JPH0217688B2 - - Google Patents
Info
- Publication number
- JPH0217688B2 JPH0217688B2 JP59016822A JP1682284A JPH0217688B2 JP H0217688 B2 JPH0217688 B2 JP H0217688B2 JP 59016822 A JP59016822 A JP 59016822A JP 1682284 A JP1682284 A JP 1682284A JP H0217688 B2 JPH0217688 B2 JP H0217688B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- intake passage
- valve
- load
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 230000035939 shock Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/08—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
- F02B31/085—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Characterised By The Charging Evacuation (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、エンジンの吸気装置、特に2ポート
等の複数の吸気ポートをエンジンの燃焼室に開口
させるとともに、各吸気ポートに対してこれを開
閉する吸気弁を配置した型式の吸気装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to an engine intake system, in particular, to open a plurality of intake ports such as two ports into a combustion chamber of the engine, and to open the same to each intake port. This invention relates to a type of intake device equipped with an intake valve that opens and closes.
(従来技術)
従来より、レシプロエンジンにおいて、各燃焼
室に対して、ほぼ均等な開口面積を有する2つの
吸気ポートを開口させて大きな開口面積を確保す
るとともに、シリンダヘツド内に形成する吸気通
路を各吸気ポートに燃焼室の軸方向に沿つた大角
度で接続して吸気を燃焼室にストレートに流入さ
せることにより、エンジンの充填効率を最大限向
上させ、エンジンの高出力化を図つたエンジンの
吸気構造はよく知られている。(Prior art) Conventionally, in a reciprocating engine, two intake ports with approximately equal opening areas are opened for each combustion chamber to ensure a large opening area, and an intake passage formed in the cylinder head is By connecting each intake port at a large angle along the axial direction of the combustion chamber and allowing intake air to flow straight into the combustion chamber, the engine's filling efficiency is maximized and the engine output is increased. The intake structure is well known.
かかる2ポート型式の吸気構造は、高負荷運転
時の高出力化を図るという点で有利であるが、そ
の反面、吸気量の少ない低負荷運転時には、吸気
流速が弱まり、燃焼性が低下し、燃費の面でも、
エミツシヨンの面でも不利となる欠点がある。 Such a two-port intake structure is advantageous in that it can achieve high output during high-load operation, but on the other hand, during low-load operation with a small amount of intake air, the intake air flow rate becomes weaker and combustibility decreases. In terms of fuel efficiency,
There is also a disadvantage in terms of emission.
かかる欠点を解消するため、低負荷用吸気通路
とシヤツターバルブを介設した高負荷用吸気通路
とを上記2つの吸気ポートに夫々接続し、エンジ
ンの低負荷運転時には、シヤツターバルブを閉じ
て、低負荷用吸気通路のみから吸気を行なうよう
にしたものが知られている(例えば、特開昭56−
44419号公報参照)。 In order to eliminate this drawback, a low-load intake passage and a high-load intake passage with a shutter valve interposed are connected to the above two intake ports, and the shutter valve is closed when the engine is operating at low load. , a device in which air is taken only from the low-load intake passage is known (for example, Japanese Patent Application Laid-Open No. 1989-1999)
(See Publication No. 44419).
しかしながら、かかる対策は低負荷対策として
必らずしも有効ではない。即ち、もともと高出力
化のための2つの吸気ポートの開口面積を最大限
確保するようにしたものであるため、1つの吸気
ポートのみを使用するとしても吸気量が少ない極
低負荷運転時には、開口面積が依然大きすぎて吸
気流速を有効に向上させることができず、燃焼性
の向上に不可欠なスワールを有効に形成できな
い。 However, such measures are not necessarily effective as low-load measures. In other words, it was originally designed to maximize the opening area of the two intake ports to achieve high output, so even if only one intake port is used, during extremely low load operation with a small amount of intake air, the opening area will be increased. The area is still too large to effectively improve the intake flow rate, and it is not possible to effectively form the swirl that is essential for improving combustibility.
かかる不具合は、特開昭56−146015号公報に開
示された如く、低負荷用吸気通路の通路面積を絞
れば、そこで解消しうるように思えるが、その場
合には、高負荷用吸気通路の通路面積を余程大き
くしなければ高出力化という本来の目的を達成す
ることができず、実際に通路面積を大きくすると
低負荷用吸気通路の通路面積とのアンバランスが
大きくなつて、低負荷用吸気通路を開く低負荷か
ら高負荷への切替えに際して所謂切替シヨツクを
生じ、また、高負荷時には、吸気抵抗の少ない高
負荷用吸気通路に吸気が集中して、実質的には高
出力化を達成するのに有効な吸気通路面積を確保
できないという矛盾がある。さらに、高出力化を
図る目的から吸気通路のポート接続部は前述した
ように、燃焼室の軸方向に沿つた方向に形成され
ているため、吸気流速を早めることによつて燃焼
室内に流速の早い流れが生成されたとしても燃焼
室の周方向に沿つた有効なスワールとして生成さ
れない。このため、この吸気の流れは圧縮行程に
おいて早期に減衰されてしまうといつた問題があ
る。そうかといつて、流速をできるだけ高めよう
として、低負荷用吸気通路を絞りすぎれば、それ
だけ賄いうる負荷範囲が制限され、比較的低い負
荷域でシヤツターバルブを開いて高負荷用吸気通
路からも吸気を供給する必要が生ずる。その場
合、2つの吸気ポートは、燃焼室の水平方向中心
線に関して対向的に形成されているため、低負荷
用吸気ポートから吸入される吸気流と高負荷用吸
気ポートから吸入される吸気流とが衝突して、ス
ワールが消滅されないまでもますます弱められて
しまい、スワールによる良好な燃焼性を確保し難
い欠点がある。 It seems that such a problem can be solved by narrowing down the passage area of the low-load intake passage, as disclosed in Japanese Patent Laid-Open No. 56-146015, but in that case, the area of the high-load intake passage The original purpose of high output cannot be achieved unless the passage area is made very large, and if the passage area is actually increased, the imbalance with the passage area of the low-load intake passage increases, resulting in low-load A so-called switching shock occurs when switching from a low load to a high load, and when the load is high, intake air concentrates in the high load intake passage with less intake resistance, effectively increasing the output. There is a contradiction in that it is not possible to secure an effective intake passage area to achieve this goal. Furthermore, for the purpose of achieving high output, the port connection part of the intake passage is formed along the axial direction of the combustion chamber, as mentioned above, so by increasing the intake air velocity, the flow velocity within the combustion chamber can be increased. Even if a fast flow is generated, it is not generated as an effective swirl along the circumferential direction of the combustion chamber. Therefore, there is a problem in that this intake air flow is attenuated early in the compression stroke. However, if you restrict the low-load intake passage too much in an attempt to increase the flow velocity as much as possible, the load range that can be covered will be limited accordingly, and if you open the shutter valve in a relatively low load range, the high-load intake passage will also be able to handle the load. It becomes necessary to supply intake air. In that case, since the two intake ports are formed to face each other with respect to the horizontal center line of the combustion chamber, the intake flow taken in from the low-load intake port and the intake flow taken in from the high-load intake port are different. If the swirls collide with each other, the swirl is further weakened, if not eliminated, and it is difficult to ensure good combustibility due to the swirl.
以上のように、低負荷用吸気通路およびこれに
接続される吸気ポートを絞ることは、高出力化を
図る目的とは相容れないのみならず、種々の新た
な不具合を招来する。 As described above, restricting the low-load intake passage and the intake port connected thereto is not only inconsistent with the objective of achieving high output, but also causes various new problems.
本出願人は、エンジンの高出力化をねらつた2
吸気ポート方式を実質的に変更することなしに、
エンジンの低負荷運転時において燃焼室内に燃焼
性の向上を図るのに有効なスワールを生成するこ
とができる吸気構造を備えたエンジンの吸気装置
を特願昭58−176776号において既に提案してい
る。 The applicant aimed at increasing the output of the engine.
without substantially changing the intake port system.
In Japanese Patent Application No. 176,776/1987, we have already proposed an engine intake system equipped with an intake structure that can generate a swirl that is effective in improving combustibility within the combustion chamber during low-load operation of the engine. .
この提案にかかる発明は、複数の吸気ポートを
エンジンの燃焼室にそれぞれ開口させ、各吸気ポ
ートを吸気弁で開閉するようにしたエンジンの吸
気装置において、複数の吸気ポートに接続される
吸気通路内に開閉弁を配設して、この開閉弁を低
負荷運転時には閉じ高負荷運転時には開くように
エンジンの運転状態に応じて上記吸気通路の通路
面積を増減制御する一方、上記開閉弁よりも上流
の吸気通路の底部から分岐し、上記吸気ポートの
いずれか一つに接続され、通路面積が上記吸気通
路に比べて小さい補助吸気通路を設けたことを基
本的な特徴としている。 The proposed invention relates to an engine intake system in which a plurality of intake ports are opened to combustion chambers of an engine, and each intake port is opened and closed by an intake valve. An on-off valve is provided in the intake passageway, and the on-off valve is closed during low-load operation and opened during high-load operation, and the passage area of the intake passage is controlled to increase or decrease depending on the operating condition of the engine. The basic feature is that an auxiliary intake passage is provided, which branches from the bottom of the intake passage, is connected to any one of the intake ports, and has a passage area smaller than that of the intake passage.
即ち、この発明においては、開閉弁が閉じられ
るエンジンの低負荷運転時、吸気は専ら吸気通路
の底部側に形成された補助吸気通路からこの通路
が接続された吸気ポートを介して早い流速でエン
ジンの燃焼室に供給される。その場合、補助吸気
通路は、吸気通路の底部側に形成されていること
から、シリンダヘツドとシリンダブロツクとの合
せ面に対して必然的に浅い角度をなし、燃焼室内
に流入した吸気は、燃焼室の周方向に旋回するス
ワールを生成することができ、また、開閉弁が開
かれるエンジンの高負荷運転時には、複数の吸気
ポートから充填効率よく吸気が吸入され、本来の
高出力を保証することができるのである。 That is, in this invention, during low-load operation of the engine when the on-off valve is closed, intake air flows exclusively through the auxiliary intake passage formed at the bottom side of the intake passage and flows through the engine at a high flow rate through the intake port to which this passage is connected. is supplied to the combustion chamber. In that case, since the auxiliary intake passage is formed at the bottom side of the intake passage, it necessarily forms a shallow angle with respect to the mating surface of the cylinder head and cylinder block, and the intake air flowing into the combustion chamber is It is possible to generate a swirl that rotates in the circumferential direction of the chamber, and during high-load engine operation when the on-off valve is opened, intake air is drawn in efficiently from multiple intake ports, ensuring the original high output. This is possible.
したがつて、この発明によれば、エンジンの高
出力化という2吸気ポート方式本来の目的を何ら
損なうことなしに、低負荷運転時における燃焼性
の向上、さらには、燃費性能およびエミツシヨン
性能の向上を図ることができるのであるが、なお
改善の余地がある。 Therefore, according to the present invention, it is possible to improve combustibility during low-load operation, as well as improve fuel efficiency and emission performance, without sacrificing the original purpose of the two-intake port system, which is to increase engine output. However, there is still room for improvement.
その一つは、前述した低負荷から高負荷への切
替時に発生しうる切替シヨツクの問題である。即
ち、専ら補助吸気通路が使用される低負荷領域か
ら開閉弁が開かれる中、高負荷域に移行する際に
は、多量の吸気が各吸気ポートから一時に燃焼室
に流入するため、充填量が急増して一種のトルク
シヨツクが発生するのである。 One of them is the problem of the switching shock that may occur when switching from a low load to a high load as described above. In other words, while the on-off valve is opened from the low-load region where the auxiliary intake passage is used exclusively, when moving to the high-load region, a large amount of intake air flows into the combustion chamber from each intake port at once, so the charging amount decreases. increases rapidly, causing a kind of torque shock.
(発明の目的)
本発明の目的は、低負荷運転時のスワールを維
持しつつ、開閉弁を閉じた状態で賄いうる低負荷
領域を拡大し、換言すれば、開閉弁の閉時と開時
における吸気量ギヤツプを可能な限り小さくする
ように、閉時における吸気量をある程度十分に確
保することによつて上記の如き切替シヨツクを防
止することである。(Objective of the Invention) The object of the present invention is to expand the low load range that can be covered with the on-off valve closed while maintaining the swirl during low-load operation. The purpose of this is to prevent the above-mentioned switching shock by ensuring a sufficient amount of intake air to some extent when the valve is closed so as to minimize the intake air amount gap in the closed position.
(発明の構成)
このため、本発明は、一つを燃焼室に開口する
二つの吸気ポートと、下流において分岐される各
分岐端が各吸気ポートに夫々接続された吸気通路
と、この吸気通路の分岐部より上流に設けられ、
低負荷時閉じられ高負荷時開かれる開閉弁と、開
閉弁より上流の吸気通路から分岐し、下流が吸気
ポートのいずれか一つに接続される補助吸気通路
とを有するエンジンの吸気装置において、開閉弁
が閉じているときに、開閉弁の補助吸気通路が接
続された吸気ポート側端部から所定量の吸気を通
すための吸気供給手段を設けたことを基本的な特
徴としている。(Structure of the Invention) Therefore, the present invention provides two intake ports, one of which opens into a combustion chamber, an intake passage whose branch ends branched downstream are respectively connected to each intake port, and the intake passage. Provided upstream from the branch of
An intake system for an engine having an on-off valve that is closed at low loads and opened at high loads, and an auxiliary intake passage that branches from an intake passage upstream of the on-off valve and is connected downstream to any one of the intake ports, The basic feature is that when the on-off valve is closed, an intake air supply means is provided for passing a predetermined amount of intake air from the intake port side end to which the auxiliary intake passage of the on-off valve is connected.
即ち、本発明において、開閉弁が閉じられてい
るときでも、補助吸気通路のみならず、吸気供給
手段からも吸気が確保されるため、吸気量が十分
に確保されて、賄いうる負荷領域が拡大される。
しかも、この吸気供給手段は開閉弁の補助吸気通
路が接続される吸気ポート側端部において吸気を
通すものであるから、スワールが干渉等によつて
弱められることもない。 That is, in the present invention, even when the on-off valve is closed, intake air is secured not only from the auxiliary intake passage but also from the intake air supply means, so that a sufficient amount of intake air is secured and the load range that can be covered is expanded. be done.
Moreover, since this intake air supply means passes intake air at the end on the intake port side to which the auxiliary intake passage of the on-off valve is connected, the swirl is not weakened by interference or the like.
(発明の効果)
したがつて、本発明によれば、開閉弁を閉じた
状態で賄いうる負荷領域を、スワール性能を維持
しつつ高負荷側に拡大することができ、切替シヨ
ツクを有効に防止することができる。(Effects of the Invention) Therefore, according to the present invention, the load range that can be handled with the on-off valve closed can be expanded to the high load side while maintaining swirl performance, and switching shock can be effectively prevented. can do.
(実施例)
以下、本発明の実施例についてより具体的に説
明する。(Example) Hereinafter, an example of the present invention will be described in more detail.
第1図に示すように、エンジンEの1つの気筒
1の燃焼室2には、エンジンEのシリンダブロツ
クの幅方向中心線lに関してほぼ対称に、ほぼ同
径の第1、第2の吸気ポート4,5が開口され、
長手方向中心線mをはさんで第1、第2吸気ポー
ト4,5と対向する位置には、排気ポート6,7
が開口されている。 As shown in FIG. 1, the combustion chamber 2 of one cylinder 1 of the engine E has first and second intake ports of approximately the same diameter, which are approximately symmetrical with respect to the center line l in the width direction of the cylinder block of the engine E. 4 and 5 are opened,
Exhaust ports 6 and 7 are located at positions facing the first and second intake ports 4 and 5 across the longitudinal center line m.
is opened.
第1、第2吸気ポート4,5に吸気を供給する
吸気通路8は、シリンダヘツド(第2図30参
照)内において徐々に分岐され、第1、第2吸気
ポート4,5の手前では、上記幅方向中心線lに
ほぼ沿つて突出するように形成された仕切壁9に
よつて二又に分岐され、これら分岐吸気通路1
0,11が、第1、第2吸気ポート4,5にそれ
ぞれ接続されている。図示の如く、吸気通路8の
下流側分岐点より上流側にはシヤツターバルブ1
2を介設している。このシヤツターバルブ12は
具体的に図示しないが、周知の開閉制御機構(例
えば、スロツトルバルブに連結されるリンク機
構)によりエンジンEの低負荷運転時には吸気通
路8を閉じ、高負荷運転時には、負荷に応じて開
くようにその開閉が制御される。そして、吸気通
路8のシヤツターバルブ12より上流側には、吸
気通路8の中心線に関して、第1吸気ポート4側
にかた寄せて補助吸気通路13の上流側開口13
aを吸気通路8の底壁に開口させている。この補
助吸気通路13は、第1吸気ポート4に近接して
開口した下流側開口13bを有し、上記幅方向中
心線lを横切るようにゆるやかに湾曲して、上記
側開口13aと下流側開口13bとを連通する。
第1図に明瞭に示すように、シヤツターバルブ1
2には、補助吸気通路13が接続される分岐吸気
通路10側の端部が上下方向に弦状に切欠かれ
て、切欠き部12aが形成されている。 The intake passage 8 that supplies intake air to the first and second intake ports 4 and 5 gradually branches within the cylinder head (see FIG. 2), and before the first and second intake ports 4 and 5, The branched intake passage 1 is divided into two by a partition wall 9 formed to protrude substantially along the width direction center line l.
0 and 11 are connected to the first and second intake ports 4 and 5, respectively. As shown in the figure, a shutter valve 1 is located upstream of the downstream branch point of the intake passage 8.
2 is interposed. Although this shutter valve 12 is not specifically shown, a well-known opening/closing control mechanism (for example, a link mechanism connected to a throttle valve) closes the intake passage 8 during low load operation of the engine E, and closes the intake passage 8 during high load operation. Its opening/closing is controlled so that it opens according to the load. On the upstream side of the shutter valve 12 in the intake passage 8, an upstream opening 13 of the auxiliary intake passage 13 is located toward the first intake port 4 with respect to the center line of the intake passage 8.
a is opened at the bottom wall of the intake passage 8. The auxiliary intake passage 13 has a downstream opening 13b that opens close to the first intake port 4, and is gently curved across the widthwise center line l, and is connected to the downstream opening 13a and the downstream opening 13a. 13b.
Shutter valve 1, as clearly shown in FIG.
2, an end on the side of the branch intake passage 10 to which the auxiliary intake passage 13 is connected is cut in a chord shape in the vertical direction to form a notch 12a.
したがつて、シヤツターバルブ12の全閉時に
おいて、シヤツターバルブ12の上流に開口する
補助吸気通路13に加えて、第1図に矢印Aで示
すように、シヤツターバルブ12の切欠き部12
aを通過する吸気通路が形成される。この吸気通
路Aに沿つて流下する吸気流は、分岐吸気通路1
0の通路側壁10aに沿つたものとなる。 Therefore, when the shutter valve 12 is fully closed, in addition to the auxiliary intake passage 13 that opens upstream of the shutter valve 12, the notch of the shutter valve 12 as shown by arrow A in FIG. 12
An intake passage passing through a is formed. The intake air flowing down along this intake passage A is divided into the branch intake passage 1
0 along the passage side wall 10a.
上記補助吸気通路13は、第2図により具体的
に示すように、吸気通路8の底部を形成する底壁
14に形成され、その下流側開口13bは上記仕
切壁9の上流側端部、即ち分岐吸気通路10,1
1の分岐点より下流で吸気弁15によつて開閉さ
れる第1吸気ポート4にできるだけ接近した位置
に設定されている。このため、補助吸気通路13
を流下する吸気の全量は、第1吸気ポート4から
燃焼室2内に流入することとなる。そして、補助
吸気通路13は、第1吸気ポート4の直上流で気
筒1の軸方向に湾曲されている分岐吸気通路10
に対し、シリンダブロツク31とシリンダヘツド
30との合せ面Cに対して僅かな傾き角をなすよ
うに交差しており、したがつて、燃焼室2の周方
向に指向した方向性を有するようになる。 As specifically shown in FIG. 2, the auxiliary intake passage 13 is formed in a bottom wall 14 forming the bottom of the intake passage 8, and its downstream opening 13b is located at the upstream end of the partition wall 9, i.e. Branch intake passage 10,1
The first intake port 4 is located downstream of the first branch point and as close as possible to the first intake port 4 which is opened and closed by the intake valve 15. For this reason, the auxiliary intake passage 13
The entire amount of intake air flowing down flows into the combustion chamber 2 from the first intake port 4. The auxiliary intake passage 13 is a branch intake passage 10 that is curved in the axial direction of the cylinder 1 immediately upstream of the first intake port 4.
On the other hand, it intersects at a slight angle of inclination with respect to the mating surface C between the cylinder block 31 and the cylinder head 30, and therefore has a directionality in the circumferential direction of the combustion chamber 2. Become.
上記補助吸気通路13の上流側開口13aより
僅か下流には、吸気通路8を開閉するシヤツター
バルブ12を下流に向つて斜め下向きに傾斜させ
て配設し、さらにシヤツターバルブ12より僅か
下流の吸気通路8の上壁16に予め設けた取付部
16aには、燃料噴射弁17を取付けている。こ
の場合、燃料噴射口18は、シヤツターバルブ1
2の回転軸12bより僅か下流側でかつ吸気通路
8の中心線上に位置するように設定している。 Slightly downstream of the upstream opening 13a of the auxiliary intake passage 13, a shutter valve 12 for opening and closing the intake passage 8 is provided so as to be inclined diagonally downward toward the downstream. A fuel injection valve 17 is attached to a mounting portion 16a provided in advance on the upper wall 16 of the intake passage 8. In this case, the fuel injection port 18 is connected to the shutter valve 1
It is set so as to be located slightly downstream of the rotation shaft 12b of No. 2 and on the center line of the intake passage 8.
なお、第1吸気ポート4を開閉する吸気弁1
5、第2吸気ポート5を開閉する吸気弁(図示せ
ず)および排気ポート6,7を開閉する排気弁1
9(他方は図示せず)は、周知のオーバーヘツド
カム機構20により、エンジンEの回転に同期し
た所定のタイミングで夫々開閉駆動される。 Note that the intake valve 1 that opens and closes the first intake port 4
5. An intake valve (not shown) that opens and closes the second intake port 5 and an exhaust valve 1 that opens and closes the exhaust ports 6 and 7
9 (the other is not shown) are driven to open and close at predetermined timings synchronized with the rotation of the engine E by a well-known overhead cam mechanism 20.
また、第1図に示すように、点火プラグ21
は、第1、第2吸気ポート4,5および排気ポー
ト6,7が設けられてない部分、より具体的に
は、燃焼室2の中心部分に設定する。 Further, as shown in FIG. 1, the spark plug 21
is set in a portion where the first and second intake ports 4 and 5 and exhaust ports 6 and 7 are not provided, more specifically, in a central portion of the combustion chamber 2.
上記の構成とすれば、シヤツターバルブ12が
閉じられる低負荷運転時において、吸気は補助吸
気通路13のみならず、シヤツターバルブ12の
切欠き部12aを通して供給されることとなる。 With the above configuration, during low-load operation when the shutter valve 12 is closed, intake air is supplied not only through the auxiliary intake passage 13 but also through the notch 12a of the shutter valve 12.
したがつて、単に補助吸気通路13だけでは比
較的早期に賄いうる吸気量が飽和してしまうのに
対し、切欠き部12aからも吸気が流入するの
で、シヤツターバルブ12を閉じた状態でも、賄
いうる負荷範囲は、高負荷側にそれだけ拡大でき
る。 Therefore, while the amount of intake air that can be provided by the auxiliary intake passage 13 becomes saturated relatively quickly, since intake air also flows from the notch 12a, even when the shutter valve 12 is closed, The load range that can be covered can be expanded to the higher load side.
しかも、シヤツターバルブ12の切欠き部12
aを通過する吸気は、前述した如く、分岐吸気通
路10の側壁10aにほぼ沿つて流下し、ほぼ全
量が第1吸気ポート4から燃焼室2に流入するた
め、補助吸気通路13によつて燃焼室2に形成さ
れるスワールを乱すことなく、むしろ強化するよ
うに作用する。 Moreover, the notch 12 of the shutter valve 12
As mentioned above, the intake air that passes through a flows down almost along the side wall 10a of the branched intake passage 10, and almost the entire amount flows into the combustion chamber 2 from the first intake port 4, so that it is combusted by the auxiliary intake passage 13. It does not disturb the swirl formed in chamber 2, but rather acts to strengthen it.
即ち、シヤツターバルブ12を単に低開度に開
いた場合には、第1、第2吸気ポート4,5の両
方から燃焼室2内に流入して衝突してスワールが
消滅されるのに対し、本実施例では、シヤツター
バルブ12を閉じたままで賄いうる負荷範囲を拡
大できるうえ、その拡大した負荷範囲内で良好な
スワールを維持することができることになる。 In other words, if the shutter valve 12 were simply opened to a low opening, the swirl would flow into the combustion chamber 2 from both the first and second intake ports 4 and 5 and collide, eliminating the swirl. In this embodiment, the load range that can be covered with the shutter valve 12 closed can be expanded, and a good swirl can be maintained within the expanded load range.
さらに、負荷範囲内が高負荷側に拡大されるよ
うにシヤツターバルブ12の閉時の吸気量を確保
できるため、シヤツターバルブ12が開かれる高
負荷運転に移行されたとしても、シヤツターバル
ブ12が開かれたときの吸気の増加割合は比較的
小さくすることができ、所謂切替シヨツクを確実
に防止することができる。 Furthermore, since the amount of intake air when the shutter valve 12 is closed can be secured so that the load range is expanded to the high load side, even if the shutter valve 12 is opened to a high load operation, the shutter valve 12 is opened, the rate of increase in intake air can be made relatively small, and so-called switching shocks can be reliably prevented.
そして、シヤツターバルブ12が開かれる高負
荷運転では、第1、第2吸気ポート4,5から必
要十分な吸気が供給されて、2ポート本来の高出
力を保証する。 During high-load operation when the shutter valve 12 is opened, sufficient intake air is supplied from the first and second intake ports 4 and 5, ensuring the high output inherent to the two ports.
なお、以上の実施例ではシヤツターバルブ12
に切欠き部12aを設けてシヤツターバルブ閉時
の吸気通路を構成したが、例えばシヤツターバル
ブの補助吸気通路13が接続される分岐吸気通路
側端部をバイパスするバイパス通路をシリンダヘ
ツド内に設けるようにしてもよいことはいうまで
もない。 In addition, in the above embodiment, the shutter valve 12
Although a notch 12a is provided in the cylinder head to form an intake passage when the shutter valve is closed, for example, a bypass passage that bypasses the end of the branched intake passage to which the auxiliary intake passage 13 of the shutter valve is connected may be provided in the cylinder head. Needless to say, it may be provided.
第1図は本発明の実施例を示すエンジンの要部
断面説明図、第2図は第1図の−線方向の縦
断面図である。
2……燃焼室、4,5……第1、第2吸気ポー
ト、8……吸気通路、10,11……分岐吸気通
路、12……シヤツターバルブ、12a……切欠
き部、13……補助吸気通路、14……底壁、1
5……吸気弁。
FIG. 1 is an explanatory sectional view of a main part of an engine showing an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view taken in the - line direction of FIG. 2... Combustion chamber, 4, 5... First and second intake ports, 8... Intake passage, 10, 11... Branch intake passage, 12... Shutter valve, 12a... Notch, 13... ...Auxiliary intake passage, 14...Bottom wall, 1
5...Intake valve.
Claims (1)
ポートを一つの燃焼室に開口させるとともに、低
負荷時閉じ高負荷時開く開閉弁によつて開閉さ
れ、該開閉弁下流で分岐され、各分岐端が上記吸
気ポートにそれぞれ接続された吸気通路と、上記
開閉弁より上流の吸気通路から分岐し、上記吸気
ポートのいずれか一つに接続される補助吸気通路
とを設け、さらに、上記開閉弁の補助吸気通路の
接続された吸気ポート側端部から該開閉弁が閉じ
ている時に所定量吸気を通すための吸気供給手段
を設けたことを特徴とするエンジンの吸気装置。1 Two intake ports, each opened and closed by an intake valve, are opened into one combustion chamber, and are opened and closed by an on-off valve that closes at low load and opens at high load, and are branched downstream of the on-off valve, with each branch end An intake passage connected to each of the intake ports, and an auxiliary intake passage branched from the intake passage upstream of the on-off valve and connected to one of the intake ports, An intake system for an engine, characterized in that an intake air supply means is provided for passing a predetermined amount of intake air from the end of the intake port connected to the intake passage when the on-off valve is closed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016822A JPS60162016A (en) | 1984-01-31 | 1984-01-31 | Intake device for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016822A JPS60162016A (en) | 1984-01-31 | 1984-01-31 | Intake device for engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60162016A JPS60162016A (en) | 1985-08-23 |
JPH0217688B2 true JPH0217688B2 (en) | 1990-04-23 |
Family
ID=11926865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59016822A Granted JPS60162016A (en) | 1984-01-31 | 1984-01-31 | Intake device for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60162016A (en) |
-
1984
- 1984-01-31 JP JP59016822A patent/JPS60162016A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60162016A (en) | 1985-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4702207A (en) | Intake arrangement for internal combustion engine | |
JPH03264727A (en) | Intake system for multiple valve engine | |
JPS62284919A (en) | Combustion chamber structure for engine | |
US5060616A (en) | Intake system for multiple-valve engine | |
JPH0217688B2 (en) | ||
JPH0330697B2 (en) | ||
JPS6282222A (en) | Combustion chamber structure in engine | |
JPH036854Y2 (en) | ||
JPH0247573B2 (en) | ||
JPH0481522A (en) | Intake device of engine | |
JPH0236905Y2 (en) | ||
JP3264749B2 (en) | Intake control structure for two-valve engine | |
JPH0217689B2 (en) | ||
KR100222520B1 (en) | Intake Swill Generation Structure of Internal Combustion Engine | |
JP2756157B2 (en) | 4 cycle engine | |
JPH0217690B2 (en) | ||
JPH0148379B2 (en) | ||
JPH0343388Y2 (en) | ||
JP2556420B2 (en) | Intake device for 4-cycle internal combustion engine | |
JPH0480210B2 (en) | ||
JPH0415945Y2 (en) | ||
JP3264748B2 (en) | Intake control structure for two-valve engine | |
JPS5827059Y2 (en) | Intake system for multi-cylinder internal combustion engine | |
JPH0335492B2 (en) | ||
JPH0252090B2 (en) |