[go: up one dir, main page]

JPH02208234A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH02208234A
JPH02208234A JP1025702A JP2570289A JPH02208234A JP H02208234 A JPH02208234 A JP H02208234A JP 1025702 A JP1025702 A JP 1025702A JP 2570289 A JP2570289 A JP 2570289A JP H02208234 A JPH02208234 A JP H02208234A
Authority
JP
Japan
Prior art keywords
glass
rod
optical fiber
layer
transparent glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025702A
Other languages
Japanese (ja)
Inventor
Taiichiro Tanaka
大一郎 田中
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1025702A priority Critical patent/JPH02208234A/en
Publication of JPH02208234A publication Critical patent/JPH02208234A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain high-strength fiber without reducing transmission loss characteristics by previously synthesizing a transparent glass rod as a starting material into a specific size and depositing fine particles of SiO2 glass containing Zr or Ti on the periphery of rod. CONSTITUTION:A transparent glass rod 10 having formed 80-120mum diameter thereof by pervious synthesis in the case of making optical fiber is prepared and is used as a starting material. Fine particles 20 of SiO2 glass containing Zr or Ti are piled on the periphery of the glass rod 10 to give a rod having a porous glass layer. Then the porous glass layer is made into transparent glass.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、最外層にZrもしくはTiを含むSiO□
ガラス層を有する光ファイバ母材の製造方法に関するも
ので、得られる光ファイバの耐候性、長期信頼性に富ん
だものを提供する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to an SiO□ film containing Zr or Ti in the outermost layer.
This invention relates to a method for manufacturing an optical fiber preform having a glass layer, and provides an optical fiber that is excellent in weather resistance and long-term reliability.

(従来の技術) 最外層にZrもしくはTiを含むSiO□ガラス層を有
する光ファイバ母材の製造方法として、従来以下に示す
方法が知られている。第を図はその一例を示すもので、
1本のコア用バーナ1と2本のサイドバーナ2.3を用
いて、最外層にZrもしくはTiを含むガラスを有する
コアークラッド型の多孔質ガラス体となし、これを透明
ガラス化する方法である。また、他の方法としてはコア
ークラッド型の透明ガラスロッドの回りにZrもしくは
T1を含むガラスを直接ガラス化により得る方法がある
(Prior Art) As a method for manufacturing an optical fiber preform having an SiO□ glass layer containing Zr or Ti as the outermost layer, the following method is conventionally known. Figure 1 shows an example.
By using one core burner 1 and two side burners 2.3, a core clad type porous glass body having glass containing Zr or Ti in the outermost layer is formed, and this is made into transparent glass. be. Another method is to directly obtain glass containing Zr or T1 around a core-clad transparent glass rod by vitrification.

(発明が解決しようとする課題) しかしながら、前者の方法では全てのガラス層をガラス
微粒子から得る方法であるため、Zr 、Tiがコアガ
ラス内に混入して光ファイバの損失増加の原因となる恐
れがあった。またコア部に屈折率分布等の不具合が生じ
た場合、高価なZr、 Tiを用いたガラス部分も同時
に廃却してしまうこととなりコスト的にも見合わないと
いうことがあった。
(Problem to be Solved by the Invention) However, in the former method, all the glass layers are obtained from glass particles, so there is a risk that Zr and Ti may be mixed into the core glass and cause an increase in optical fiber loss. was there. Furthermore, if a defect such as a refractive index distribution occurs in the core portion, the glass portion using expensive Zr and Ti must also be discarded at the same time, which may not be worth the cost.

また、後者の方法はZr、 Tiを用いたガラス部分を
直接ガラス化で得る方法のため堆積スピードが非常に遅
く低コスト化の妨げとなったり、あるいは透明ガラス化
後に気泡が生じ易く、逆に強度が低下してしまう等の問
題があった。
In addition, since the latter method is a method of directly vitrifying the glass part using Zr or Ti, the deposition speed is extremely slow, which hinders cost reduction, or bubbles are likely to occur after transparent vitrification. There were problems such as a decrease in strength.

(課題を解決するための手段) この発明は以上の欠点を除去したもので、その特徴とす
るところは光ファイバとされたときにその直径の80〜
120μmまでが予め合成によって形成されている透明
ガラスロッドを用意し、このロッドの回りにZrもしく
はTiを含むSiO□ガラス微粒子を堆積させて多孔質
ガラス層を有するロッドとなし、次いで前記多孔質ガラ
ス層を透明ガラス化することにある。
(Means for Solving the Problems) This invention eliminates the above-mentioned drawbacks, and is characterized by the fact that when it is made into an optical fiber, its diameter is
A transparent glass rod having a thickness of up to 120 μm formed in advance by synthesis is prepared, and SiO□ glass fine particles containing Zr or Ti are deposited around this rod to form a rod having a porous glass layer. The purpose is to make the layer transparent and vitrified.

(作用) 出発部材となる透明ガラスロッドな、光ファイバとされ
たときの直径の80〜120μmまで予め合成によって
形成するようにしたので、直径80μm以下の場合の表
面圧縮応力が広面積に分散し単位面積当りの圧縮が減少
してしまうという問題、直径120μm以上の場合の外
付倍率制御が難しいという問題、強化層が薄く傷がその
層を越えて中心ガラスロッドまで到達するという問題の
発生を阻止できるだけでなく、ZrもしくはTiを含む
ガラス微粒子層を透明ガラスロッド上に堆積するので、
製造速度をアップできるだけでなく、その内部にZrも
しくはTiが混入することがないので得られる光ファイ
バの損失増を阻止することができる。
(Function) Since the transparent glass rod serving as the starting member is synthesized in advance to a diameter of 80 to 120 μm when it is made into an optical fiber, the surface compressive stress in the case of a diameter of 80 μm or less is dispersed over a wide area. Problems such as reduction in compression per unit area, difficulty in controlling external magnification when the diameter is 120 μm or more, and the problem that the reinforcing layer is thin and scratches can reach the central glass rod beyond that layer. Not only can it be prevented, but also a layer of glass fine particles containing Zr or Ti is deposited on the transparent glass rod.
Not only can the manufacturing speed be increased, but since no Zr or Ti is mixed into the optical fiber, an increase in loss in the resulting optical fiber can be prevented.

(実施例1) VAD法により、コア/クラツド径比が約11倍の直径
50 mm中、長さ300mm、Δ=0.3%の透明ガ
ラスロッドを用意した。この透明ガラスロッドはこの段
階で屈折率プロファイルを計算し良品のロッドと判定さ
れたもののみを用いた。この透明ガラスロッドな25 
mm中に延伸し、これを長さ500 mmに切断して出
発母材10とした。この出/、2゜ 発母材10の回りに同心4重管バーナ抽善を用いた。
(Example 1) A transparent glass rod with a core/clad diameter ratio of about 11 times, a diameter of 50 mm, a length of 300 mm, and Δ=0.3% was prepared by the VAD method. At this stage, the refractive index profile of the transparent glass rods was calculated and only rods determined to be of good quality were used. This transparent glass rod 25
The starting base material 10 was prepared by stretching the material to a length of 500 mm and cutting it into a length of 500 mm. A concentric quadruple pipe burner extraction was used around the base material 10 having an angle of 2°.

同心4重管バーナの ガス供給量 中心   5iC14800cc/分 ZrCL   200 cc/分 2層目  H216ρ/分 3層目  Ar     1000 cc/分4分目層
目0232I2/分 バーナのトラバース速度 20 mm7分ロットの回転
速度    25 rpmかくして得られたSiO□−
2rO□ガラス微粒子層を有するロッドを1500°C
に維持されたHe雰囲気炉内に収容して直径30 mm
中の透明ガラスロッドとした。このロッドを線引きして
直径125μmのファイバとなし、その上に紫外線硬化
型樹脂を400μm厚さに被覆した。得られたファイバ
の短尺強度試験、静疲労試験を行ったところ、前者の平
均破断強度は7.2 kg、後者はn値で35であり、
従来が平均破断強度が6.7 kg、後者はn値で27
であるのに対して優れたものであった。
Gas supply amount center of concentric quadruple tube burner 5iC14800cc/min ZrCL 200 cc/min 2nd layer H216ρ/min 3rd layer Ar 1000 cc/min 4th layer 0232I2/min Burner traverse speed 20 mm 7 minute lot rotation Speed 25 rpm Thus obtained SiO□-
A rod with a 2rO□ glass fine particle layer was heated at 1500°C.
It was housed in a He atmosphere furnace maintained at 30 mm in diameter.
It was a transparent glass rod inside. This rod was drawn into a fiber with a diameter of 125 μm, and an ultraviolet curable resin was coated on the fiber to a thickness of 400 μm. When the obtained fiber was subjected to a short length strength test and a static fatigue test, the average breaking strength of the former was 7.2 kg, and the n value of the latter was 35.
The conventional model has an average breaking strength of 6.7 kg, and the latter has an n value of 27.
However, it was excellent.

また、予め良品の母材の上に外付は法により51y2Z
rLガラス層を形成するようにしたので、不良となるの
は外付けの失敗によるものだけであり、それもスート割
れである場合には出発母材は再度使用可能であり、出発
母材10本のうち9本までファイバ化できた。この結果
は従来が5本であるのに比較して著しい改善である。さ
らにコア部を予め高純度のガラスとした後にZrO□層
を形成するためコア部へのZrの拡散がなく、波長1.
55μmにおける損失は0.21dB/kmと低損失で
あり、通常ファイバと比較して遜色のないものが得られ
た。
In addition, by law, 51y2Z is required for external mounting on a base material of good quality.
Since the rL glass layer is formed, the only defects are due to failures in external attachment, and if it is also due to soot cracking, the starting base material can be used again, and 10 starting base materials can be used. We were able to convert nine of them into fiber. This result is a significant improvement compared to the conventional method, which requires five. Furthermore, since the ZrO□ layer is formed after the core part is made of high-purity glass in advance, there is no diffusion of Zr into the core part, and the wavelength 1.
The loss at 55 μm was as low as 0.21 dB/km, which was comparable to that of a normal fiber.

(実施例2) 痺はH2を100β/分、0□を50℃/分流して出発
母材の火炎研磨をおこなった。2番目のバ≠抽はH2を
16℃/分、0□を32!/分、SiC14を400 
Cc/分、ZrCl4を100cc/分流してSi○z
−ZrOzガラス微粒子層20を1.5mm厚に形成し
た。3番目のバーナー16にはH2を200 A/分、
02を100β/分流してSiO□−ZrO2ガラス微
粒子層を透明ガラス化した。22は透明ガラス層である
(Example 2) For numbing, the starting base material was flame polished by flowing H2 at 100β/min and 0□ at 50°C/min. The second bar≠drawing is H2 at 16℃/min, 0□ at 32! /min, 400 SiC14
Cc/min, flow 100cc/min of ZrCl4 to Si○z
-ZrOz glass fine particle layer 20 was formed to have a thickness of 1.5 mm. The third burner 16 has H2 at 200 A/min;
The SiO□-ZrO2 glass fine particle layer was made into transparent glass by flowing 02 at 100β/minute. 22 is a transparent glass layer.

かくして得られたロンドをファイバ化してその破断強度
ならびに損失を測定したところ実施例1とほぼ同等の結
果であった。
When the thus obtained iron was made into a fiber and its breaking strength and loss were measured, the results were almost the same as in Example 1.

(発明の効果) この発明は、以上のように最外層にZrもしくはTiを
含むガラス層を有する高強度ファイバを得るに際して、
予め光ファイバの伝送損失特性上影響を及ぼす部分まで
高純度ガラスで形成した母材を用意し、その上にZrも
しくはTiを含むガラス層を形成するようにしたので、
光ファイバの伝送損失特性を低下させることなく高強度
ファイバを得ることができる。またZrもしくはTiを
含むガラス層の形成をスート透明ガラス化という形成方
法とすれば、仮にスート割れが発生しても出発母材は再
度使用し得るため生産効率の向上を図ることができる。
(Effects of the Invention) In obtaining a high-strength fiber having a glass layer containing Zr or Ti as the outermost layer as described above, the present invention provides the following advantages:
A base material made of high-purity glass was prepared in advance up to the part that affected the transmission loss characteristics of the optical fiber, and a glass layer containing Zr or Ti was formed on it.
A high-strength fiber can be obtained without reducing the transmission loss characteristics of the optical fiber. Furthermore, if the glass layer containing Zr or Ti is formed using a formation method called soot transparent vitrification, even if soot cracking occurs, the starting base material can be used again, so production efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明による光ファイバ母材の製造
方法を示す概略図、第3図は従来法による光ファイバ母
材の製造方法を示す概略図である。 10;出発母材
1 and 2 are schematic diagrams showing a method for manufacturing an optical fiber preform according to the present invention, and FIG. 3 is a schematic diagram showing a method for manufacturing an optical fiber preform according to a conventional method. 10; Starting base material

Claims (1)

【特許請求の範囲】[Claims] 光ファイバとされたときに、その直径の80〜120μ
mまでが予め合成によって形成されている透明ガラスロ
ッドを用意し、このロッドの回りにZrもしくはTiを
含むSiO_2ガラス微粒子を堆積させて多孔質ガラス
層を有するロッドとなし、次いで前記多孔質ガラス層を
透明ガラス化することを特徴とする光ファイバ母材の製
造方法。
When used as an optical fiber, its diameter is 80 to 120μ
Prepare a transparent glass rod in which up to m is formed in advance by synthesis, deposit SiO_2 glass particles containing Zr or Ti around this rod to form a rod having a porous glass layer, and then add the porous glass layer to the rod. 1. A method for producing an optical fiber base material, which comprises converting it into transparent glass.
JP1025702A 1989-02-06 1989-02-06 Production of optical fiber preform Pending JPH02208234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025702A JPH02208234A (en) 1989-02-06 1989-02-06 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025702A JPH02208234A (en) 1989-02-06 1989-02-06 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH02208234A true JPH02208234A (en) 1990-08-17

Family

ID=12173119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025702A Pending JPH02208234A (en) 1989-02-06 1989-02-06 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH02208234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193734A (en) * 1990-11-27 1992-07-13 Fujikura Ltd Production of quartz optical fiber
JPH06115963A (en) * 1991-10-03 1994-04-26 American Teleph & Telegr Co <Att> Optical fiber and its preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930659A (en) * 1982-05-07 1984-02-18 フイアツト・アウト・ソチエタ・ペル・アツイオニ Method and machine for obtaining work piece with cam groove

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930659A (en) * 1982-05-07 1984-02-18 フイアツト・アウト・ソチエタ・ペル・アツイオニ Method and machine for obtaining work piece with cam groove

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193734A (en) * 1990-11-27 1992-07-13 Fujikura Ltd Production of quartz optical fiber
JPH06115963A (en) * 1991-10-03 1994-04-26 American Teleph & Telegr Co <Att> Optical fiber and its preparation

Similar Documents

Publication Publication Date Title
JP2515728B2 (en) Optical fiber rod preform and fiber manufacturing method
JP2959877B2 (en) Optical fiber manufacturing method
JPS60226422A (en) Preparation of intermediate for single mode fiber
JPS6236035A (en) Manufacturing method of optical fiber base material
US3932160A (en) Method for forming low loss optical waveguide fibers
JPS60260430A (en) Method for manufacturing optical fiber base material containing fluorine in the cladding part
JPH02208234A (en) Production of optical fiber preform
CA1122079A (en) Manufacture of monomode fibers
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPH0281004A (en) Optical fiber and its production
JPS607407A (en) Optical fiber and its manufacture
JP2898705B2 (en) Manufacturing method of optical fiber preform
JPS59141436A (en) Manufacture of optical fiber preform
JP2521186B2 (en) Glass body manufacturing method
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
CN116639868A (en) Manufacturing method of large-mode-field-diameter bending insensitive optical fiber based on OVD (optical variable device) process
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPH01111747A (en) Manufacturing method of optical fiber base material
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPH06219765A (en) Production of preform for optical fiber
JPS63225546A (en) Method for manufacturing base material for optical fiber
JPH01270533A (en) Production of optical fiber
JPS63182233A (en) Manufacturing method of optical fiber base material
JPS6138137B2 (en)