a
t%Ni合金のためであって、時効の影響を受ける高
いNi側TiNi合金の最小Ni含有合金、Ti−50
,3at%Ni合金では400℃X15分でも本発明の
効果は得られる。In samples No. 2 in Table 1, the aging time was insufficient, so that no significant shift of the superelastic properties toward the high temperature side was observed. This shows that the alloy of this example is T i-51a
Ti-50, the lowest Ni-containing alloy for t%Ni alloys and high Ni side TiNi alloys that are affected by aging.
, 3 at% Ni alloy, the effects of the present invention can be obtained even at 400° C. for 15 minutes.
尚、本発明においては、TiNi合金のみならず、本発
明と同様に熱処理によって、変態温度を変えることがで
きるので、TiN1X (X−Cu。In addition, in the present invention, the transformation temperature can be changed not only by TiNi alloy but also by heat treatment as in the present invention, so TiN1X (X-Cu).
Cr、V、Mn5Z r・・・・)等の合金についても
適用可能で、本実施例に限定されるものではない。It is also applicable to alloys such as Cr, V, Mn5Zr...), and is not limited to this example.
以 下 余 白
第1図
εl!&5%
[発明の効果]
以上、説明した様に、本発明によれば、口腔内温度にお
いて超弾性を示し、且つ特定の処理を行わなくても変形
が自在にできる歯列矯正ワイヤーの提供が可能になった
。Margin below Figure 1 εl! &5% [Effects of the Invention] As explained above, according to the present invention, it is possible to provide an orthodontic wire that exhibits superelasticity at intraoral temperature and can be freely deformed without any specific treatment. It's now possible.
第1図は本発明の実施例に係るTi−51at%Ni合
金線の900℃×1時間処理材の一50℃〜+20℃に
おける応カー歪み曲線を示す図、第2図は本発明の実施
例に係るTi−51at%Ni合金の900℃×1時間
処理後、500℃×1時間時効処理材の一50℃〜+5
0℃における応カー歪み曲線を示す図である。
第2図Fig. 1 is a diagram showing stress stress curves of a Ti-51 at% Ni alloy wire treated at 900°C for 1 hour according to an example of the present invention, from 50°C to +20°C; After the Ti-51at%Ni alloy according to the example was treated at 900°C for 1 hour, the aging treated material at 500°C for 1 hour was 50°C to +5
It is a figure which shows the stress strain curve at 0 degreeC. Figure 2
Claims (1)
残部が実質的にTiよりなるTiNi合金において、溶
体化処理後400〜550℃の熱処理によって、少なく
とも口腔内温度(37℃)で超弾性を示し、且つ80℃
以下で塑性加工が可能な歯列矯正ワイヤー。1. 50.3 to 52.0 at% Ni in atomic percent
In a TiNi alloy, the remainder of which is substantially composed of Ti, by heat treatment at 400 to 550°C after solution treatment, it exhibits superelasticity at least at intra-oral temperature (37°C), and exhibits superelasticity at 80°C.
Orthodontic wire that can be plastically processed with:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3372589A JP2791787B2 (en) | 1989-02-15 | 1989-02-15 | Orthodontic wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3372589A JP2791787B2 (en) | 1989-02-15 | 1989-02-15 | Orthodontic wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02213335A true JPH02213335A (en) | 1990-08-24 |
JP2791787B2 JP2791787B2 (en) | 1998-08-27 |
Family
ID=12394375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3372589A Expired - Fee Related JP2791787B2 (en) | 1989-02-15 | 1989-02-15 | Orthodontic wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2791787B2 (en) |
-
1989
- 1989-02-15 JP JP3372589A patent/JP2791787B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2791787B2 (en) | 1998-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6262808B2 (en) | Shape setting of shape memory alloy dental arch | |
US5137446A (en) | Orthodontic implement controllable of correction force | |
JP3884316B2 (en) | Superelastic titanium alloy for living body | |
Li et al. | Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications | |
US6540849B2 (en) | Process for the improved ductility of nitinol | |
JP5732468B2 (en) | Nitinol appliance with improved fatigue resistance | |
Ounsi et al. | Evolution of nickel-titanium alloys in endodontics | |
WO2005064026A1 (en) | Super elasticity and low modulus ti alloy and its manufacture process | |
JP2002505382A (en) | Pseudoelastic beta titanium alloy and its use | |
JP2005530929A (en) | Beta titanium compounds and their production | |
Li et al. | Effect of thermo-mechanical treatment on microstructural evolution and mechanical properties of a superelastic Ti–Zr-based shape memory alloy | |
CN100432257C (en) | Shape memory material and its preparation method | |
RU2485197C1 (en) | Metal nanostructured alloy based on titanium, and method for its treatment | |
CN100415914C (en) | A modulus-adjustable titanium alloy for orthodontics and its preparation process | |
US20040241037A1 (en) | Beta titanium compositions and methods of manufacture thereof | |
JPH02213335A (en) | Orthodontic wire | |
JP2935124B2 (en) | Orthodontic appliance | |
JP2004197112A (en) | Method of producing biological superelastic titanium alloy | |
JP2541802B2 (en) | Shape memory TiNiV alloy and manufacturing method thereof | |
JPH0271735A (en) | Orthodontic tool | |
JP2979420B2 (en) | Orthodontic appliance | |
JPH11269585A (en) | Titanium-vanadium-aluminum superelastic alloy and its production | |
JP3933623B2 (en) | Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity | |
JP3128660B2 (en) | Orthodontic appliance | |
JPH0441639A (en) | Ti-ni-c shape memory alloy and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |