JPH02187077A - Flexible photoelectric conversion element - Google Patents
Flexible photoelectric conversion elementInfo
- Publication number
- JPH02187077A JPH02187077A JP1007072A JP707289A JPH02187077A JP H02187077 A JPH02187077 A JP H02187077A JP 1007072 A JP1007072 A JP 1007072A JP 707289 A JP707289 A JP 707289A JP H02187077 A JPH02187077 A JP H02187077A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- photoelectric conversion
- conversion element
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 89
- 239000000758 substrate Substances 0.000 claims description 102
- 239000010408 film Substances 0.000 claims description 80
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 66
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 55
- 239000010409 thin film Substances 0.000 claims description 47
- 229920006254 polymer film Polymers 0.000 claims description 39
- 239000004065 semiconductor Substances 0.000 claims description 35
- 239000000377 silicon dioxide Substances 0.000 claims description 33
- 235000012239 silicon dioxide Nutrition 0.000 claims description 33
- -1 polyethylene terephthalate Polymers 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 7
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 7
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- 229920006290 polyethylene naphthalate film Polymers 0.000 claims description 5
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 18
- 238000000151 deposition Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 7
- 239000011112 polyethylene naphthalate Substances 0.000 description 7
- 229910000077 silane Inorganic materials 0.000 description 7
- 229920002799 BoPET Polymers 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(a)産業上の利用分野
本発明は、可視性充電変換素子に関し、特に透明高分子
フィルムを基板として用い、該基板側から光を入射する
可撓性光電変換素子に関するものである。Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a visible charge conversion element, and in particular to a flexible photoelectric conversion element that uses a transparent polymer film as a substrate and receives light from the substrate side. It is related to.
(b)従来の技術
光を照射して電気を出力する光電変換素子としては、太
陽電池や光センサー等が広(普及している。(b) Conventional Technology Solar cells, optical sensors, and the like are widely used as photoelectric conversion elements that output electricity by irradiating light.
太陽電池では、電極に兼用される金属板からなる基板の
上にp形弁晶質シリコン層、i形弁晶質シリコン層、n
形弁晶質シリコン層を順次薄膜状に堆積させてなる非晶
質シリコン系半導体層、更にこの口形非晶質シリコン層
上に透明電極層を積層したもの、或いは、ガラス板から
成る基板の上に透明電極層、p形弁晶質シリコン層、i
形弁晶質シリコン層、n形弁晶質シリコン層を順次堆積
してなる非晶質シリコン系半導体層、更にこの口形非晶
質シリコン層上に金属製の背面電極層を積層したものが
実用化されている。In a solar cell, a p-type crystalline silicon layer, an i-type crystalline silicon layer, an n-type crystalline silicon layer, and an
An amorphous silicon-based semiconductor layer formed by sequentially depositing crystalline silicon layers in the form of thin films, and a transparent electrode layer laminated on this amorphous silicon layer, or a substrate made of a glass plate. a transparent electrode layer, a p-type crystalline silicon layer, i
In practical use, an amorphous silicon-based semiconductor layer is formed by sequentially depositing a crystalline silicon layer and an n-type crystalline silicon layer, and a metal back electrode layer is further laminated on this amorphous silicon layer. has been made into
背面電極層に兼用される基板は例えばステンレス鋼、ア
ルミニウム等の金属製の箔や薄板で形成され、また透明
電極層は、例えば、酸化錫、酸化インジウム又は酸化錫
−酸化インジウム(以下、ITOと略記)h4で形成さ
れる。The substrate that also serves as the back electrode layer is formed of a metal foil or thin plate such as stainless steel or aluminum, and the transparent electrode layer is formed of, for example, tin oxide, indium oxide, or tin oxide-indium oxide (hereinafter referred to as ITO). Abbreviation) formed by h4.
金属製の基板を使用する前者では、基板の電気抵抗が充
分に低いので、−枚の基板から大電流を得るのに適して
いる。In the former case, which uses metal substrates, the electric resistance of the substrates is sufficiently low, so it is suitable for obtaining a large current from two substrates.
又、がラス板を基板として使用する後者では、基板が電
気絶縁性を備えるので、複数の半導体を互いに隣接させ
て配置し、これらを直列接続することにより2倍以上の
電圧を得ることが容易である。In addition, in the latter case where a glass plate is used as a substrate, since the substrate has electrical insulation properties, it is easy to obtain more than twice the voltage by arranging multiple semiconductors adjacent to each other and connecting them in series. It is.
ところで、このような非晶質シリコン系半導体を使用す
る太Il!電池(非晶質シリコン系太陽電池と呼ばれて
いる)等については、現在、材料コストの低減、軽量化
、薄型化等を図るとともに、生産工程或いは輸送中の取
扱いの容易性を図り、生産コストや輸送コスト等の低減
を図るために、可視性を有する基板を使用することが提
案されている。By the way, there are many products using such amorphous silicon-based semiconductors! Batteries (called amorphous silicon solar cells), etc., are currently being manufactured by reducing material costs, making them lighter and thinner, and making them easier to handle during the production process or transportation. In order to reduce costs, transportation costs, etc., it has been proposed to use a visible substrate.
例えば、ポリイミドフィルム等の耐熱性プラスチックフ
ィルムを基板として、この基板上にステンレス鋼製の箔
や膜等の金属電極層と、非晶質シリコン系半導体層と、
透明電極層とを積層したものが提案されている(例えば
、特開昭54−149489号公報、特開昭55−49
94号公報、特開昭55−29154号公報、特開昭5
7−103839号公報等)。For example, a heat-resistant plastic film such as a polyimide film is used as a substrate, and a metal electrode layer such as a stainless steel foil or film and an amorphous silicon semiconductor layer are formed on this substrate.
Laminated transparent electrode layers have been proposed (for example, JP-A-54-149489, JP-A-55-49).
No. 94, JP-A-55-29154, JP-A-Sho. 5
7-103839, etc.).
この種の非晶質シリコン系太陽電池は、軽量、薄型で、
且つ材料コストが低(、また、可撓性に冨んでいるので
ロール状に巻回して連続処理することにより、生産コス
ト或いは輸送コストを軽減しうるので非常に有利である
。This type of amorphous silicon solar cell is lightweight, thin,
In addition, since the material cost is low (and it is highly flexible), it is possible to reduce production costs or transportation costs by winding it into a roll and processing it continuously, which is very advantageous.
しかし、基板として用いられるポリイミドフィルムは太
陽光等の可視光線に対し透過率が十分でないため、上記
した如くこのフィルム上に金属薄膜(背面電極)を形成
後、非晶質シリコン等の半導体層を堆積させ、この上に
ITO等の透明電極層を形成して太陽電池を製作してい
る。即ち、光入射は基板と反対側上り打うことになる。However, the polyimide film used as a substrate does not have sufficient transmittance for visible light such as sunlight, so after forming a metal thin film (back electrode) on this film as described above, a semiconductor layer such as amorphous silicon is applied. A solar cell is manufactured by depositing a transparent electrode layer such as ITO on top of the deposit. That is, the light is incident on the opposite side of the substrate.
通常、i層へのオートドーピングの影響等を考慮して、
比較的影響の少ないp層を、基板上に製作した背面1!
甑の上に形成したのち、i層及びn層の順に非晶質シリ
コン層を堆積し、更に透明電極層を形成して太陽電池を
完成する。Usually, considering the influence of autodoping on the i-layer,
Back side 1 where a p-layer with relatively little influence is fabricated on the substrate!
After forming on the clay, amorphous silicon layers are deposited in the order of i-layer and n-layer, and a transparent electrode layer is further formed to complete the solar cell.
この非晶質シリコン層の堆積の順序は、ガラスの如き光
透過性の基板を使用する場合は、好都合であるが、光非
透過性の基板を使用して、基板の反対側(即ち、n層側
)より光入射させる型の場合には問題がある。p層また
はn層面に光照射する場合、1層中の各々のp層又は1
層付近で電子と正孔が多く発生する。This order of deposition of the amorphous silicon layer is advantageous when using an optically transparent substrate such as glass, but it is advantageous when using an optically non-transparent substrate such as on the opposite side of the substrate (i.e. n There is a problem in the case of a type that allows light to enter from the layer side). When irradiating light onto the p-layer or n-layer surface, each p-layer or one
Many electrons and holes are generated near the layer.
ところで、電子に比して、正札のライフタイムやモビリ
ティが小さく、このため、nNJ側より光入射させる場
合、ライフタイムやモビリティの短い正孔が長い距離を
移動してp層に到達する必要があるので光電変換効率が
悪(なる。By the way, compared to electrons, the lifetime and mobility of the genuine card are small, so when light is incident from the nNJ side, holes with short lifetimes and mobility need to travel a long distance to reach the p layer. Because of this, the photoelectric conversion efficiency is poor.
上述した理由により、+Jl、il及びp層1の順序で
の堆積は問題を伴うため、一般に、光透過性の基板を用
い、該基板側よりp層、iNJ及びn層の順序で堆積し
て、この基板側より光入射させるタイプが有利になる。For the above-mentioned reasons, depositing +Jl, il, and p layer 1 in this order is problematic; therefore, generally, a light-transmissive substrate is used, and p-layer, iNJ, and n-layer are deposited in this order from the substrate side. A type that allows light to enter from the substrate side is advantageous.
そのため、可視性があり、且つ光透過性の高分子フィル
ムを基板として用いた非晶質シリコン太陽電池に関して
いくつかの提案がなされている(例えば、特開昭60−
194582号公報、特開昭61−168271号公報
、及び特開昭62−36882号公報等)。Therefore, several proposals have been made regarding amorphous silicon solar cells using a visible and light-transmissive polymer film as a substrate (for example,
194582, JP 61-168271, JP 62-36882, etc.).
これらの出願では、いずれも非晶質シリコンの堆積温度
に耐えられるように耐熱性の高分子フィルムを用いてい
る。ところで、これらの耐熱性高分子フィルムは、耐熱
性に優れているが、高分子フィルム製の基板は、非晶質
シリコン層より、熱膨張係数が大きく、高分子フィルム
製の基板上に非晶質シリコン層を堆積後室温に戻すと、
当該基板を内側にして者しいカールが発生する。All of these applications use heat-resistant polymer films to withstand the deposition temperature of amorphous silicon. By the way, these heat-resistant polymer films have excellent heat resistance, but the polymer film substrate has a larger coefficient of thermal expansion than the amorphous silicon layer, so it is difficult to place an amorphous layer on the polymer film substrate. When the quality silicon layer is returned to room temperature after deposition,
A noticeable curl occurs with the substrate facing inside.
このカール防止対策として本出願人は、可撓性及び電気
絶縁性を有する透明プラスチック製の基板と、該基板上
に積層された透明電極層と半導体層及びこの上面に形成
された背面電極層、更にこの上面に積層され、上記基板
と同等の熱収縮特性を有する可撓性電気絶縁層からなる
サンドイッチ構造の可撓性受光素子につき既に提案しで
いる(特願昭63−34660号公報、出願日63年2
月16日)。As a measure to prevent this curl, the present applicant has developed a flexible and electrically insulating substrate made of transparent plastic, a transparent electrode layer and a semiconductor layer laminated on the substrate, and a back electrode layer formed on the upper surface of the substrate. Furthermore, we have already proposed a flexible light-receiving element with a sandwich structure consisting of a flexible electrical insulating layer laminated on the upper surface of this substrate and having heat shrinkage characteristics equivalent to that of the above-mentioned substrate (Japanese Patent Application No. 63-34660; day 63 year 2
16th of the month).
(e)発明が解決しようとする課題
この可視性光電変換素子は、カールの発生防止対策とし
ては非常に有効なものであるが、本末の充電変換素子の
必須条件のみを満たすものでなく、カール対策のために
材料及びプロセスのコストがかかり、より簡易な構成の
ものが望まれている。(e) Problems to be Solved by the Invention Although this visible photoelectric conversion element is very effective as a measure to prevent the occurrence of curling, it does not satisfy only the essential conditions of the charging conversion element of the present invention; Countermeasures require material and process costs, and a simpler structure is desired.
(d)課題を解決するための手段
本発明者らはかかるa点より鋭意検討の結果、光透過性
の基板として、透明高分子フィルムを用い、該高分子フ
ィルムの少な(とも片面に二酸化硅素、窒化硅素、酸化
窒化硅素、テトラメトキシシラン縮合物、テトラエトキ
シシラン縮合物及びモノメチルトリエトキシシラン縮合
物、透明導電膜などの薄膜を形成し、この薄膜によって
、非晶質シリコン堆積時の高温環境下における透明高分
子フィルム製の基板を保護し、且っ非晶質シリコン堆積
後室温に取り出したときの基板フィルムの収縮によるカ
ールの発生が昔しく小さく、又、可撓性光電変換素子の
使用時の窓材としての透明高分子フィルム製の基板の表
面を保護して耐摩擦性が至極向上し、更に、基板フィル
ムの屈折率との組み合わせを考慮す−ることで入射光の
反射防止も可能であり、又、光電変換効率等の特性も極
めて良好で充分に実用化でbることを見い出し、本発明
を完成するに至ったものである。(d) Means for Solving the Problems As a result of intensive study from point a, the present inventors found that a transparent polymer film was used as a light-transmissive substrate, and silicon dioxide was added to one side of the polymer film. , silicon nitride, silicon oxynitride, tetramethoxysilane condensate, tetraethoxysilane condensate and monomethyltriethoxysilane condensate, transparent conductive film, etc. are formed, and this thin film allows the high-temperature environment during amorphous silicon deposition to be formed. It protects the underlying substrate made of transparent polymer film, reduces curling due to shrinkage of the substrate film when taken out to room temperature after depositing amorphous silicon, and uses flexible photoelectric conversion elements. It protects the surface of the transparent polymer film substrate that is used as a window material at the time, greatly improving its abrasion resistance, and also prevents reflection of incident light by considering the combination with the refractive index of the substrate film. The present invention has been completed based on the discovery that this method is possible, and that the photoelectric conversion efficiency and other characteristics are also extremely good, making it suitable for practical use.
この可撓性光電変換素子は、基板を内側にしてごく軽度
のカールをしているが、何らの補強をすることなく、そ
のままで十分な実用性を有するのである。Although this flexible photoelectric conversion element has a very slight curl with the substrate inside, it has sufficient practicality as it is without any reinforcement.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明において可視性光電変換素子とは、光を入力して
電気を出力する受光素子であって、可撓性を有するもの
を総て含んでおり、具体的には、光導電素子、ホトダイ
オード、太陽電池、ホ))ランジスタ、ホトサイリスタ
等を挙げることができる。また、ここでいろ光には、可
視光線のみならず、赤外線等も含まれる。In the present invention, the visible photoelectric conversion element refers to a light receiving element that inputs light and outputs electricity, and includes all flexible elements. Specifically, it includes photoconductive elements, photodiodes, Examples include solar cells, e)) transistors, and photothyristors. Moreover, here, the color light includes not only visible light but also infrared light and the like.
以下、先ず、請求項1の可視性充電変換素子について詳
細に説明する。Hereinafter, first, the visible charge conversion element of claim 1 will be explained in detail.
即ち、この可撓性光電変換素子は、透明高分子フィルム
製の基板、該基板の片面に形成された二酸化硅素の薄膜
、この薄膜の形成面側と反対側に形成された透明導電膜
、該透明導電膜上に形成された非晶質シリコン系半導体
層、該非晶質シリコン系半導体上に形成された背面電極
層からなるものである。That is, this flexible photoelectric conversion element includes a substrate made of a transparent polymer film, a thin film of silicon dioxide formed on one side of the substrate, a transparent conductive film formed on the side opposite to the side on which this thin film is formed, and a silicon dioxide thin film formed on one side of the substrate. It consists of an amorphous silicon-based semiconductor layer formed on a transparent conductive film, and a back electrode layer formed on the amorphous silicon-based semiconductor.
本発明に用いられる透明高分子フィルム製の基板として
は、透明であって、耐熱性、可撓性及び電気絶縁性を有
するものであれば特に限定されるものではなく、該基板
を形成するための透明高分子フィルムの具体的な代表例
としては、ポリエチレンテレフタレート、ポリエチレン
ナフタレート、ポリイミド、ポリエーテルサル7オン、
ポリスルホン、ポリエーテルイミド、4−メチルペンテ
ンテレフタレート等で形成されたフィルムを列挙するこ
とができる。The substrate made of transparent polymer film used in the present invention is not particularly limited as long as it is transparent, has heat resistance, flexibility, and electrical insulation. Specific representative examples of transparent polymer films include polyethylene terephthalate, polyethylene naphthalate, polyimide, polyether sal 7,
Films formed from polysulfone, polyetherimide, 4-methylpentene terephthalate, etc. can be listed.
この透明性基板において、厚さ100±5μ鴫当たりの
可視光M(550nm)透過率が60%以上であるもの
が望ましい。In this transparent substrate, it is desirable that the visible light M (550 nm) transmittance per 100±5 μm thickness is 60% or more.
本発明においては、上記透明高分子フィルム製の基板の
片面に二酸化硅素膜が形成される。In the present invention, a silicon dioxide film is formed on one side of the transparent polymer film substrate.
そして、この薄膜によって、非晶質シリコン堆積時の高
温環境下における透明高分子フィルム製の基板を保護し
、且つ非晶質シリコン堆積後室温に取り出したときの基
板フィルムの収縮によるカールの発生が着しく小さくな
り、又、可視性光電変換素子の使用時の窓材としての透
明高分子フィルム製の基板の表面を保護して耐摩擦性が
至極向上し、更に、基板フィルムの屈折率との組み合わ
せを考慮することで入射光の反射防止も可能であり、又
、光電変換効率等の特性も極めて良好で充分に実用化で
きるのである。This thin film protects the transparent polymer film substrate in the high-temperature environment during amorphous silicon deposition, and prevents curling due to shrinkage of the substrate film when it is taken out to room temperature after amorphous silicon deposition. In addition, it protects the surface of the transparent polymer film substrate used as a window material when using visible photoelectric conversion elements, extremely improving friction resistance, and further improves the refractive index of the substrate film. By considering the combination, it is possible to prevent the reflection of incident light, and the properties such as photoelectric conversion efficiency are also extremely good, making it fully practical.
この薄膜を形成した可撓性光電変換素子は、基板を内側
にしてごく軽度のカールをしでいるが、何らの補強を要
せず、そのままで充分な実用性を有するのである。Although the flexible photoelectric conversion element formed with this thin film curls only slightly with the substrate inside, it does not require any reinforcement and has sufficient practical use as it is.
上記二酸化硅素の膜厚としては、一般に30〜1100
0nの範囲、特に1100−500nの範囲とするのが
が望ましく、この厚さが、30n11未満では非晶質シ
リコン半導体の堆積時に基板を保護できず、且つカール
の発生を阻止出来ないだけでなく、又、所望の耐摩擦性
が得られない等の理由より好ましくなく、一方、110
00nを超えると厚くなり過ぎて可撓性充電変換素子の
可撓性にとって問題が生じるので望ましくない。The film thickness of silicon dioxide is generally 30 to 1100.
It is preferable that the thickness be in the range of 0n, especially in the range of 1100-500n; if this thickness is less than 30n11, it will not be possible to protect the substrate during deposition of the amorphous silicon semiconductor, and it will not be possible to prevent the occurrence of curling. Also, it is not preferred because the desired abrasion resistance cannot be obtained, and on the other hand, 110
If it exceeds 00n, it becomes too thick and causes a problem with the flexibility of the flexible charge conversion element, which is not desirable.
本発明において、二酸化硅素とはエリプソメーターによ
る測定で屈折率が1.4以上1.5未満の範囲のものを
いう。In the present invention, silicon dioxide refers to silicon dioxide having a refractive index in the range of 1.4 or more and less than 1.5 as measured by an ellipsometer.
この二酸化硅素の薄膜の形成方法は、特に限定するもの
ではないが、例えばスパッタリングや電子R蒸着法等が
挙げられる。The method of forming this silicon dioxide thin film is not particularly limited, and examples thereof include sputtering and electronic R-evaporation.
そして、上記二酸化硅素の薄膜付き基板において、二酸
化硅素の薄膜形成面側と反対側に透明導電膜が形成され
るが、この形成方法としては、上記基板の上に透明電極
層がスパッタリング、蒸着、印刷等の方法によって形成
される。Then, in the substrate with the silicon dioxide thin film, a transparent conductive film is formed on the side opposite to the side on which the silicon dioxide thin film is formed.This formation method includes forming a transparent electrode layer on the substrate by sputtering, vapor deposition, It is formed by a method such as printing.
この透明電極膜の厚さは、特に限定されるものではない
が、具体的には、50〜3000人程度、特に変色ト抵
抗値と可視光線透過率とのバランスを考慮すると150
〜1000人程度の範囲が変色しい。The thickness of this transparent electrode film is not particularly limited, but specifically, it is about 50 to 3000, especially considering the balance between discoloration resistance and visible light transmittance.
The area around 1,000 to 1,000 people appears to be discolored.
この透明電極膜の厚さが、50人未満であると厚さが薄
くなり過ぎて所望の導電性(表面抵抗が1000Ω/口
以下)が得られなくなるので好ましくなく、一方、30
0OAを超えると厚さが厚くなり過ぎて透明電極膜の透
明性が低下する恐れが生ずるので好ましくない。If the thickness of the transparent electrode film is less than 50, it is not preferable because the thickness becomes too thin and the desired conductivity (surface resistance of 1000 Ω/mouth or less) cannot be obtained.
If it exceeds 0OA, the thickness becomes too thick and the transparency of the transparent electrode film may decrease, which is not preferable.
尚、複数のセルを1枚の基板上に形成する場合等には、
例えば、7オFエツチング等の手法により透明を極膜の
不要部分が除去される。In addition, when forming multiple cells on one substrate,
For example, unnecessary portions of the transparent electrode film are removed by a technique such as 7-OF etching.
この透明電極膜は、公知の材質のものを使用すればよ(
、例えば、酸化錫、酸化インジウム、あるいは両者の固
溶体(ITO)等で形成された膜が挙げられる。This transparent electrode film may be made of a known material (
Examples include a film formed of tin oxide, indium oxide, or a solid solution of both (ITO).
本発明においては、上記透明電極膜上に光起電性を有す
る非晶質シリコン系半導体層が形成されている。In the present invention, an amorphous silicon-based semiconductor layer having photovoltaic properties is formed on the transparent electrode film.
上記非晶質シリコン系半導体層は、光起電性を有するも
のであれば特に限定されず、例えば可視光線用の非晶質
シリコン等が例として挙げられる。The amorphous silicon-based semiconductor layer is not particularly limited as long as it has photovoltaic properties, and examples include amorphous silicon for visible light.
例えば、シリコンで半導体層を形成する璃合には、単結
晶シリコンに活性不純物を拡散させる方法でpn接合を
形成することも可能であるが、順次p形弁晶質シリコン
層、i形弁晶質シリコン層及びn形弁晶質シリコン層を
順次堆積することが半導体層の薄膜化を図る上で有利で
ある。For example, when forming a semiconductor layer with silicon, it is possible to form a p-n junction by diffusing active impurities into single crystal silicon, but it is also possible to form a p-n junction by diffusing active impurities into single crystal silicon. It is advantageous to sequentially deposit the crystalline silicon layer and the n-type crystalline silicon layer in order to reduce the thickness of the semiconductor layer.
又、p形弁晶質シリコン層、i形弁晶質シリコン層及V
n形非晶質シリコン層を順次堆積する方法として、スパ
ッタリング法、グロー放電法、光CVD法、イオンブレ
ーティング法等の各種の方法を採用しうる。In addition, a p-type valvous crystalline silicon layer, an i-type valvous crystalline silicon layer and a V
As a method for sequentially depositing the n-type amorphous silicon layer, various methods such as sputtering method, glow discharge method, photo-CVD method, and ion-blating method can be employed.
例えば、グロー放電法を採用する場合を例に採って具体
的に説明すれば、温度200℃前後(150〜280℃
)に加熱されたホルダーに透明電極を形成した基板を保
持し、真空度0,2Torr程度において、水素で10
モル%程度に希釈したシランと水素で5*000ppm
程度に希釈したジポランの混合気[BzHa/(SiH
++B2)111)=0. 1〜0.6モル%、好まし
くは0.3モル%程度1を合流filoO3ccM流入
させ、その雰囲気の下で、上記ホルダーを一方の電極と
し、これに対する対極との間に13.56MHz、10
層程度の高周波電力を印加して上記透明電極層上にほう
素をドープしたp形弁晶質シリコン層を厚さ100〜5
00人、特に200人程変色積させる。For example, if we take the case of employing the glow discharge method as an example and explain it specifically, the temperature will be around 200℃ (150~280℃).
) The substrate with the transparent electrode formed thereon was held in a holder heated to
5*000ppm with silane and hydrogen diluted to about mol%
Diporan mixture diluted to a certain degree [BzHa/(SiH
++B2)111)=0. 1 to 0.6 mol %, preferably about 0.3 mol % 1 is injected in a combined filoO 3 ccM, and in that atmosphere, the holder is used as one electrode, and a counter electrode is connected at 13.56 MHz, 10
A p-type crystalline silicon layer doped with boron is formed on the transparent electrode layer to a thickness of 100 to 5.
00 people, especially about 200 people, will be discolored.
引き続いて、水素希釈シランのみを全流量11003C
Cで導入した雰囲気の下で、上記と同様にしてノンドー
プのi形弁晶質シリコン層を厚さ2500〜7000人
、特に4500人程度堆積させ、更に、水素希釈シラン
と水素で5,000ppmに希釈した7オスフイン(P
)I 3)の混合気[PH3/ (S iH4+ P
H3)= 0 、 1〜0.6モル%、好ましくは0
.3モル%]を合流i1100sccMで導入した雰囲
気の下で同様にしてリンでドープしたn形弁晶質シリコ
ン層を厚さ250〜1000人、特に500人程変色積
させる。Subsequently, only hydrogen diluted silane was supplied at a total flow rate of 11003C.
Under the atmosphere introduced in step C, a non-doped i-type crystalline silicon layer was deposited to a thickness of 2,500 to 7,000 layers, particularly about 4,500 layers, in the same manner as above, and further diluted with hydrogen to a concentration of 5,000 ppm using silane and hydrogen. Diluted 7-osufine (P
) I 3) mixture [PH3/ (S iH4+ P
H3) = 0, 1-0.6 mol%, preferably 0
.. 3 mol %] was introduced at a confluence of 1100 sccm, an n-type crystalline silicon layer doped with phosphorus was similarly deposited to a thickness of 250 to 1000 layers, particularly about 500 layers.
ところで、便宜上光起電要素としてp−1−n型の非晶
質シリコンの例で説明してきたが、9層には非晶質シリ
コン以外にρ型非晶質炭化硅素(膜組成を5ixC,−
xで示すと、x=0.6〜0,95、望ましくはx=0
.8程度で、シボラン82H,等でドープした膜)も使
用できる。By the way, for convenience, the explanation has been given using p-1-n type amorphous silicon as a photovoltaic element, but in addition to amorphous silicon, the 9th layer contains ρ-type amorphous silicon carbide (film composition: 5ixC, −
Indicated by x, x=0.6 to 0.95, preferably x=0
.. A film doped with Ciborane 82H, etc.) can also be used.
この場合、炭化源としては、メタンやエタン等の飽和炭
化水素やエチレン、プロピレン等の不飽和炭化水素が用
いられる。In this case, the carbonization source used is a saturated hydrocarbon such as methane or ethane, or an unsaturated hydrocarbon such as ethylene or propylene.
原料がスとして用いられるシラン(S iH、)やジシ
ラン(Si2Hs)と上記の炭化水素類のモル比は、下
記の如く決定される。The molar ratio of silane (S iH, ) or disilane (Si2Hs) used as a raw material and the above-mentioned hydrocarbons is determined as follows.
即ち、例えば膜組成S j Os 8 COs 2の膜
を製するには、5iH=とCH,のモル比0.8対0.
2(又、5izH−とCH4では0.4対0.2)、S
i H<とC2Haでは0.8対0,1.5I2H@
とC2H,では0.4対0.1の如く、原料〃スのSi
原子数とC原子数よりモル比が決定される。That is, for example, to produce a film with a film composition of S j Os 8 COs 2, the molar ratio of 5iH= and CH is 0.8:0.
2 (also 0.4 vs. 0.2 for 5izH- and CH4), S
i H< and C2Ha are 0.8 vs. 0, 1.5I2H@
and C2H, the ratio of Si in the raw material is 0.4 to 0.1.
The molar ratio is determined from the number of atoms and the number of C atoms.
本発明においては、上記非晶質シリコン系半導体層上に
更に背面電極層が積層されている。In the present invention, a back electrode layer is further laminated on the amorphous silicon-based semiconductor layer.
この背面電極層は、基板と非晶質シリコン系半導体層と
の間に積層されている透明電極層と同様に酸化錫、酸化
インジウム、あるいは両者の固溶体(ITO)等で構成
してもよく、また、アルミニウム、ニッケル、チタン、
クロム、鉄、ステンレス鋼、ニッケルクロム等の金属で
構成しでもよい。This back electrode layer may be made of tin oxide, indium oxide, or a solid solution of both (ITO), like the transparent electrode layer stacked between the substrate and the amorphous silicon-based semiconductor layer. Also, aluminum, nickel, titanium,
It may be made of metal such as chromium, iron, stainless steel, nickel chromium, etc.
この場合、背面電極層は印刷法、スパッタリング法、蒸
着法等の方法で形成される0例えば蒸着法による場合で
あれば、10−4〜ITorrの真空中で、蒸着源の温
度は使用される材料の融点付近という条件の下で行なわ
れる。In this case, the back electrode layer is formed by a method such as a printing method, a sputtering method, or an evaporation method.For example, in the case of an evaporation method, the temperature of the evaporation source is 10-4 to ITorr in a vacuum. This is done under conditions near the melting point of the material.
この背面電極層の膜厚は特に限定されないが、可視性光
Wl変換索子全体の可撓性を着しく低下させない範囲で
所要の導電性を有するに足る膜厚以上であることが必要
であり、例えば、アルミニウム電極の場合であれば0.
1〜1.5μI程度が適当とされる。The thickness of this back electrode layer is not particularly limited, but it must be at least thick enough to have the required conductivity without significantly reducing the flexibility of the entire visible light Wl conversion cord. For example, in the case of an aluminum electrode, 0.
Approximately 1 to 1.5 μI is considered appropriate.
このようにしで、透明高分子フィルム製の基板において
、その片面に形成された二酸化硅素の薄膜、この薄膜の
形成面側と反対側に形成された透明電極層、p形−1形
−n形の非晶質シリコン系半導体層及び背面電極層を積
層した非晶質シリコン系可撓性光電変換素子、この場合
、非晶質シリコン系太陽電池が形成される。In this way, in a substrate made of a transparent polymer film, a thin film of silicon dioxide is formed on one side of the substrate, a transparent electrode layer is formed on the side opposite to the side on which this thin film is formed, and p-type - 1-type - n-type An amorphous silicon-based flexible photoelectric conversion element in which an amorphous silicon-based semiconductor layer and a back electrode layer are laminated, in this case an amorphous silicon-based solar cell is formed.
かくして、本発明の可撓性光電変換素子が得られる。In this way, the flexible photoelectric conversion element of the present invention is obtained.
次に、請求項2の可撓性光電変換素子について説明する
。Next, a flexible photoelectric conversion element according to a second aspect of the present invention will be explained.
即ち、この可視性光電変換素子は、透明高分子フィルム
製の基板、該基板の両面に形成された二酸化硅素の薄膜
、該薄膜の一方面上に形成された透明導電膜、該透明導
電膜上に形成された非晶質シリフン系半導体層、該非晶
質シリコン系半導体上に形成された背面電極層からなる
ものである。That is, this visible photoelectric conversion element includes a substrate made of a transparent polymer film, a silicon dioxide thin film formed on both sides of the substrate, a transparent conductive film formed on one side of the thin film, and a transparent conductive film formed on the transparent conductive film. It consists of an amorphous silicon-based semiconductor layer formed on the amorphous silicon-based semiconductor layer, and a back electrode layer formed on the amorphous silicon-based semiconductor layer.
請求項2の発明は、請求項1の発明の改良に係るもので
あり、その特徴は、透明高分子フィルム製の基板の両面
に二酸化硅素を形成した点にあり、このように構成する
ことにより、基板の保護が一層確実になし得、−1fl
!れた特性の可撓性光電変換素子が得られるのである。The invention of claim 2 relates to an improvement of the invention of claim 1, and its feature is that silicon dioxide is formed on both sides of the substrate made of a transparent polymer film. , the board can be more securely protected, -1fl
! A flexible photoelectric conversion element with improved characteristics can be obtained.
即ち、両面に二酸化硅素を有する基板において、その一
方面上に透明導電膜、非晶質シリコン系半導体層、背面
電極層が形成された構造のものであるが、これらは請求
項1と同様である。That is, it has a structure in which a transparent conductive film, an amorphous silicon semiconductor layer, and a back electrode layer are formed on one side of a substrate having silicon dioxide on both sides, but these are the same as claim 1. be.
次に、請求項3の可視性光電変換素子について説明する
即ち、この可視性光電変換素子は、透明高分子フィルム
製の基板、該基板の両面に形成された透明導電膜、該透
明導電膜の一方面上に形成された二酸化硅素のi膜、該
透明導電膜の他方面上に形成された非晶質シリコン系半
導体層、該非晶質シリコン系半導体層上に形成された背
面?を極層からなるものである。Next, the visible photoelectric conversion element of claim 3 will be explained. That is, this visible photoelectric conversion element includes a substrate made of a transparent polymer film, a transparent conductive film formed on both sides of the substrate, and a transparent conductive film formed on both sides of the substrate. An i-film of silicon dioxide formed on one surface, an amorphous silicon semiconductor layer formed on the other surface of the transparent conductive film, and a back surface formed on the amorphous silicon semiconductor layer? It consists of a polar layer.
この請求項3の可視性充電変換素子は、透明高分子フィ
ルム製の基板、該基板の両面に形成された透明導電膜、
該透明導電膜の一方面上に形成された二酸化硅素の薄膜
、該二酸化硅素の薄膜形成面側と反対側の透明導電膜上
に非晶質シリコン系半導体層及び背面電極層が形成され
た構造のものであり、この二酸化硅素の薄膜の形成によ
って、−層カールの発生が防止され、−1優れた特性の
充電変換素子が得られるものである。The visible charge conversion element according to claim 3 includes a substrate made of a transparent polymer film, a transparent conductive film formed on both sides of the substrate,
A structure in which a silicon dioxide thin film is formed on one side of the transparent conductive film, and an amorphous silicon-based semiconductor layer and a back electrode layer are formed on the transparent conductive film on the side opposite to the silicon dioxide thin film formation side. The formation of this silicon dioxide thin film prevents the occurrence of -layer curl, and provides a charge conversion element with -1 excellent characteristics.
更に、請求項4の可撓性光電変換素子について説明する
。Furthermore, a flexible photoelectric conversion element according to a fourth aspect of the present invention will be explained.
即ち、上述の可視性光電変換素子において、二酸化硅素
の薄膜に代えて窒化硅素、酸化窒化硅素、テトラメトキ
シシラン縮合物、テトラエトキシシラン縮合物、モノメ
チルトリエトキシシラン縮合物から選ばれた少なくとも
1種の薄膜で形成されたものである。That is, in the above visible photoelectric conversion element, at least one selected from silicon nitride, silicon oxynitride, tetramethoxysilane condensate, tetraethoxysilane condensate, and monomethyltriethoxysilane condensate is used instead of the silicon dioxide thin film. It is made of a thin film.
そして、窒化硅素や酸化窒化硅素の薄膜の形成方法とし
ては、スパッタリング法、電子線蒸着法、等が挙げられ
るのであり、又、テトラメトキシシラン縮合物、テトラ
エトキシシラン縮合物或いはモノメチルトリエトキシシ
ラン綜合物など薄膜はそのモノマーやプレポリマーをグ
ラビアコートやローラーコートで塗工後加熱処理を行う
ことで形成することができる。Examples of methods for forming thin films of silicon nitride and silicon oxynitride include sputtering, electron beam evaporation, and the like. Thin films such as materials can be formed by applying the monomer or prepolymer using gravure coating or roller coating, followed by heat treatment.
上記ri15Kにおいて、その膜厚は、無機系硅素化合
物で5O−500r+nの範囲、特に1100−300
nの範囲が好ましく、又、有機系硅素化合物で200〜
7000n鴫の範囲、特に800〜4500人の範囲と
するのが望ましい。In the above ri15K, the film thickness is in the range of 5O-500r+n, especially 1100-300
The range of n is preferably 200 to 200 for organic silicon compounds.
A range of 7,000 people, particularly a range of 800 to 4,500 people, is desirable.
その薄膜が、薄過ぎると所要の特性が得られず、一方、
厚過ぎると全体の可撓性が悪くなるので、いずれの場合
も好ましくない。If the thin film is too thin, the desired properties cannot be obtained;
If it is too thick, the overall flexibility will deteriorate, so either case is not preferable.
更に又、請求項5の可撓性光電変換素子について説明す
る。Furthermore, a flexible photoelectric conversion element according to claim 5 will be explained.
即ち、この可視性光電変換素子は、透明高分子フィルム
がポリエチレンテレフタレートフィルム又はポリエチレ
ンナフタレートフィルムで形成されてなるものである。That is, in this visible photoelectric conversion element, the transparent polymer film is formed of a polyethylene terephthalate film or a polyethylene naphthalate film.
このように、ポリエチレンテレフタレートフィルム(P
E T フィルムという)又はポリエチレンナフタレ
ートフィルム(P E N フィルムという)を用いる
ことにより、非晶質シリコン系薄膜形成時の基板からの
縮合水や吸着水の放出によるコンタミネーシ1ンが少な
く、又基板の熱膨張率が比較的小さいために非晶質シリ
コン系薄膜を形成後のカールが小さ(、更に得られる太
陽電池の特性については基板の光透過率が比較的高いた
めに高い光電変換効率のものが得ら紅るのであり、又基
板の吸湿性が小さく、吸湿寸法変化が小さいために、耐
湿性の良好な可視性光電変換素子が得られるのである。In this way, polyethylene terephthalate film (P
By using a polyethylene naphthalate film (referred to as E Because the coefficient of thermal expansion of the substrate is relatively low, the curl after forming the amorphous silicon thin film is small (and the resulting solar cell has a high photoelectric conversion efficiency due to the relatively high light transmittance of the substrate). Moreover, since the substrate has low hygroscopicity and dimensional change upon absorption of moisture is small, a visible photoelectric conversion element with good moisture resistance can be obtained.
つまり、ポリエチレンテレフタレートフィルム又はポリ
エチレンナフタレートフィルムを基板として用いると太
陽電池等に多くの特徴を期待できるにも拘わらず、耐熱
性が低いために従来使用不可能であったが、基板に二酸
化硅素等の薄膜を形成することにより、このようなフィ
ルムを基板として使用することが可能になったのである
。In other words, although polyethylene terephthalate film or polyethylene naphthalate film can be expected to have many features in solar cells etc. as a substrate, it has traditionally been impossible to use due to low heat resistance. By forming such a thin film, it became possible to use such a film as a substrate.
(e)作用
本発明の可視性光電変換素子は、透明高分子フィルムを
用い、該透明高分子フィルムの少なくとも片面に二酸化
硅素、窒化硅素、酸化窒化硅素、テトラメトキシシラン
縮合物、テトラエトキシシラン縮合物又はモノメチルト
リエトキシシラン縮合物、透明導電膜などの薄膜を形成
し、この薄膜によって、非晶質シリコン堆積時の高温環
境下における透明高分子フィルム製の基板を保護し、且
つ非晶質シリコン堆積後室温に取り出したときの基板フ
ィルムの収縮によるカールの発生が者しく小さく、又、
可撓性充電変換素子の使用時の窓材としての透明高分子
フィルム製の基板の表面を保護して耐摩擦性が至極向上
し、更に、基板フィルムの屈折率との組み合わせを考慮
することで光透過率の改良も可能であり、又、充電変換
効率等の特性も極めて良好で充分に実用化できる作用を
有するのである。(e) Effect The visible photoelectric conversion element of the present invention uses a transparent polymer film, and silicon dioxide, silicon nitride, silicon oxynitride, tetramethoxysilane condensate, or tetraethoxysilane condensate is applied to at least one side of the transparent polymer film. A thin film such as a monomethyltriethoxysilane condensate or a transparent conductive film is formed, and this thin film protects a substrate made of a transparent polymer film in a high-temperature environment during amorphous silicon deposition. Curling due to shrinkage of the substrate film when taken out to room temperature after deposition is significantly smaller, and
When using a flexible charge conversion element, the surface of the transparent polymer film substrate used as a window material is protected, and the abrasion resistance is extremely improved.Furthermore, by considering the combination with the refractive index of the substrate film, It is also possible to improve the light transmittance, and the characteristics such as charge conversion efficiency are also very good, and the effect is sufficient for practical use.
即ち、PET(屈折率1.66)より小さい屈折率の膜
をつけると、この方向からの透過率はアップする。一方
、1.66より大きい屈折率の膜をつけると透過率はダ
ウンする。That is, if a film with a refractive index smaller than that of PET (refractive index 1.66) is attached, the transmittance from this direction increases. On the other hand, if a film with a refractive index greater than 1.66 is attached, the transmittance will decrease.
又、この可撓性光電変換素子は、基板を内側にしてごく
軽度のカールをしているが、何らの補強をすることな(
、そのままで十分な実用性を有する作用を有するのであ
る。Also, this flexible photoelectric conversion element has a very slight curl with the substrate inside, but it is not reinforced (
, it has a sufficient practical effect as it is.
(f)実施例
以下、本発明を実施例に基づき詳細に説明するが、本発
明はこれに限定されるものではない。(f) Examples Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.
実施例1
厚み100μIのPETフィルムの両面に、常法により
スパッタリングで厚み90n曽の二酸化珪素の薄III
(屈折率1.46)を形成したのち、厚み50nmのI
TO膜を形成した。Example 1 A thin layer of silicon dioxide with a thickness of 90 nm was deposited on both sides of a PET film with a thickness of 100 μI by sputtering using a conventional method.
(refractive index 1.46), a 50 nm thick I
A TO film was formed.
得られたフィルムの波長550n輸の光透過率は84%
、又、ITO膜のシート抵抗は50Ω/口であった。The light transmittance of the obtained film at a wavelength of 550n was 84%.
Also, the sheet resistance of the ITO film was 50Ω/hole.
次に、このITO膜付きフィルムを、内部電極型の高周
波(13,56MH2)グロー放電装置内のヒーター付
島ホルダーに保持し、温度170℃前後に保持した後、
水素で10モル%に希釈したシランと100%のメタン
及び水素で5,0OOppal:希釈したジボランを混
合[S iH4/ (S iH4+CH,+B、H,)
=80モル%、CH4/ (S iH4十C)14 +
82Hs)= 19 、 7モル%、B2H,/(S
iH4+CH4+B2Hり=0.3モル%]し、これを
全流量として11005CCグロー放電装置内に導入し
、真空度0,2Torrの雰囲気下で10Wの高周波電
力を印加して該基板上にほう素をドープした200人の
p形弁晶質シリコンカーバイド層を設けた。Next, this ITO film-coated film was held in an island holder with a heater in an internal electrode type high frequency (13,56MH2) glow discharge device, and the temperature was maintained at around 170°C.
Mix silane diluted to 10 mol% with hydrogen and diborane diluted with 100% methane and hydrogen to 5,0 Oppal [S iH4/ (S iH4+CH, +B, H,)
=80 mol%, CH4/ (S iH40C)14 +
82Hs) = 19, 7 mol%, B2H,/(S
iH4+CH4+B2H = 0.3 mol%], the total flow rate was introduced into a 11005 CC glow discharge device, and 10 W of high frequency power was applied in an atmosphere with a degree of vacuum of 0.2 Torr to dope boron onto the substrate. A 200 p-type crystalline silicon carbide layer was deposited.
引き続いて、上記の水素希釈シランのみを導入し、同様
に反応を行いp形弁晶質シリコンカーバイド層上にノン
ドープで厚み4500Aのi形弁晶質シリコン薄膜を堆
積し、更に水素希釈シランと、水素で5.0OOpp鎗
に希釈した7オスフイン(PH3)を混合[PH,/(
SiH,+PH,)=0.5モル%1し、グロー放電装
置内に全流量11008CC導入し、同様に反応を行い
1形弁晶質シリコン層上に、リンをドープした500人
のn形弁晶質シリコン薄膜を形成した。Subsequently, only the above hydrogen-diluted silane was introduced, and a similar reaction was carried out to deposit a non-doped i-type valvus silicon thin film with a thickness of 4500 Å on the p-type valvate silicon carbide layer, and further hydrogen-diluted silane and Mix 7 osphin (PH3) diluted with hydrogen to 5.0OOpp jar [PH,/(
SiH, +PH, ) = 0.5 mol% 1, a total flow rate of 11008 CC was introduced into the glow discharge device, and a similar reaction was carried out to form 500 N-type valves doped with phosphorus on the type-1 valve crystalline silicon layer. A crystalline silicon thin film was formed.
即ち、PETフィルム製の基板上に、二酸化珪素の薄膜
(屈折率1.46)を両面に形成した後、この片面にI
TOの透明導電性薄膜を介してp形−i形−n形の非晶
質シリコン系薄膜からなる光起電性を有する非晶質シリ
コン系半導体層を形成した。That is, after forming a thin film of silicon dioxide (refractive index 1.46) on both sides of a PET film substrate, I
A photovoltaic amorphous silicon-based semiconductor layer consisting of p-type, i-type, and n-type amorphous silicon-based thin films was formed via a transparent conductive thin film of TO.
次に、これを真空蒸着装置内に保持し、通常の蒸着法に
よって、n形弁晶質シリコン層上に厚み1μ輪のアルミ
ニウム製背面電極層を積層した。Next, this was held in a vacuum evaporation apparatus, and an aluminum back electrode layer having a thickness of 1 μm was laminated on the n-type crystalline silicon layer by a normal evaporation method.
かくして得られた可視性光電変換素子の光電変換効率を
AM= 1.100mW/am2のソーラーシュミレー
タで測定した結果、4.4%であった。The photoelectric conversion efficiency of the thus obtained visible photoelectric conversion element was measured using a solar simulator with AM=1.100 mW/am2, and was found to be 4.4%.
得られた可撓性光電変換素子は、フィルム基板側を内側
にして曲率半径50cm+程度に弱く湾曲しているが、
十分な可視性がありごく軽度の張力によりフラットな状
態になり、実用上の問題は全く認められなかった。The obtained flexible photoelectric conversion element is slightly curved with a radius of curvature of about 50 cm+, with the film substrate side facing inside.
It had sufficient visibility and was flat under very slight tension, and no practical problems were observed.
実施例2
厚み100μmのPENフィルムを基板として、この片
面に、常法によりスパッタリングにより厚み200nm
の二酸化珪素膜を形成したのち、この面と反対側の面に
厚み50nmのITOの膜を常法によりスパッタリング
により作製した。Example 2 Using a PEN film with a thickness of 100 μm as a substrate, a film with a thickness of 200 nm was deposited on one side by sputtering using a conventional method.
After forming a silicon dioxide film, a 50 nm thick ITO film was formed on the opposite surface by sputtering using a conventional method.
得られたITO薄膜付き基板の波長550nmの光線透
過率は86%、又ITO膜のシート抵抗は50Ω/口で
あった。The light transmittance of the obtained substrate with the ITO thin film at a wavelength of 550 nm was 86%, and the sheet resistance of the ITO film was 50Ω/hole.
次に実施例1と同様の処シを行い、ITOPXの付いた
面側に非晶質シリコン系半導体層とアルミニウム製背面
電極層を積層して、可撓性光電変換素子を製作した。Next, the same process as in Example 1 was carried out, and an amorphous silicon-based semiconductor layer and an aluminum back electrode layer were laminated on the side with ITOPX, thereby producing a flexible photoelectric conversion element.
か(して得られた可撓性光電変換素子について、同様の
光電変換効率を行った結果、この光電変換効率は4.0
%であり、又、基板を内側にした湾曲の曲率半径は30
cm程度であった。As a result of conducting similar photoelectric conversion efficiency on the flexible photoelectric conversion element obtained in this way, the photoelectric conversion efficiency was 4.0
%, and the radius of curvature of the curve with the substrate inside is 30
It was about cm.
実施例3
実施例2と同様のPENフィルムを基板として、この両
面に実施例2と同様にITO1%を形成した。Example 3 Using the same PEN film as in Example 2 as a substrate, 1% ITO was formed on both sides in the same manner as in Example 2.
次いで、この片面に実施例1と同様の処理を行い、厚み
90n−の二酸化硅素(屈折率1.46)の膜を形成し
たのち、この反対面側に実施例1と同様の処理を行い、
可視性光電変換素子を製作した。Next, this one side was subjected to the same treatment as in Example 1 to form a 90n-thick film of silicon dioxide (refractive index 1.46), and then the opposite side was subjected to the same treatment as in Example 1,
A visible photoelectric conversion element was fabricated.
この可視性光電変換素子について、実施例1と同様の試
験を行った結果、充電変換効率は4.4%、湾曲の曲率
半径は40c糟程度であった。As a result of conducting the same test as in Example 1 for this visible photoelectric conversion element, the charging conversion efficiency was 4.4%, and the radius of curvature was about 40cm.
実施例4
厚み100μ鴫のPETフィルムの両面に、ターデッド
として窒化硅素(SisN<)を用いて、圧力3 X
10−’Torrs スハyり電圧2KV、周波111
3.56MHzの高周波スパッタにより厚み30Onm
の窒化硅素の薄膜を付した。Example 4 Silicon nitride (SisN<) was used as tarde on both sides of a PET film with a thickness of 100μ, and a pressure of 3X was applied.
10-' Torrs High voltage 2KV, frequency 111
Thickness: 30Onm by 3.56MHz high frequency sputtering
A thin film of silicon nitride was applied.
次いで、この片面に実施例1と同様にシート抵抗が50
Ω/口のITO膜を形成したのち、更に、この面側に非
晶質シリコン系半導体層とアルミニウム製背面電極層を
積層して、可視性光電変換素子を製作した。Next, a sheet resistance of 50 was applied to this one side as in Example 1.
After forming an ITO film of Ω/mm, an amorphous silicon-based semiconductor layer and an aluminum back electrode layer were further laminated on this side to produce a visible photoelectric conversion element.
この光電変換素子の変換効率は5.8%、湾曲自車半径
は40cmであった。The conversion efficiency of this photoelectric conversion element was 5.8%, and the curved radius of the own vehicle was 40 cm.
実施例5
実施例4におけるスパッタターゲットをS ixNyo
z(m成:S :sN < 75重1%、5i0225
重量%からなる)を用いる以外は、実施例4と全く同様
の処理を行い、可視性充電変換素子を製作した。Example 5 The sputter target in Example 4 was
z (m composition: S : sN < 75 weight 1%, 5i0225
A visible charge conversion element was manufactured by carrying out the same process as in Example 4, except for using a compound (consisting of % by weight).
二の光電変換素子の変換効率は6.0%、湾曲曲率半径
は50cmであった。The second photoelectric conversion element had a conversion efficiency of 6.0% and a radius of curvature of 50 cm.
実施例6
実施例5における基板をPENフィルムとし、この片面
に5ixNyOzの薄膜を付し、この反対面側に、池の
実施例と同様の処理を行い、可撓性光電変換素子を製作
した。Example 6 A PEN film was used as the substrate in Example 5. A thin film of 5ixNyOz was attached to one side of the substrate, and the same treatment as in the example of Ike was performed on the opposite side to produce a flexible photoelectric conversion element.
この光電変換素子の光電変換効率は4.2%、湾命曲率
半径は30cmであった。The photoelectric conversion efficiency of this photoelectric conversion element was 4.2%, and the radius of curvature was 30 cm.
実施例7
厚み100μ−のPETフィルムの両面にグラビヤコー
トにより、モノマー濃度40(重量)%のテトラメトキ
シシラン(S i(OCH=)−)を含むアルコール系
塗工液((株)大へ化学工業製、5I−41)を塗工し
、風乾後、150℃、2分間加熱して、厚み約3000
nmのメチルシリケート系縮合高分子膜を形成した。こ
の片面に実施例1と同様のITOIIl、非晶質シリコ
ン系半導体層とアルミニウム製背面電極層を積層し、可
撓性光電変換素子を製作した。Example 7 Both sides of a 100 μ-thick PET film were gravure coated using an alcohol-based coating solution containing tetramethoxysilane (Si(OCH=)-) with a monomer concentration of 40% (by weight) (Oihe Kagaku Co., Ltd.). Coated with industrial product 5I-41), air-dried, and heated at 150°C for 2 minutes to a thickness of about 3000.
A methyl silicate condensation polymer film of nm size was formed. On one side of this, ITOII, an amorphous silicon-based semiconductor layer, and an aluminum back electrode layer similar to those in Example 1 were laminated to produce a flexible photoelectric conversion element.
この光電変換素子の充電変換効率は4.0%、湾曲山車
半径は40cmであった。The charge conversion efficiency of this photoelectric conversion element was 4.0%, and the radius of the curved float was 40 cm.
実施例8
厚み100μ階のPENフィルムの両面にテトラエトキ
シシラン(S i(OC285)−)系の縮合高分子膜
を、実施例6と同様に形成した。その厚みは1000n
−であった。Example 8 A tetraethoxysilane (Si(OC285)-) based condensation polymer film was formed on both sides of a 100 μm thick PEN film in the same manner as in Example 6. Its thickness is 1000n
-It was.
この片面に実施例1と同様の処理を什い、可撓性光電変
換素子を製作した。One side of this was subjected to the same treatment as in Example 1 to produce a flexible photoelectric conversion element.
この光電変換素子の光電変換効率は4.2%、清面曲率
半径は30cmであった。The photoelectric conversion efficiency of this photoelectric conversion element was 4.2%, and the radius of curvature of the surface was 30 cm.
実施例9
厚み100μ噛のPENフィルムの両面にモノメチルト
リエトキシシラン(83CS i(OC2H5)t)系
の縮合高分子膜を形成した。その厚みは30On−であ
った。Example 9 A monomethyltriethoxysilane (83CS i (OC2H5)t) based condensation polymer film was formed on both sides of a 100 μm thick PEN film. Its thickness was 30 On-.
この片面に実施例1と同様の処理を行い、可撓性光電変
換素子を製作した。This single side was subjected to the same treatment as in Example 1 to produce a flexible photoelectric conversion element.
この光電変換素子の光電変換効率は3.6%、清面曲率
半径は20cmであった。The photoelectric conversion efficiency of this photoelectric conversion element was 3.6%, and the radius of surface curvature was 20 cm.
比較例1
厚み100μIのPETフィルムを基板として、珪素化
合物系WI膜及び珪酸エステル系縮合高分子のいずれも
形成せずに、他は実施例1と全く同様の処理を行い、光
電変換素子を試作した。得られた素子は、フィルム基板
を内側にして自車半径se1m以内に着しく湾曲してお
り、実用上問題があった。又、光電変換効率も1.8%
で他の実施例に比して着しく低いことが認められた。Comparative Example 1 Using a PET film with a thickness of 100 μI as a substrate, a photoelectric conversion element was produced as a prototype by performing the same process as in Example 1, without forming either a silicon compound-based WI film or a silicate ester-based condensation polymer. did. The obtained element was tightly curved within a radius of se1m of the vehicle with the film substrate facing inside, which caused a practical problem. Also, the photoelectric conversion efficiency is 1.8%.
It was observed that this was significantly lower than in other examples.
比較例2
厚み100μ鴎のPENフィルムを基板として、比較例
1と同様に、基板に対する保護処理を全く行わずに、他
は実施例1と全く同様の処理を行い充電変換素子を試作
した。Comparative Example 2 Using a PEN film with a thickness of 100 μm as a substrate, a charging conversion element was prototyped in the same manner as in Comparative Example 1 by performing the same treatment as in Example 1 without performing any protection treatment on the substrate.
得られた素子は、フィルム基板を内側にして着しく湾曲
(曲率半径60111以内)しており、実用上問題があ
ることが認められた。The obtained element was slightly curved (within a radius of curvature of 60111) with the film substrate inside, and it was recognized that there was a problem in practical use.
又、光電変換効率も1.9%で他の実施例に比して着し
く低かった。Furthermore, the photoelectric conversion efficiency was 1.9%, which was significantly lower than other examples.
実施例10
厚み100μ瞼のPETフィルムを基板としてこの両面
に実施例6で示したと同様の方法で1000niのメチ
ルシリエート系の高分子膜を形成後、更に常法により厚
み100nnの二酸化珪素膜を形成した。この片面に実
施例1と同様の処理を行い、可撓性光電変換素子を製作
した。Example 10 Using a PET film with a thickness of 100μ as a substrate, a 1000ni methyl silicate polymer film was formed on both sides in the same manner as shown in Example 6, and then a 100nm thick silicon dioxide film was formed by a conventional method. Formed. This single side was subjected to the same treatment as in Example 1 to produce a flexible photoelectric conversion element.
この光電変換素子の光電変換効率は5.0%、湾曲曲率
半径は40cmであった。The photoelectric conversion efficiency of this photoelectric conversion element was 5.0%, and the radius of curvature was 40 cm.
素子の製作条件と光電変換素子の特性結果をまとめて第
1表に示す。The manufacturing conditions of the device and the characteristic results of the photoelectric conversion device are summarized in Table 1.
(以下余白)
上記の各実施例及び各比較例の可撓性光電変換(g)発
明の効果
本発明は、上述のとおり構成されているので、次に記載
する効果を有する。(Space below) Flexible photoelectric conversion of each of the above examples and comparative examples (g) Effects of the invention Since the present invention is configured as described above, it has the effects described below.
請求項1の可撓性光電変換素子においては、透明高分子
フィルム製の基板の片面に二酸化硅素のWlI!4が形
成されているので、この薄膜によって、非晶質シリコン
堆積後室温に取り出したときの基板のカールが着しく小
さくなり、又、この可撓性光電変換素子の使用の際、窓
材としての高分子フィルム等の表面を保護して耐摩擦性
の改良にも有効であり、更に光電変換効率等の特性も極
めて良好で充分な実用性を有する効果を有するのである
。In the flexible photoelectric conversion element according to claim 1, WlI! of silicon dioxide is coated on one side of the substrate made of a transparent polymer film. 4 is formed, this thin film significantly reduces the curling of the substrate when it is taken out to room temperature after depositing amorphous silicon, and when using this flexible photoelectric conversion element, it can be used as a window material. It is effective for protecting the surface of polymer films and improving abrasion resistance, and also has extremely good properties such as photoelectric conversion efficiency, and has sufficient practical effects.
又、このように構成しでいるので、カール対策が実現し
うる上、材料費及び生産コストが低下する効果を有する
のである。Furthermore, with this configuration, it is possible to prevent curling, and it also has the effect of reducing material costs and production costs.
請求項2の可撓性光電変換素子においては、透明高分子
フィルム製の基板の両面に二酸化硅素の薄膜を形成して
いるので、非晶質シリコン堆積時の高温環境下において
、基板の保護を一層確実になし得、−1優れた特性を有
する効果を有するのである。In the flexible photoelectric conversion element of claim 2, thin films of silicon dioxide are formed on both sides of the substrate made of transparent polymer film, so that the substrate can be protected in a high temperature environment during deposition of amorphous silicon. This can be achieved more reliably and has the effect of having -1 superior characteristics.
請求項3の可視性光電変換素子においては、透明高分子
フィルム製の基板の両面に透明導電膜を形成し、この非
晶質シリコン系半導体層形成面側と反対側の透明導電膜
上に更に二酸化硅素を形成したものであり、これによっ
て、−層カールの発生が防止され、−1優れた特性が得
られる効果を有するのである。In the visible photoelectric conversion element according to claim 3, a transparent conductive film is formed on both sides of the substrate made of a transparent polymer film, and a transparent conductive film is further formed on the transparent conductive film on the side opposite to the side on which the amorphous silicon semiconductor layer is formed. It is made of silicon dioxide, which has the effect of preventing layer curl from occurring and providing excellent properties.
請求項4の可撓性光電変換素子においては、基板上に形
成される薄膜を任意に選択することにより、要求に応じ
た所要の特性の保護用薄膜を形成しうるのであり、この
結果、所望の電気的特性を発揮させうる効果を有するの
である。In the flexible photoelectric conversion element of claim 4, by arbitrarily selecting the thin film to be formed on the substrate, it is possible to form a protective thin film with desired characteristics according to requirements. This has the effect of exhibiting the electrical characteristics of .
請求項5の可視性光電変換素子においては、基板である
透明高分子フィルムとしてポリエチレンテレフタレート
フィルム又はポリエチレンナフタレートフィルムが用い
られているので、結合水や吸着水によるコンタミネーシ
ョンが少なり、シかも熱膨張率が小さくてカールが小さ
い上、耐湿性が良好で優れた特性を有する効果を奏する
のである。In the visible photoelectric conversion element according to claim 5, since a polyethylene terephthalate film or a polyethylene naphthalate film is used as the transparent polymer film that is the substrate, contamination due to bound water or adsorbed water is reduced, and there is no possibility of heat generation. In addition to having a small expansion coefficient and little curling, it also has good moisture resistance and excellent properties.
Claims (5)
成された二酸化硅素の薄膜、この薄膜の形成面側と反対
側に形成された透明導電膜、該透明導電膜上に形成され
た非晶質シリコン系半導体層、該非晶質シリコン系半導
体上に形成された背面電極層からなる可撓性光電変換素
子。(1) A substrate made of a transparent polymer film, a thin film of silicon dioxide formed on one side of the substrate, a transparent conductive film formed on the side opposite to the side on which this thin film was formed, and a transparent conductive film formed on the transparent conductive film. A flexible photoelectric conversion element comprising an amorphous silicon-based semiconductor layer and a back electrode layer formed on the amorphous silicon-based semiconductor.
成された二酸化硅素の薄膜、該薄膜の一方面上に形成さ
れた透明導電膜、該透明導電膜上に形成された非晶質シ
リコン系半導体層、該非晶質シリコン系半導体上に形成
された背面電極層からなる可撓性光電変換素子。(2) A substrate made of a transparent polymer film, a silicon dioxide thin film formed on both sides of the substrate, a transparent conductive film formed on one side of the thin film, and an amorphous film formed on the transparent conductive film. A flexible photoelectric conversion element comprising a silicon-based semiconductor layer and a back electrode layer formed on the amorphous silicon-based semiconductor.
成された透明導電膜、該両面側透明導電膜において、そ
の一方面上に形成された二酸化硅素の薄膜及びその他方
面上に形成された非晶質シリコン系半導体層、該非晶質
シリコン系半導体層上に形成された背面電極層からなる
可撓性光電変換素子。(3) A substrate made of a transparent polymer film, a transparent conductive film formed on both sides of the substrate, a silicon dioxide thin film formed on one side of the transparent conductive film on both sides, and a silicon dioxide thin film formed on the other side. A flexible photoelectric conversion element comprising an amorphous silicon-based semiconductor layer and a back electrode layer formed on the amorphous silicon-based semiconductor layer.
子において、二酸化硅素の薄膜が窒化硅素、酸化窒化硅
素、テトラメトキシシラン縮合物、テトラエトキシシラ
ン縮合物、モノメチルトリエトキシシラン縮合物から選
ばれた少なくとも1種の薄膜である可撓性光電変換素子
。(4) In the flexible photoelectric conversion element according to any one of claims 1 to 3, the silicon dioxide thin film is silicon nitride, silicon oxynitride, tetramethoxysilane condensate, tetraethoxysilane condensate, or monomethyltriethoxysilane condensate. A flexible photoelectric conversion element that is a thin film of at least one type selected from.
子において、透明高分子フィルムがポリエチレンテレフ
タレートフィルム又はポリエチレンナフタレートフィル
ムである可撓性光電変換素子。(5) The flexible photoelectric conversion element according to any one of claims 1 to 4, wherein the transparent polymer film is a polyethylene terephthalate film or a polyethylene naphthalate film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1007072A JPH02187077A (en) | 1989-01-13 | 1989-01-13 | Flexible photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1007072A JPH02187077A (en) | 1989-01-13 | 1989-01-13 | Flexible photoelectric conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02187077A true JPH02187077A (en) | 1990-07-23 |
Family
ID=11655876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1007072A Pending JPH02187077A (en) | 1989-01-13 | 1989-01-13 | Flexible photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02187077A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022535863A (en) * | 2019-12-28 | 2022-08-10 | 浙江大学 | Non-contact displacement sensor based on flexible photoelectric nano-thin film |
-
1989
- 1989-01-13 JP JP1007072A patent/JPH02187077A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022535863A (en) * | 2019-12-28 | 2022-08-10 | 浙江大学 | Non-contact displacement sensor based on flexible photoelectric nano-thin film |
US12013224B2 (en) | 2019-12-28 | 2024-06-18 | Zhejiang University | Contactless displacement sensor employing flexible photoelectric nanofilm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6380480B1 (en) | Photoelectric conversion device and substrate for photoelectric conversion device | |
US5646050A (en) | Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition | |
US5230746A (en) | Photovoltaic device having enhanced rear reflecting contact | |
JPS6249672A (en) | Amorphous photovoltaic device | |
CN102013442A (en) | Photovoltaic cell substrate and method of manufacturing the same | |
AU2011219223B8 (en) | Thin-film photoelectric conversion device and method for production thereof | |
KR20010051955A (en) | Semiconductor device and its manufacturing method | |
KR101018319B1 (en) | Manufacturing method of organic / inorganic hybrid multilayer solar cell | |
Richter et al. | Light management in planar silicon heterojunction solar cells via nanocrystalline silicon oxide films and nano‐imprint textures | |
US4922218A (en) | Photovoltaic device | |
CN103430317A (en) | Method for manufacturing a multilayer of a transparent conductive oxide | |
JP4939058B2 (en) | Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device | |
JPH02187077A (en) | Flexible photoelectric conversion element | |
JP2001060707A (en) | Photoelectric transfer device | |
de Vrijer et al. | Application of metal, metal‐oxide, and silicon‐oxide based intermediate reflective layers for current matching in autonomous high‐voltage multijunction photovoltaic devices | |
JPH02187076A (en) | Flexible photoelectric transducer | |
JPH03268367A (en) | Flexible photoelectric transducer | |
JPH03101171A (en) | Flexible photoelectric conversion element | |
JP3382141B2 (en) | Photoelectric conversion element | |
Das et al. | Improvement of short-circuit current in multijunction a-Si based solar cells using TiO2 anti-reflection layer | |
JPH02205078A (en) | Flexible photoelectric transducer | |
JPH01119074A (en) | Flexible photoelectric conversion element | |
JPH03268366A (en) | Flexible photoelectric transducer | |
US20110253207A1 (en) | Solar cell device and method for manufacturing same | |
JPS59101879A (en) | Thin film solar battery |