[go: up one dir, main page]

JPH02196421A - Electrode forming method for silicon carbide semiconductor element - Google Patents

Electrode forming method for silicon carbide semiconductor element

Info

Publication number
JPH02196421A
JPH02196421A JP1571089A JP1571089A JPH02196421A JP H02196421 A JPH02196421 A JP H02196421A JP 1571089 A JP1571089 A JP 1571089A JP 1571089 A JP1571089 A JP 1571089A JP H02196421 A JPH02196421 A JP H02196421A
Authority
JP
Japan
Prior art keywords
silicon carbide
film
type
type sic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1571089A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ota
潔 太田
Toshitake Nakada
中田 俊武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1571089A priority Critical patent/JPH02196421A/en
Publication of JPH02196421A publication Critical patent/JPH02196421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain an electrode forming method wherein a uniform P<+> type SiC layer can be easily formed and contact resistance between a P-type SiC and an electrode can be reduced, by laminating a metal film and an Al film on P-type silicon carbide, which metal film exhibits reaction, with oxygen which is stronger than silicon carbide, and by forming a high concentration P-type silicon carbide layer by heat treatment. CONSTITUTION:When an electrode is formed on a silicon carbide semiconductor element, the following are laminated in order on P-type silicon carbide 3; a metal film 4 which exhibits reaction, with oxygen, stronger than silicon carbide, and an Al film 5. By heat-treating the laminated films 4, 5, a high concentration P-type silicon carbide layer 6 is formed on the surface of the P-type silicon carbide 3. After the laminated films 4, 5 are eliminated, an ohmic electrode 7 is formed on the high concentration P-type silicon carbide layer 6. For example, on the P-type SiC layer 3, a Ti film 4 is vapor-deposited in thicknesses of 300-300Angstrom ; thereon an Al film 5 is vapor-deposited in thicknesses of 500-10000Angstrom . When the laminated substrate is heattreated at 900-1000 deg.C, Al in the Al film 5 is diffused into the P-type SiC layer 3 through the Ti film 4, and the Pt type SiC layer 6 is uniformly formed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は炭化ケイ素半導体素子のtFi形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for forming tFi in a silicon carbide semiconductor device.

(ロ)従来の技術 炭化ケイ$(SiC)は高温高圧下で動作可能な耐環境
性半導体材料として注目されており、また光学的バンド
ギャップが広く容易にpn接合が形成できることから青
色発光素子材料としても期待されている。
(b) Conventional technology Silicon carbide (SiC) is attracting attention as an environment-resistant semiconductor material that can operate under high temperature and high pressure, and is also a material for blue light emitting devices because it has a wide optical band gap and can easily form a pn junction. It is also expected.

斯るSiCには、従来オーミック電極として、1987
年秋期応用物理学会予稿集、29a−W−1,586頁
、または同予稿集、27p−D−7,680頁等に示さ
れている如く、p型SiC上に、Al、またはAl−3
iが、n型SiC上にN+が用いられている。
Such SiC has been used as an ohmic electrode since 1987.
As shown in the Proceedings of the Japan Society of Applied Physics, Fall 2009, 29a-W-1, p. 586, or the same proceedings, 27p-D-7, p. 680, Al or Al-3
i is N+ on n-type SiC.

第2図に従来のSiC半導体素子の一例を示す。斯るS
iC半導体素子の製造方法は、先ずn型SiC基板(1
0)を用意し、該n型SiC基板(10)の−主面上に
、n型SiC層(11)、p型SiC層(12)をLP
E法等のエピタキシャル成長法を用いて順次積層する。
FIG. 2 shows an example of a conventional SiC semiconductor device. Such S
The method for manufacturing an iC semiconductor device begins with an n-type SiC substrate (1
0) is prepared, and an n-type SiC layer (11) and a p-type SiC layer (12) are LP-produced on the negative main surface of the n-type SiC substrate (10).
The layers are sequentially stacked using an epitaxial growth method such as the E method.

次いで斯る積層基板をウェットエツチング等で表面処理
した後、p型SiC層上にAl−5i電極膜(13)を
、n型SiC基板(10)の他主面上にNi電極膜(1
4)をそれぞれ真空蒸着する。しかる後、斯る積層基板
にアルゴン雰囲気中にて900〜1000℃で5分程度
の熱処理を施すことに よって、各電極膜はSiCと合
金化し、オーミック性を得るものである。
Next, after surface-treating the laminated substrate by wet etching or the like, an Al-5i electrode film (13) is formed on the p-type SiC layer, and a Ni electrode film (13) is formed on the other main surface of the n-type SiC substrate (10).
4) are each vacuum-deposited. Thereafter, the laminated substrate is heat-treated at 900 to 1000° C. for about 5 minutes in an argon atmosphere, so that each electrode film is alloyed with SiC to obtain ohmic properties.

(ハ)発明が解決しようとする課題 しかし乍ら、斯る従来方法で電極を形成した場合、特に
n型SiC層側の電極において、オーミック性が得られ
ず、順方向電流電圧特性の立上り電圧が高くなる等、素
子特性がばらつくといった問題が生じる。これは、n型
SiC層と電極膜の間のコンタクト抵抗が十分低減され
ていないことによるものである。
(c) Problems to be Solved by the Invention However, when electrodes are formed using such a conventional method, ohmic properties cannot be obtained, especially in the electrodes on the n-type SiC layer side, and the rising voltage of the forward current-voltage characteristics A problem arises in that element characteristics vary, such as an increase in . This is because the contact resistance between the n-type SiC layer and the electrode film is not sufficiently reduced.

斯る点を解決するために、n型SiC層上に高濃度のn
型SiC層(p”型SiC層)をエピタキシャル成長さ
せ、n型SiC層(ここではp1型SiC層)と電極膜
とのコンタクト抵抗の低減を図る方法が考えら仇る。し
かし、この方法では、p1型SiC層を形成するための
成長室が別途必要となり、装置が大型化し、製造コスト
が高くなるといった問題が生じる。
In order to solve this problem, a high concentration of n is applied on the n-type SiC layer.
A method that can be considered is to epitaxially grow a type SiC layer (p" type SiC layer) and reduce the contact resistance between the n type SiC layer (here, the p1 type SiC layer) and the electrode film. However, with this method, A separate growth chamber is required to form the p1 type SiC layer, resulting in problems such as an increase in the size of the device and an increase in manufacturing cost.

また、n型SiC層上に直接Al膜を被着し、これを熱
処理することによってA1をn型SiC層に拡散させp
1型SiC層を形成する方法が考えられる。しかし、こ
の方法では形成されるp4型SiC層が不均一に分布し
、SiC表面が荒れてしまうといった問題を有している
。これは、後に電極を形成した時、電流が素子内を不均
一に流れる原因となり、素子特性が低下するため不都合
である。
In addition, by depositing an Al film directly on the n-type SiC layer and heat-treating it, Al is diffused into the n-type SiC layer.
A method of forming a type 1 SiC layer is considered. However, this method has the problem that the formed p4 type SiC layer is unevenly distributed and the SiC surface becomes rough. This is disadvantageous because it causes current to flow non-uniformly within the device when electrodes are formed later, resulting in deterioration of device characteristics.

したがって、本発明は均一なp+型SiC層を容易に形
成することができ、p型SiCと電流との間のコンタク
ト抵抗が低減可能な炭化ケイ素半導体素子の電流形成方
法を提供するものである。
Therefore, the present invention provides a method for forming a current in a silicon carbide semiconductor device, which can easily form a uniform p+ type SiC layer and can reduce the contact resistance between the p-type SiC and the current.

(ニ)課題を解決するための手段 本発明は、炭化ケイ素半導体素子に電極を形成する方法
であって、上記課題を解決するため、p型炭化ケイ素上
に、炭化ケイ素よりも酸素と強い反応を示す金属膜とA
1膜をこの順に積層する工程と、この積層膜を熱処理し
、p型炭化ケイ素表面に高濃度p型炭化ケイ素層を形成
する工程と、上記積層膜を除去する工程と、上記高濃度
p型炭化ケイ素層上にオーミック電極を形成する工程と
、を備えることを特徴とする。
(d) Means for Solving the Problems The present invention is a method of forming an electrode on a silicon carbide semiconductor device, and in order to solve the above problems, a method for forming electrodes on p-type silicon carbide that has a stronger reaction with oxygen than silicon carbide. A metal film showing
a step of laminating one film in this order, a step of heat-treating the laminated film to form a high concentration p-type silicon carbide layer on the p-type silicon carbide surface, a step of removing the laminated film, and a step of removing the high concentration p-type silicon carbide layer. forming an ohmic electrode on the silicon carbide layer.

(ホ)作用 本発明者らが検討した結果、SiC上に被着されたAl
膜を熱処理し、A1をSiC中に拡散させる方法におい
て、p“型SiC層が不均一に分布し、反応界面が荒れ
るのは、SiC表面に不均一に生成している自然酸化膜
に起因するものと判明した。
(e) Effect As a result of studies by the present inventors, Al deposited on SiC
In the method of heat-treating the film and diffusing A1 into SiC, the p" type SiC layer is distributed non-uniformly and the reaction interface becomes rough due to the natural oxide film that is non-uniformly formed on the SiC surface. It turned out to be something.

そこで本発明方法は、p型SiC層にA1膜を積層する
前に、SiCよりも酸素と強い反応を示す金属膜を積層
することによって、当該金属膜はp型SiC表面に生成
された自然酸化膜と反応し、当該自然酸化膜を還元する
Therefore, in the method of the present invention, before stacking the A1 film on the p-type SiC layer, by stacking a metal film that has a stronger reaction with oxygen than SiC, the metal film is removed from the natural oxidation generated on the p-type SiC surface. Reacts with the film and reduces the natural oxide film.

(へ)実施例 第1図は本発明方法の一実施例を示し、SiC発光ダイ
オードの製造工程別断面図である。以下、図を参照して
本発明方法を説明する。
(F) Embodiment FIG. 1 shows an embodiment of the method of the present invention, and is a sectional view of each manufacturing process of a SiC light emitting diode. The method of the present invention will be explained below with reference to the drawings.

先ず、第1図(a)に示す如く、n型SiC基板(1)
を用意し、該n型SiC基板(1)の−主面上に、n型
SiC層(2)及びn型SiC層(3)を周知のLPE
法、CVD法等で順次エピタキシャル成長させる。
First, as shown in FIG. 1(a), an n-type SiC substrate (1)
was prepared, and an n-type SiC layer (2) and an n-type SiC layer (3) were formed on the main surface of the n-type SiC substrate (1) using a well-known LPE process.
Epitaxial growth is performed sequentially using a method such as a method, a CVD method, or the like.

次に、斯る積層基板の表面をウェットエツチングにより
清浄化する。このエツチング処理後、SiC表面を分析
したところ、表面には〜100人程度0自然酸化膜が生
成されていた。即ち、自然酸化膜はSiC表面を清浄化
したのち、直ちに雰囲気中の酸素と結合して生成される
ものであり、回避することは困難である。したがって、
本実施例では、斯る自然酸化膜による悪影響を避けるた
め次のような手段を用いる。
Next, the surface of the laminated substrate is cleaned by wet etching. After this etching treatment, the SiC surface was analyzed, and it was found that about 100 natural oxide films had been formed on the surface. That is, a natural oxide film is formed by combining with oxygen in the atmosphere immediately after cleaning the SiC surface, and is difficult to avoid. therefore,
In this embodiment, the following means are used to avoid the adverse effects of such a natural oxide film.

上述したSiC表面の清浄化の後、第1図(b)に示す
如く、n型SiC層(3)上に、SiCよりも強く酸素
と反応する金属、例えばTi膜(4)を膜厚300〜3
000人程度真空蒸着し、更にこめ上にAl膜(5)を
膜厚500〜10000人程度真空蒸着する。この時、
Ti膜(4)はn型SiC層(3)表面に生成されてい
る自然酸化膜中の酸素と反応し、自然酸化膜を還元する
After cleaning the SiC surface as described above, as shown in FIG. 1(b), a metal that reacts more strongly with oxygen than SiC, such as a Ti film (4), is deposited on the n-type SiC layer (3) to a thickness of 300 mm. ~3
The aluminum film (5) is then vacuum-deposited on the temple to a thickness of about 500 to 10,000 people. At this time,
The Ti film (4) reacts with oxygen in the natural oxide film formed on the surface of the n-type SiC layer (3) and reduces the natural oxide film.

次いで、斯る積層基板を900〜1000℃で熱処理す
る。これにより、Al膜(5)中のA111Ti膜(4
)を通過し、p型SiC層(3)内に拡散する。
Next, such a laminated substrate is heat-treated at 900 to 1000°C. As a result, the A111Ti film (4) in the Al film (5)
) and diffuses into the p-type SiC layer (3).

本実施例においては、p型SiC層(3)上の自然酸化
膜は還元され存在しないので、A1はp型SiC層(3
)内に均一に拡散する。これにより、第1図(c)に示
す如く、p型SiC層(3)表面には、高濃度に不純物
がドーピングされたp+型S1C層(6)が、均一に形
成される。
In this example, since the natural oxide film on the p-type SiC layer (3) is reduced and does not exist, A1 is the p-type SiC layer (3).
) evenly diffused within. As a result, as shown in FIG. 1(c), a p+ type S1C layer (6) doped with impurities at a high concentration is uniformly formed on the surface of the p type SiC layer (3).

しかる後、第1図(d)に示す如く、p“型SiC層(
6)上のT1膜(4)及び残存するAl膜(5)をフッ
酸系エツチング液、例えばフッ酸:硝酸=1=1の混合
液を用いてエツチング除去する。
After that, as shown in FIG. 1(d), a p" type SiC layer (
6) Remove the upper T1 film (4) and remaining Al film (5) by etching using a hydrofluoric acid-based etching solution, for example, a mixed solution of hydrofluoric acid:nitric acid=1=1.

最後に、第1図(e)に示す如く、p“型SiC層(6
)上に、n型オーミック電極、例えば膜厚500人のT
i膜と膜厚5000人のAl膜をこの順に積層したAl
/Tit極膜(7)を、また、n型SiC基板(1)の
他主面上に、n型オーミック電極、例えば、膜厚500
0人のNi1l極膜(8)を夫々真空蒸着し、これらを
900〜1000人で約5分間熱処理を施す。これによ
り各電極膜はSiCと合金化し、オーミック性を得る。
Finally, as shown in FIG. 1(e), a p" type SiC layer (6
) on top of the n-type ohmic electrode, for example, a film thickness of 500 mm.
An Al film made by laminating an i film and an Al film with a thickness of 5000 in this order.
/Tit electrode film (7) is also formed on the other main surface of the n-type SiC substrate (1) with an n-type ohmic electrode, e.g.
A Ni11 electrode film (8) is vacuum-deposited by 0 people, respectively, and heat-treated for about 5 minutes by 900 to 1000 people. As a result, each electrode film is alloyed with SiC to obtain ohmic properties.

本実施例ではSiCよりも酸素と強く反応する金属とし
てTi膜(4)を用いたが、他に、Mo、Pd、Ta、
Cr、Wを用いても同様の効果が得られる。
In this example, Ti film (4) was used as a metal that reacts more strongly with oxygen than SiC, but other metals such as Mo, Pd, Ta,
Similar effects can be obtained by using Cr or W.

また、本実施例ではSiC発光ダイオードについて説明
したが、本発明方法はSiC発光ダイオードの電極形成
に限ることなく、SiCを用いたバイポーラトランジス
タ、FET等他のSiC半導体素子の電極形成にも適用
できることは勿論である。
Furthermore, although this embodiment describes a SiC light emitting diode, the method of the present invention is not limited to forming electrodes of SiC light emitting diodes, but can also be applied to forming electrodes of other SiC semiconductor devices such as bipolar transistors and FETs using SiC. Of course.

(ト)発明の効果 本発明方法によれば、p型SiC層に、A1膜を積層す
る前に、SiCよりも酸素と強い反応を示す金属膜を積
層することによって、当該金属膜がp型SiC表面に生
成されている自然酸化膜を還元する。これによって、A
1膜中のAlがp型SiC表面に均一に熱拡散していく
ことができるため、表面が荒れることなく均一なp4型
SiC層が形成される。その結果、p+型SiC層の上
に形成される電極膜から素子内に電流が均一に注入され
ることとなり、さらにp“型SiCと電極との間のコン
タクト抵抗が低減されるため、素子特性は安定する。ま
た本発明方法によれば、従来の装置を用いて容易にp+
型SiC層を形成することができるので、装置が大型化
することはない。
(g) Effects of the Invention According to the method of the present invention, before laminating the A1 film on the p-type SiC layer, by laminating a metal film that reacts more strongly with oxygen than SiC, the metal film becomes p-type. The natural oxide film formed on the SiC surface is reduced. By this, A
Since Al in one film can uniformly thermally diffuse onto the p-type SiC surface, a uniform p4-type SiC layer is formed without surface roughening. As a result, current is uniformly injected into the device from the electrode film formed on the p+ type SiC layer, and the contact resistance between the p" type SiC and the electrode is reduced, which improves the device characteristics. Furthermore, according to the method of the present invention, p +
Since a type SiC layer can be formed, the device does not become larger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す工程別断面図、第
2図は従来装置を示す断面図である。
FIG. 1 is a sectional view of each step showing an embodiment of the method of the present invention, and FIG. 2 is a sectional view of a conventional apparatus.

Claims (1)

【特許請求の範囲】[Claims] (1)炭化ケイ素半導体素子に電極を形成する方法にお
いて、p型炭化ケイ素上に、炭化ケイ素よりも酸素と強
い反応を示す金属膜とAl膜をこの順に積層する工程と
、この積層膜を熱処理し、p型炭化ケイ素表面に高濃度
p型炭化ケイ素層を形成する工程と、上記積層膜を除去
する工程と、上記高濃度p型炭化ケイ素層上にオーミッ
ク電極を形成する工程と、を備えることを特徴とする炭
化ケイ素半導体素子の電極形成方法。
(1) A method for forming an electrode on a silicon carbide semiconductor device includes the step of laminating, in this order, a metal film and an Al film, which react more strongly with oxygen than silicon carbide, on p-type silicon carbide, and heat-treating this laminated film. and includes the steps of forming a high concentration p-type silicon carbide layer on the p-type silicon carbide surface, removing the laminated film, and forming an ohmic electrode on the high concentration p-type silicon carbide layer. A method for forming electrodes of a silicon carbide semiconductor device, characterized in that:
JP1571089A 1989-01-25 1989-01-25 Electrode forming method for silicon carbide semiconductor element Pending JPH02196421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1571089A JPH02196421A (en) 1989-01-25 1989-01-25 Electrode forming method for silicon carbide semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1571089A JPH02196421A (en) 1989-01-25 1989-01-25 Electrode forming method for silicon carbide semiconductor element

Publications (1)

Publication Number Publication Date
JPH02196421A true JPH02196421A (en) 1990-08-03

Family

ID=11896326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1571089A Pending JPH02196421A (en) 1989-01-25 1989-01-25 Electrode forming method for silicon carbide semiconductor element

Country Status (1)

Country Link
JP (1) JPH02196421A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006153A1 (en) * 1992-09-10 1994-03-17 Cree Research, Inc. Ohmic contact structure between platinum and silicon carbide
JP2006261624A (en) * 2005-03-14 2006-09-28 Denso Corp Method for forming ohmic connection of wideband semiconductor
JP2008078434A (en) * 2006-09-22 2008-04-03 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2008109150A (en) * 2007-11-30 2008-05-08 Denso Corp Silicon carbide semiconductor device and manufacturing method thereof
WO2010082264A1 (en) * 2009-01-15 2010-07-22 昭和電工株式会社 Silicon carbide semiconductor device and method for producing silicon carbide semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006153A1 (en) * 1992-09-10 1994-03-17 Cree Research, Inc. Ohmic contact structure between platinum and silicon carbide
US5323022A (en) * 1992-09-10 1994-06-21 North Carolina State University Platinum ohmic contact to p-type silicon carbide
US5409859A (en) * 1992-09-10 1995-04-25 Cree Research, Inc. Method of forming platinum ohmic contact to p-type silicon carbide
JP2006261624A (en) * 2005-03-14 2006-09-28 Denso Corp Method for forming ohmic connection of wideband semiconductor
JP2008078434A (en) * 2006-09-22 2008-04-03 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2008109150A (en) * 2007-11-30 2008-05-08 Denso Corp Silicon carbide semiconductor device and manufacturing method thereof
WO2010082264A1 (en) * 2009-01-15 2010-07-22 昭和電工株式会社 Silicon carbide semiconductor device and method for producing silicon carbide semiconductor device
JP2010165838A (en) * 2009-01-15 2010-07-29 Showa Denko Kk Silicon carbide semiconductor device and method of manufacturing the same
US8466474B2 (en) 2009-01-15 2013-06-18 Showa Denko K.K. Silicon carbide semiconductor device and method of producing silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
US6130446A (en) Electrode of n-type nitridide semiconductor, semiconductor device having the electrode, and method of fabricating the same
JP3365607B2 (en) GaN-based compound semiconductor device and method of manufacturing the same
JP4100652B2 (en) SiC Schottky diode
JPH1022494A (en) Ohmic electrode and method for forming the same
WO2012140795A1 (en) Silicon carbide semiconductor device, and method for producing same
US6468890B2 (en) Semiconductor device with ohmic contact-connection and method for the ohmic contact-connection of a semiconductor device
JPS60196937A (en) Semiconductor element and manufacture thereof
JP2940699B2 (en) Method for forming p-type SiC electrode
KR100244208B1 (en) Light emitting diode and method for fabricating the same
JPH02196421A (en) Electrode forming method for silicon carbide semiconductor element
JP2911122B2 (en) Method for forming ohmic electrode of silicon carbide semiconductor device
JPH0661475A (en) Group iv semiconductor element containing carbon and its manufacture
JP4036075B2 (en) Method for manufacturing electrode for p-type SiC
JP2008072146A (en) METHOD FOR MANUFACTURING SiC SCHOTTKY DIODE
JP3205150B2 (en) Method for manufacturing semiconductor device
JP3959203B2 (en) Manufacturing method of semiconductor device
TWI273727B (en) Method of fabricating light emitting diode with low operating voltage
JPS63253633A (en) Manufacture of semiconductor device
JPS60117785A (en) Manufacturing method of microcrystalline thin film semiconductor device
JPH07115211A (en) Schottky semiconductor device
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JP3913947B2 (en) Manufacturing method of semiconductor device
JPH02110922A (en) Method for forming electrodes of silicon carbide semiconductor devices
JPH0567808A (en) Formation of electrode of sic light emitting diode
JPH06204557A (en) Manufacture of semiconductor light-emitting element