[go: up one dir, main page]

JPH0480210B2 - - Google Patents

Info

Publication number
JPH0480210B2
JPH0480210B2 JP59077088A JP7708884A JPH0480210B2 JP H0480210 B2 JPH0480210 B2 JP H0480210B2 JP 59077088 A JP59077088 A JP 59077088A JP 7708884 A JP7708884 A JP 7708884A JP H0480210 B2 JPH0480210 B2 JP H0480210B2
Authority
JP
Japan
Prior art keywords
load
intake
intake passage
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59077088A
Other languages
Japanese (ja)
Other versions
JPS60219415A (en
Inventor
Yutaka Ooizumi
Kenji Maeda
Shuji Terao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59077088A priority Critical patent/JPS60219415A/en
Publication of JPS60219415A publication Critical patent/JPS60219415A/en
Publication of JPH0480210B2 publication Critical patent/JPH0480210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • F02M2026/009EGR combined with means to change air/fuel ratio, ignition timing, charge swirl in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置、特に2ポート
等の複数の吸気ポートをエンジンの燃焼室に開口
させるとともに、各吸気ポートに対してこれを開
閉する吸気弁を配置した吸気装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to an engine intake system, in particular, to open a plurality of intake ports such as two ports into a combustion chamber of the engine, and to open the same to each intake port. The present invention relates to an intake device that includes an intake valve that opens and closes.

(従来技術) 従来より、レシプロエンジンにおいて、各燃焼
室に対してほぼ均等な開口面積を有する2つの吸
気ポートを開口させて大きな開口面積を確保する
とともに、シリンダヘツド内に形成する吸気通路
を各吸気ポートに燃焼室の軸方向に沿つた大角度
で接続して吸気を燃焼室にストレートに流入させ
ることにより、エンジンの充填効率を最大限向上
させ、エンジンの高出力化を図つたエンジンの吸
気装置はよく知られている。
(Prior art) Conventionally, in reciprocating engines, two intake ports with approximately equal opening areas are opened for each combustion chamber to ensure a large opening area, and the intake passages formed in the cylinder head are By connecting the intake port at a large angle along the axial direction of the combustion chamber and allowing the intake air to flow straight into the combustion chamber, the engine's air intake system maximizes engine filling efficiency and increases engine output. The device is well known.

かかる2ポート型式の吸気装置は、高負荷運転
時の高出力化を図るという点で有利であるが、そ
の反面、吸気量の少ない低負荷運転時には、吸気
流速が弱まり、燃焼性が低下し、燃費の面でも、
エミツシヨンの面でも不利となる欠点がある。
Such a two-port intake system is advantageous in that it can achieve high output during high-load operation, but on the other hand, during low-load operation with a small amount of intake air, the intake air velocity becomes weaker and combustibility decreases. In terms of fuel efficiency,
There is also a disadvantage in terms of emission.

かかる欠点を解消するため、低負荷用吸気通路
とシヤツターバルブを介設した高負荷用吸気通路
とを上記2つの吸気ポートに夫々接続し、エンジ
ンの低負荷運転時には、シヤツターバルブを閉じ
て、低負荷用吸気通路のみから吸気を行なうよう
にしたものが知られている(例えば、特開昭56−
44419号公報参照)。
In order to eliminate this drawback, a low-load intake passage and a high-load intake passage with a shutter valve interposed are connected to the above two intake ports, and the shutter valve is closed when the engine is operating at low load. , a device in which air is taken only from the low-load intake passage is known (for example, Japanese Patent Application Laid-Open No. 1989-1999)
(See Publication No. 44419).

しかしながら、かかる対策は低負荷対策として
必らずしも有効ではない。即ち、もともと高出力
化のため2つの吸気ポートの開口面積を最大限確
保するようにしたものであるため、1つの吸気ポ
ートのみを使用するとしても吸気量が少ない極低
負荷運転時には、開口面積が依然大きすぎて吸気
流速を有効に向上させることができず、燃焼性の
向上に不可欠なスワールを有効に形成できない。
かかる不具合は、低負荷用吸気通路の通路面積を
絞ればそれで解消しうるように思えるが、高出力
化を図る目的から吸気通路のポート接続部は前述
したように燃焼室の軸方向に沿つた方向に形成さ
れているため、吸気流速を早めることによつて燃
焼室内に流速の早い流れが生成されたとしても燃
焼室の周方向に沿つた有効なスワールとして生成
されない。このため、この吸気の流れは圧縮行程
において早期に減衰されてしまうといつた問題が
ある。そうかといつて、流速をできるだけ高めよ
うとして低負荷用吸気通路を絞りすぎれば、それ
だけ賄いうる負荷範囲が制限され、比較的低い負
荷域でシヤツターバルブを開いて高負荷用吸気通
路からも吸気を供給する必要が生ずる。その場
合、2つの吸気ポートは、燃焼室の水平方向中心
線に関して対向的に形成されているため、低負荷
用吸気ポートから吸入される吸気流と高負荷用吸
気ポートから吸入される吸気流とが衝突して、ス
ワールが消滅されないまでもますます弱められて
しまい、スワールによる良好な燃焼性を確保し難
い欠点がある。
However, such measures are not necessarily effective as low-load measures. In other words, the opening area of the two intake ports was originally designed to be maximized in order to achieve high output, so even if only one intake port is used, during extremely low load operation where the amount of intake air is small, the opening area will be reduced. is still too large to effectively improve the intake air flow velocity, making it impossible to effectively form the swirl that is essential for improving combustibility.
It seems that this problem can be solved by narrowing down the passage area of the low-load intake passage, but for the purpose of achieving high output, the port connection part of the intake passage should be placed along the axial direction of the combustion chamber as mentioned above. Therefore, even if a high-velocity flow is generated within the combustion chamber by increasing the intake flow rate, it will not be generated as an effective swirl along the circumferential direction of the combustion chamber. Therefore, there is a problem in that this intake air flow is attenuated early in the compression stroke. However, if you restrict the low-load intake passage too much in an attempt to increase the flow velocity as much as possible, the load range that can be covered will be limited accordingly, and if you open the shutter valve in a relatively low load range, air will also be drawn from the high-load intake passage. It becomes necessary to supply In that case, since the two intake ports are formed to face each other with respect to the horizontal center line of the combustion chamber, the intake flow taken in from the low-load intake port and the intake flow taken in from the high-load intake port are different. If the swirls collide with each other, the swirl is further weakened, if not eliminated, and it is difficult to ensure good combustibility due to the swirl.

かかる問題を解消するため、本願出願人は、2
つの吸気ポートをエンジンの燃焼室にそれぞれ開
口させ、各吸気ポートを吸気弁で開閉するように
したエンジンの吸気装置において、2つの吸気ポ
ートに接続される第1及び第2高負荷用吸気通路
が分流した共通負荷用吸気通路の上流側に開閉弁
を配置して、この開閉を低負荷運転時には閉じ高
負荷運転時には開くようにエンジンの運転状態に
応じて上記吸気通路の通路面積を増減制御する一
方、上記開閉弁よりも上流の吸気通路の底部から
分岐し、上記第1高負荷用吸気通路の第1吸気ポ
ート付近に接続され、通路面積が上記吸気通路に
比べて小さい低負荷吸気通路を設けたエンジンの
吸気装置を提案している。即ち、上記提案のエン
ジンの吸気装置によれば、開閉弁が閉じられるエ
ンジンの低負荷運転時、吸気は専ら高負荷用吸気
通路の底部側に形成された低負荷用吸気通路か
ら、第1高負荷用吸気通路、第1吸気ポートを介
して早い流速でエンジンの燃焼室に供給される。
その場合、低負荷用吸気通路は、高負荷用吸気通
路の底部側に形成されていることから、シリンダ
ヘツドとシリンダブロツクとの合せ面に対して必
然的に浅い角度をなし、燃焼室内に流入した吸気
は、燃焼室の周方向に旋回するスワールを生成す
ることができる。また、開閉弁が開かれるエンジ
ンの高負荷運転時には、2つの吸気ポートから充
填効率よく吸気が吸入され、本来の高出力を保証
することができるのである。
In order to solve this problem, the applicant has decided to
In an engine intake system in which two intake ports are opened into the combustion chamber of the engine and each intake port is opened and closed by an intake valve, first and second high-load intake passages connected to the two intake ports are connected to the combustion chamber of the engine. An on-off valve is arranged on the upstream side of the divided common load intake passage, and the passage area of the intake passage is controlled to increase or decrease depending on the engine operating state so that the opening/closing valve is closed during low-load operation and opened during high-load operation. On the other hand, a low-load intake passage is branched from the bottom of the intake passage upstream of the on-off valve, connected to the vicinity of the first intake port of the first high-load intake passage, and has a passage area smaller than that of the intake passage. We are proposing an intake system for the engine. That is, according to the engine intake system proposed above, during low-load operation of the engine when the on-off valve is closed, the intake air flows exclusively from the low-load intake passage formed at the bottom side of the high-load intake passage to the first high-load intake passage. The air is supplied to the combustion chamber of the engine at a high flow rate through the load intake passage and the first intake port.
In that case, since the low-load intake passage is formed at the bottom of the high-load intake passage, it will inevitably form a shallow angle with respect to the mating surface of the cylinder head and cylinder block, and the intake passage will flow into the combustion chamber. This intake air can generate a swirl that rotates in the circumferential direction of the combustion chamber. Furthermore, during high-load operation of the engine when the on-off valve is opened, intake air is drawn in from the two intake ports with high filling efficiency, thereby guaranteeing the original high output.

ところで、上記提案のエンジンの吸気装置を燃
料噴射式とする場合には、開閉弁より下流の共通
高負荷用吸気通路に燃料噴射弁を設ける必要があ
る。ところが、上述した如く、低負荷運転時には
開閉弁が閉じられ、第1高負荷用吸気通路には低
負荷用吸気通路を介して吸気が流れるが、第2高
負荷用吸気通路には吸気が流れないので、第2高
負荷用吸気通路での燃料の気化霧化が悪くなり、
未燃焼成分(HC)を生ずるという問題がある。
By the way, when the intake system of the engine proposed above is of a fuel injection type, it is necessary to provide a fuel injection valve in the common high-load intake passage downstream of the on-off valve. However, as mentioned above, during low-load operation, the on-off valve is closed, and intake air flows into the first high-load intake passage via the low-load intake passage, but intake air does not flow into the second high-load intake passage. As a result, fuel vaporization and atomization in the second high-load intake passage becomes poor.
There is a problem of producing unburned components (HC).

(発明の目的) 本発明は、還流排気ガスの流速及び熱を利用す
ることで、低負荷運転時における第2高負荷用吸
気通路での燃料ミキシング性を良好にすることを
目的とするものである。
(Object of the invention) The present invention aims to improve the fuel mixing performance in the second high-load intake passage during low-load operation by utilizing the flow velocity and heat of recirculated exhaust gas. be.

(発明の構成) 本発明は、上述した如きエンジンの吸気装置に
おいて、エンジン高負荷運転時に開く開閉弁より
下流の共通高負荷用吸気通路又は第2高負荷用吸
気通路に、排気ガス還流通路を開口させることを
特徴とするものである。
(Structure of the Invention) In the engine intake system as described above, the present invention provides an exhaust gas recirculation passage in the common high-load intake passage or the second high-load intake passage downstream of the on-off valve that opens during high-load engine operation. It is characterized by being opened.

(実施例) 以下、本発明の実施例を図面に沿つて説明す
る。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図及び第2図に示すように、エンジン1の
1つの気筒2の燃焼室3には、エンジン1のシリ
ンダブロツク4の幅方向中心線11に関してほぼ
対称に、ほぼ同径の第1、第2の吸気ポート5,
6が開口され、長手方向中心線12をはさんで第
2吸気ポート6と対向する位置に排気ポート7が
開口されている。
As shown in FIGS. 1 and 2, in the combustion chamber 3 of one cylinder 2 of the engine 1, there is a first cylinder of approximately the same diameter, which is approximately symmetrical with respect to the center line 11 in the width direction of the cylinder block 4 of the engine 1. , second intake port 5,
6 is opened, and an exhaust port 7 is opened at a position facing the second intake port 6 across the longitudinal centerline 1 2 .

第1、2吸気ポート5,6に吸気を供給する吸
気通路は、シリンダヘツド9内において徐々に分
岐されている。すなわち、開閉弁としてのシヤツ
ターバルブ10より下流の共通高負荷用吸気通路
11が、第1、第2吸気ポート5,6の手前で、
上記幅方向中心線11にほぼ沿つて突出するよう
に形成された仕切壁12によつて第1および第2
高負荷用吸気通路13,14に二叉に分岐され、
第1、第2吸気ポート5,6にそれぞぞれ接続さ
れている。吸気通路8の中心線13は、前記幅方
向中心線11に対して第1吸気ポート5側に僅か
に偏心させて、第2吸気ポート6に比して第1吸
気ポート5にストレートに接続される設定として
いる。シヤツターバルブ10は、具体的に図示し
ない周知の開閉制御機構(例えば、スロツトルバ
ルブに連結されるリンク機構)によりエンジン1
の低負荷運転時には吸気通路8を閉じ、高負荷運
転時には負荷に応じて開くようにその開閉が制御
される。そして、シヤツターバルブ10より若干
上流側の吸気通路8には、中心線13に関して、
第2吸気ポート6側に片寄せて低負荷用吸気通路
15の上流側開口15aを吸気通路8の底壁に開
口させている。この低負荷用吸気通路15は、第
1吸気ポート5に近傍して開口した下流側開口1
5bを有し、上記中心線13を横切るようにゆる
やかに湾曲して、上流側開口15aと下流側開口
15bとを連結する(第2図では省略)。この低
負荷用吸気通路15は、吸気通路8の底部を形成
する底壁16に形成され、その下流側開口は上記
仕切壁12の上流側端部即ち第1及び第2高負荷
用吸気通路13,14の分岐点より下流で第1吸
気ポート5にできるだけ接近した位置に設定され
ている。このため、低負荷用吸気通路15を流下
する吸気の全量は、第1吸気ポート5から燃焼室
3に流入することとなる。低負荷用吸気通路15
は、第1吸気ポート5の直上流で気筒2の軸方向
に大きな曲率で湾曲されている第1高負荷用吸気
通路13に対し、シリンダブロツク4とシリンダ
ヘツド9との合せ面Aに対して僅かな傾き角をな
すように交差しており、したがつて、燃焼室3の
周方向に指向した方向性を有するようになる。
Intake passages that supply intake air to the first and second intake ports 5 and 6 are gradually branched within the cylinder head 9. That is, the common high-load intake passage 11 downstream of the shutter valve 10 as an on-off valve is located before the first and second intake ports 5 and 6.
The first and second
Branched into two high-load intake passages 13 and 14,
It is connected to the first and second intake ports 5 and 6, respectively. The center line 1 3 of the intake passage 8 is slightly eccentric to the first intake port 5 side with respect to the width direction center line 1 1 and is straight toward the first intake port 5 compared to the second intake port 6. It is set to connect. The shutter valve 10 is connected to the engine by a well-known opening/closing control mechanism (for example, a link mechanism connected to a throttle valve), which is not specifically shown.
The opening and closing of the intake passage 8 is controlled so that it is closed during low load operation and opened according to the load during high load operation. In the intake passage 8 slightly upstream of the shutter valve 10, there is a
The upstream opening 15a of the low-load intake passage 15 is opened at the bottom wall of the intake passage 8 by shifting toward the second intake port 6 side. This low-load intake passage 15 has a downstream opening 1 that is open near the first intake port 5.
5b, and is gently curved across the center line 13 to connect the upstream opening 15a and the downstream opening 15b (not shown in FIG. 2). This low-load intake passage 15 is formed in a bottom wall 16 that forms the bottom of the intake passage 8, and its downstream opening is at the upstream end of the partition wall 12, that is, the first and second high-load intake passages 13. , 14 and as close as possible to the first intake port 5. Therefore, the entire amount of intake air flowing down the low-load intake passage 15 flows into the combustion chamber 3 from the first intake port 5. Low load intake passage 15
is relative to the first high-load intake passage 13 which is curved with a large curvature in the axial direction of the cylinder 2 immediately upstream of the first intake port 5, and relative to the mating surface A between the cylinder block 4 and the cylinder head 9. They intersect with each other at a slight angle of inclination, and therefore have directionality in the circumferential direction of the combustion chamber 3.

また、第2高負荷用吸気通路14の第2吸気ポ
ート6付近には、排気ガスの一部を吸気系に還流
する排気ガス還流通路18の下流端開口18aが
開口している。
Further, in the vicinity of the second intake port 6 of the second high-load intake passage 14, there is opened a downstream end opening 18a of an exhaust gas recirculation passage 18 that recirculates part of the exhaust gas to the intake system.

上記シヤツターバルブ10は下流に向つて斜め
下向きに傾斜して配置され、さらにシヤツターバ
ルブ10より若干下流の共通高負荷用吸気通路1
1の上壁19に予め設けた取付部には燃料噴射弁
20取付けている。この場合、燃料噴射口21
は、シヤツターバルブ10の回転軸10aより若
干下流側でかつ吸気通路8の中心線13上に位置
するように設定している。周知のように、燃料噴
射弁20によつて噴射された燃料は、ある距離ま
では拡がらず直進し、それ以後コーン状に拡散す
る。したがつて、上記のように、燃料噴射口21
を吸気通路8の中心線13上に設定すれば、中心
線13が、第1吸気ポート5側に予め偏心されて
いるため、コーン状に拡散する燃料の第1、第2
吸気ポート5,6に対する配分比は、第1吸気ポ
ート5(第1高負荷用吸気通路13)側で多くな
る。
The above-mentioned shutter valve 10 is arranged obliquely downward toward the downstream side, and a common high-load intake passage 1 is located slightly downstream of the shutter valve 10.
A fuel injection valve 20 is attached to a mounting portion provided in advance on the upper wall 19 of the fuel injection valve 1. In this case, the fuel injection port 21
is set to be located slightly downstream of the rotation axis 10a of the shutter valve 10 and on the center line 13 of the intake passage 8. As is well known, the fuel injected by the fuel injection valve 20 does not spread out until a certain distance, but travels straight, and after that, it spreads into a cone shape. Therefore, as described above, the fuel injection port 21
If it is set on the center line 13 of the intake passage 8, the center line 13 is offset toward the first intake port 5 in advance, so that the first and second
The distribution ratio for the intake ports 5 and 6 increases on the first intake port 5 (first high-load intake passage 13) side.

このため、第1吸気ポート5から専ら吸気が行
なわれるエンジン1の低負荷運転時において、よ
り多くの燃料が吸気とミキシングされることとな
り、混合気に燃焼性が向上される。
Therefore, during low-load operation of the engine 1 when air is taken exclusively from the first intake port 5, more fuel is mixed with the intake air, and the combustibility of the air-fuel mixture is improved.

また、第2吸気ポート6(第2高負荷用吸気通
路14)側に配分される熱量は、比較的温度の高
い還流排気ガスにて気化霧化が促進され、第2吸
気ポート6側においても良好なミキシング性が得
られ、混合気の燃焼性を損うことがない。
In addition, the amount of heat distributed to the second intake port 6 (second high-load intake passage 14) side is accelerated by vaporization and atomization with relatively high temperature recirculated exhaust gas, and the amount of heat distributed to the second intake port 6 side is also increased. Good mixing properties can be obtained without impairing the combustibility of the air-fuel mixture.

なお、第1吸気ポート5と開閉する吸気弁(図
示せず)、第2吸気ポート6を開閉する吸気弁1
7および排気ポート7を開閉する排気弁22は、
周知のオーバーヘツドカム機構23により、エン
ジンEの回転に同期した所定のタイミングで夫々
開閉駆動される。
Note that an intake valve (not shown) opens and closes with the first intake port 5, and an intake valve 1 opens and closes with the second intake port 6.
7 and the exhaust valve 22 that opens and closes the exhaust port 7,
A well-known overhead cam mechanism 23 opens and closes each of them at predetermined timings synchronized with the rotation of the engine E.

また、第1図に示すように、点火プラグ24
は、第1、第2吸気ポート5,6および排気ポー
ト7が設けられていない部分、より具体的には低
負荷用吸気通路15が開口する第1吸気ポート5
に燃焼室3の縦方向中心線12をはさんで対向す
る位置に配置されている。このプラグ配置では、
低負荷用吸気通路15によつて形成されるスワー
ルの旋回軌跡上に点火プラグ24が位置すること
になるため、点火プラグ24によつて良好な着火
性でもつて混合気を着火させることができる。
In addition, as shown in FIG. 1, the spark plug 24
is a portion where the first and second intake ports 5 and 6 and the exhaust port 7 are not provided, more specifically, the first intake port 5 where the low-load intake passage 15 is opened.
The combustion chamber 3 is disposed at opposite positions across the longitudinal centerline 1 2 of the combustion chamber 3 . With this plug arrangement,
Since the ignition plug 24 is located on the swirl locus formed by the low-load intake passage 15, the ignition plug 24 can ignite the air-fuel mixture with good ignitability.

上記実施例では、排気ガス還流通路18の下流
端開口18aを第2高負荷用吸気通路14に開口
させているが、共通高負荷用吸気通路11に開口
させるようにしても同様の効果が得られる。
In the above embodiment, the downstream end opening 18a of the exhaust gas recirculation passage 18 is opened to the second high-load intake passage 14, but the same effect can be obtained even if the downstream end opening 18a of the exhaust gas recirculation passage 18 is opened to the common high-load intake passage 11. It will be done.

(発明の効果) 本発明は上記のように構成したから、開閉弁が
閉じている低負荷運転時において、第2高負荷用
吸気通路での燃料ミキシング性を良好にすること
ができる。
(Effects of the Invention) Since the present invention is configured as described above, it is possible to improve the fuel mixing performance in the second high-load intake passage during low-load operation when the on-off valve is closed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すエンジンの要部
概略断面説明図、第2図は第1図の−線にお
ける縦断面図である。 1……エンジン、3……燃焼室、5,6……吸
気ポート、8……吸気通路、10……シヤツター
バルブ、11……共通高負荷用吸気通路、13…
…第1高負荷用吸気通路、14……第2高負荷用
吸気通路、15……低負荷用吸気通路、18……
排気ガス還流通路、20……燃料噴射弁。
FIG. 1 is a schematic cross-sectional view of a main part of an engine showing an embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view taken along the line - in FIG. DESCRIPTION OF SYMBOLS 1...Engine, 3...Combustion chamber, 5, 6...Intake port, 8...Intake passage, 10...Shutter valve, 11...Common high-load intake passage, 13...
...First intake passage for high load, 14...Second intake passage for high load, 15...Intake passage for low load, 18...
Exhaust gas recirculation passage, 20...fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジン高負荷運転時に開く開閉弁により開
閉される共通高負荷用吸気通路と、上記開閉弁よ
り下流で上記共通高負荷用吸気通路から分岐し同
一気筒の燃焼室に開口する2つの吸気ポートに
各々接続した第1高負荷用吸気通路及び第2高負
荷用吸気通路と、上記開閉弁より下流の上記共通
高負荷用吸気通路に設けられた燃料噴射弁と、上
記開閉弁より上流の吸気通路から分岐し上記第1
高負荷用吸気通路に開口される低負荷用吸気通路
と、上記開閉弁より下流の上記共通高負荷用吸気
通路又は上記第2高負荷用吸気通路に開口した排
気ガス還流路とを設けたことを特徴とするエンジ
ンの吸気装置。
1 A common high-load intake passage that is opened and closed by an on-off valve that opens during engine high-load operation, and two intake ports that branch from the common high-load intake passage downstream of the on-off valve and open into the combustion chambers of the same cylinder. A first high-load intake passage and a second high-load intake passage connected to each other, a fuel injection valve provided in the common high-load intake passage downstream of the on-off valve, and an intake passage upstream of the on-off valve Branched from the above first
A low-load intake passage opened to the high-load intake passage, and an exhaust gas recirculation passage opened to the common high-load intake passage or the second high-load intake passage downstream of the on-off valve. An engine intake system featuring:
JP59077088A 1984-04-16 1984-04-16 Intake device for engine Granted JPS60219415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59077088A JPS60219415A (en) 1984-04-16 1984-04-16 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59077088A JPS60219415A (en) 1984-04-16 1984-04-16 Intake device for engine

Publications (2)

Publication Number Publication Date
JPS60219415A JPS60219415A (en) 1985-11-02
JPH0480210B2 true JPH0480210B2 (en) 1992-12-18

Family

ID=13624021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59077088A Granted JPS60219415A (en) 1984-04-16 1984-04-16 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS60219415A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937085A1 (en) * 2008-10-09 2010-04-16 Renault Sas DEVICE FOR VAPORIZING AND GENERATING AERODYNAMISM IN A CONTROL-IGNITION ENGINE INTAKE DUCT

Also Published As

Publication number Publication date
JPS60219415A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
US4702207A (en) Intake arrangement for internal combustion engine
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
US4625687A (en) Intake arrangement for internal combustion engine
US6155229A (en) Charge motion control valve in upper intake manifold
JP3612874B2 (en) In-cylinder injection engine
JP2501556Y2 (en) Internal combustion engine intake system
JPH0480210B2 (en)
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH0217689B2 (en)
JPH0247573B2 (en)
JP3030413B2 (en) In-cylinder injection internal combustion engine
JPH0413415Y2 (en)
JPH0236905Y2 (en)
JPH0252090B2 (en)
JPH0217690B2 (en)
JPH0343387Y2 (en)
JPH06213081A (en) Exhaust gas recirculation system of engine
JPH0217691B2 (en)
JP3036946B2 (en) Engine intake system
JPH036854Y2 (en)
KR100203507B1 (en) Direct injection typed gasoline engine
JP2508636Y2 (en) Intake port structure of internal combustion engine
KR100515254B1 (en) Internal injection engine
JPS6185535A (en) Suction device for internal-combustion engine
JPS62247173A (en) Intake device of engine