[go: up one dir, main page]

JPH02175398A - Directional control device for visual sensor mounted on artificial satellite - Google Patents

Directional control device for visual sensor mounted on artificial satellite

Info

Publication number
JPH02175398A
JPH02175398A JP33044588A JP33044588A JPH02175398A JP H02175398 A JPH02175398 A JP H02175398A JP 33044588 A JP33044588 A JP 33044588A JP 33044588 A JP33044588 A JP 33044588A JP H02175398 A JPH02175398 A JP H02175398A
Authority
JP
Japan
Prior art keywords
visual sensor
deviation
target object
artificial satellite
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33044588A
Other languages
Japanese (ja)
Inventor
Haruhiko Shimoji
治彦 下地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33044588A priority Critical patent/JPH02175398A/en
Publication of JPH02175398A publication Critical patent/JPH02175398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To stably catch a target object by processing an image signal from a visual sensor mounted on an artificial satellite, calculating the deviation of the target object from an image center and carrying out the directional control of the visual sensor so as to reduce the deviation. CONSTITUTION:An image signal inputted from a visual sensor 5 is inputted into an image processing computer 6 to calculate the deviation of the target object from an image center. A visual sensor directional controlled variable calculator 7 calculates the turning angle of the visual sensor 5 for catching a target object in the image center based on the calculated deviation and outputs same to a servo circuit 8 to drive a visual sensor rotating mechanism 9 and carry out the directional control of the visual sensor 5. By this structure, even when the target object is in motion or even when the posture of the artificial satellite is varied, the target object can be stably caught.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 第4図は例えば特表昭83−500931号公報に示さ
れた従来の宇宙船機器用指向補償システムを示すブロッ
ク構成図である。ここで対象としているのは、この発明
の対象とする視覚センサの他。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] FIG. 4 is a block diagram showing a conventional pointing compensation system for spacecraft equipment disclosed in, for example, Japanese Patent Publication No. 83-500931. What is being considered here is other than the visual sensor that is the object of this invention.

アンテナ、ソーラーパネル等の宇宙船機器一般である。General spacecraft equipment such as antennas and solar panels.

この図において、指向制御器(3)とは、サーボ回路と
指向制御機構をあわせたものである。
In this figure, the directional controller (3) is a combination of a servo circuit and a directional control mechanism.

次に動作について説明する。まず地上からの通信その他
によって各宇宙船機器1〜nへの旋回指令がそれぞれの
機器命令論理回路(1)を通して出力される。この指令
は宇宙船運動補償論理回路(21に入力され、各機器1
〜nが指令とお)に運動した時に宇宙船に生じる運動を
求め、こi″Lを初期の旋回指令に加えて指向制御器f
31に送り、指向側@を行う。最終的に制御された結果
は閉ループ宇宙船ダイナミクス(4)に送られ、補償論
理回路(21で補償値′t−算出するためのグイナミク
スとして保持される。
Next, the operation will be explained. First, a turning command to each spacecraft device 1 to n is outputted through the respective device command logic circuit (1) by communication from the ground or other means. This command is input to the spacecraft motion compensation logic circuit (21), and each device 1
Find the motion that occurs in the spacecraft when ~n moves according to the command, and add this i''L to the initial turning command and set the directional controller f.
Send it to 31 and perform the directional side @. The final controlled result is sent to the closed-loop spacecraft dynamics (4) and held in the compensation logic circuit (21) as a guinamics for calculating the compensation value 't-.

〔発明が膚決しようとする課題〕[The problem that the invention is trying to solve]

従来の指向制御装置は地球や太陽のように静止目標を獲
らえることを目的とし、上記のように構成されているの
で、運動する物体を獲らえる視覚センサに応用するため
には外部から物体全追跡する指令を地上から高速に与え
なければならないという問題点があった。また搭載機器
の動作による衛星の姿勢変化による指向誤差を補正する
方法においても予め計算により求めて姿勢制御全行って
い次のでアンテナ等の動きが小さな機器の動きの補正は
比較的容易であるが、マニピュレータ等のように大きな
動きをする機器についてはそのダイナミクスを解くこと
は難しく、計算時間が長くなるという問題点があった。
Conventional pointing control devices are designed to capture stationary targets such as the earth or the sun, and are configured as described above. The problem was that commands to track all objects had to be given at high speed from the ground. In addition, in the method of correcting pointing errors due to changes in the satellite's attitude due to the operation of onboard equipment, all attitude control is performed based on calculations in advance, so it is relatively easy to correct for movements of equipment such as antennas that have small movements. It is difficult to solve the dynamics of devices that make large movements, such as manipulators, and the problem is that the calculation time is long.

この発明は上記のような問題点を鱗消するためになされ
たもので、運動する物体を獲らえる場合においても、ま
た衛星搭載機器の運動によって衛星の姿勢が変化した場
合においても、視覚センナで安定して目標物を獲らえる
ことができる人工衛星搭載用視覚センサの指向制御装置
を得ることを目的とする。
This invention was made to eliminate the above-mentioned problems, and the visual sensor can be used both when capturing moving objects and when the attitude of the satellite changes due to the movement of on-board equipment. The purpose of this invention is to obtain a pointing control device for a visual sensor mounted on an artificial satellite that can stably capture a target.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る人工衛星搭載用視覚センサの指向制御装
置は1人工衛星搭載用視覚センサから入力される画像信
号を処理して、目標物の画像中央からの偏差を計算する
画像処理部、及び上記偏差が小さくなるように上記視覚
センサの指向制御を行う回転機#4を備えたものである
A pointing control device for a visual sensor onboard an artificial satellite according to the present invention includes: (1) an image processing unit that processes an image signal input from the visual sensor onboard an artificial satellite and calculates the deviation of a target from the center of the image; It is equipped with a rotary machine #4 that controls the orientation of the visual sensor so that the deviation is small.

〔作用〕[Effect]

この発明における人工衛星搭載用視覚センナの指向制御
装置は、視覚センサよりとり込んだ画像情報から、目標
物の画偉内の位置を求めて画像中央からの偏差が小さく
なるように視覚センサの指向制御を行うので、目標物の
動きが大きい場合も安定して自動的に目標物を追跡する
ことができる。
The pointing control device for a visual sensor mounted on an artificial satellite in this invention determines the position of a target within the picture plane from image information captured by the visual sensor, and directs the visual sensor so that the deviation from the center of the image is small. Since the control is performed, the target can be automatically and stably tracked even if the target moves significantly.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による人工衛星搭載用視覚
センサの指向制御装置の構成を示すブロック構成図であ
り、視覚センサ(5)4画像処理計算機(6)、視覚セ
ンサ指向制御量算出器(71,サーボ回路(81,視覚
センサ回転機構(9)から成る。
FIG. 1 is a block diagram showing the configuration of a directional control device for a visual sensor mounted on an artificial satellite according to an embodiment of the present invention, which includes a visual sensor (5), 4 image processing computers (6), and a visual sensor directional control amount calculation. It consists of a sensor (71), a servo circuit (81), and a visual sensor rotation mechanism (9).

第2図はこの発明の一実施例による指向制御装置の動作
を示すフローチャート図であり、以下。
FIG. 2 is a flowchart showing the operation of the pointing control device according to an embodiment of the present invention, and the following is a flow chart showing the operation of the pointing control device according to an embodiment of the present invention.

第1図及び第2図をもとに動作について説明する。The operation will be explained based on FIGS. 1 and 2.

視覚センサ(5)から入力した画像は画像処理計算機(
6)で処理を行い1例えば、第2図に示す方法によシ、
目標物の画像中央からの偏差を求める。即ちステップQ
l)で視覚センサ15)から画像信号を入力しステップ
Iで、この画像信号からエツジを抽出し。
The image input from the visual sensor (5) is processed by an image processing computer (
6) and perform the processing 1, for example, by the method shown in FIG.
Find the deviation of the target object from the center of the image. That is, step Q
In step I), an image signal is input from the visual sensor 15), and in step I, edges are extracted from this image signal.

さらにステップα2で輪郭線を抽出する。次にステップ
ajで背景と目標物を分離して、ステップα着で目標物
のハンドリングポイント、即ち、予め知識として持って
いる目標物の操作点を読みとり、ステップα9でこのノ
1ンドリ/グポイントの2画像中央からの偏差を計算す
る。このようにして得られた偏差を1次に視覚センサ指
向制御it算出器(7)において、視覚センサ151の
回転角度に変換する。そしてサーボ回路(8)を用いて
指定の回転角度になるように視覚センサ回転機構(9)
2例えばモータを制御して視覚センサ(5)の指向を変
化させる。
Further, in step α2, a contour line is extracted. Next, in step aj, the background and the target are separated, and in step α, the handling point of the target, that is, the operating point of the target that is known in advance, is read, and in step α9, this handling point is read. Calculate the deviation from the center of the two images. The deviation thus obtained is converted into a rotation angle of the visual sensor 151 in the primary visual sensor orientation control it calculator (7). Then, the visual sensor rotation mechanism (9) uses the servo circuit (8) to achieve the specified rotation angle.
2. For example, controlling a motor to change the orientation of the visual sensor (5).

第3囚はこの発明の他の実施例による人工衛星搭載用視
覚センサの指向制御装置の構成全示すブロック構成図で
あり、、1!1図に示すものに、さらに衛星姿勢検出器
neと制御量調整器αηを付加したものである。
Figure 3 is a block configuration diagram showing the entire configuration of a directional control device for a visual sensor onboard an artificial satellite according to another embodiment of the present invention. A quantity adjuster αη is added.

第3因に示すものは、−万では第1図に示すものと同様
にして視覚センサ(5)の回転角度を計算する。またこ
れとは別に衛星姿勢検出器a11から衛星の姿勢変化を
入力し、視覚センサ指同制@flrn出器2 (72)
  によって衛星の姿勢変化が視覚センサ(5)の指向
に影響を与えないようにするための回転角度を求める。
In the case of the third factor, the rotation angle of the visual sensor (5) is calculated in the same manner as shown in FIG. Separately, the attitude change of the satellite is input from the satellite attitude detector a11, and the visual sensor finger control @flrn output unit 2 (72)
The rotation angle to prevent the change in attitude of the satellite from affecting the pointing of the visual sensor (5) is determined.

制御量調整器αηでは、これら2つの方法から求められ
た視覚センナ回転角度をたしあわせ、しかも滑らかな制
御になるように視覚センサ(5)の回転角度の制御量を
出力し、サーボ回路(8)8回転機構(9)を用いて実
際に視覚センサの指向制御を行う。このようにすれば、
さらに滑らかな指向制御が行なえる。なお、第3図に示
す実施例では衛星姿勢検出器αeの信号を入力して、衛
星の姿勢変化による指向誤差を補正するようにしたが検
出器を用いず回転機構(9)の信号から衛星の姿勢変化
を計算し、この変化量を視覚センサ指向制御量算出器2
 (72)へ入力して計算により補正を行なってもよい
The control amount adjuster αη adds up the visual sensor rotation angles obtained from these two methods and outputs the control amount for the rotation angle of the visual sensor (5) so as to achieve smooth control. ) Directional control of the visual sensor is actually performed using the 8-rotation mechanism (9). If you do this,
Furthermore, smooth pointing control can be performed. In the embodiment shown in FIG. 3, the signal from the satellite attitude detector αe is input to correct pointing errors due to changes in the attitude of the satellite. The visual sensor orientation control amount calculator 2 calculates the change in attitude of the
(72) and may be corrected by calculation.

また、上記実施例においては、視覚セ/す金2軸まわり
に回転させる場合を示しているが、視覚センサは固定も
しくは1軸まわりの運動だけ全行い、視覚センサの前方
に鏡面を取りつけこの鏡面の角度を変化させることによ
っても同様の効果を持たせることが可能である。
In addition, in the above embodiment, a case is shown in which the visual sensor/frame is rotated around two axes, but the visual sensor is fixed or only moves around one axis, and a mirror surface is attached in front of the visual sensor. A similar effect can also be achieved by changing the angle of.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば人工衛星搭載用視覚セ
ンサから入力される画像信号を処理して目徐物の画像中
央からの偏差を計算する画像処理部、及び上記偏差が小
さくなるように上記視覚センサの指向制御を行う回転機
構によシ人工衛星搭載用視覚セ/すの指向制御架fIt
を構成したので。
As described above, according to the present invention, there is provided an image processing section that processes an image signal inputted from a visual sensor onboard an artificial satellite to calculate the deviation from the center of the image of an object, and an image processing section that processes an image signal input from a visual sensor mounted on an artificial satellite to calculate the deviation from the center of the image. A rotating mechanism for controlling the orientation of the visual sensor mentioned above is used for the orientation control rack fIt for the visual center onboard the artificial satellite.
Since I configured the .

衛星搭載機器の動作に伴って衛星の姿勢が変化した夛、
衛星と目標物が相対的な運動をしているという理由で視
覚センサに対する目標物の相対位置が変化する場合にお
いても、目標物全視野からはずすことなく安定して観測
できる指向制御装置が提供できるという効果がある。
The attitude of the satellite changed due to the operation of onboard equipment,
Even when the relative position of the target with respect to the visual sensor changes due to relative motion between the satellite and the target, it is possible to provide a pointing control device that can stably observe the target without removing it from the full field of view. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各々この発明の一実施例による人工
衛星搭載用視覚センサの指向制御装置の構成を示すブロ
ック構成図及びその動作を示すフローチャート図、第3
図はこの発明の他の実施例による人工衛星搭載用視覚セ
ンサの指向制御装置の構成を示すブロック構成■、並び
に第4図は従来の宇宙船機器用指向補償システムを示す
ブロック構成図である。 (5)・・・視覚センサ、(6)・・・画像処理計算機
、(7)・・・視覚センサ指向制御量算出器、(8)・
・・サーボ回路、(9)・・・視覚セ/す回転機構。 なお2図中、同一符号は同−又は相半部分を示す。
FIGS. 1 and 2 are a block diagram showing the configuration of a directional control device for a visual sensor mounted on an artificial satellite according to an embodiment of the present invention, a flowchart showing its operation, and FIG.
FIG. 4 is a block diagram showing the configuration of a pointing control device for a visual sensor mounted on an artificial satellite according to another embodiment of the present invention, and FIG. 4 is a block diagram showing a conventional pointing compensation system for spacecraft equipment. (5)...Visual sensor, (6)...Image processing computer, (7)...Visual sensor orientation control amount calculator, (8)...
...Servo circuit, (9)...Visual center rotation mechanism. In addition, in FIG. 2, the same reference numerals indicate the same or half parts.

Claims (1)

【特許請求の範囲】[Claims]  人工衛星搭載用視覚センサから入力される画像信号を
処理して、目標物の、画像中央からの偏差を計算する画
像処理部、及び上記偏差が小さくなるように上記視覚セ
ンサの指向制御を行う回転機構を備えた人工衛星搭載用
視覚センサの指向制御装置。
an image processing unit that processes image signals input from a visual sensor onboard an artificial satellite to calculate the deviation of the target from the center of the image; and a rotation that controls the orientation of the visual sensor so that the deviation is small. Directional control device for visual sensors mounted on artificial satellites.
JP33044588A 1988-12-27 1988-12-27 Directional control device for visual sensor mounted on artificial satellite Pending JPH02175398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33044588A JPH02175398A (en) 1988-12-27 1988-12-27 Directional control device for visual sensor mounted on artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33044588A JPH02175398A (en) 1988-12-27 1988-12-27 Directional control device for visual sensor mounted on artificial satellite

Publications (1)

Publication Number Publication Date
JPH02175398A true JPH02175398A (en) 1990-07-06

Family

ID=18232696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33044588A Pending JPH02175398A (en) 1988-12-27 1988-12-27 Directional control device for visual sensor mounted on artificial satellite

Country Status (1)

Country Link
JP (1) JPH02175398A (en)

Similar Documents

Publication Publication Date Title
JP3645038B2 (en) Aircraft flight control equipment
JP4982407B2 (en) Mobile object image tracking apparatus and method
US6131056A (en) Continuous attitude control that avoids CMG array singularities
US5109345A (en) Closed-loop autonomous docking system
US6039290A (en) Robust singularity avoidance in satellite attitude control
JP4810582B2 (en) Mobile object image tracking apparatus and method
US20090096664A1 (en) Method, Apparatus and Computer Program Product for Providing Stabilization During a Tracking Operation
JP2009115621A (en) Mobile image tracking device
CN105438499B (en) Around the drift angle tracking and controlling method of spatial axes
US8209070B2 (en) Methods and systems for efficiently orienting an agile vehicle using a gyroscope array
US6128556A (en) CMG control based on angular momentum to control satellite attitude
SE520587C2 (en) Searcher for target pursuit missiles
Kelly et al. Fixed-camera visual servo control for planar robots
CN208384428U (en) Stable turntable system based on reversed bit shift compensation
Mahony et al. Visual servoing using linear features for under-actuated rigid body dynamics
JPH02175398A (en) Directional control device for visual sensor mounted on artificial satellite
US5669579A (en) Method for determining the line-of-sight rates of turn with a rigid seeker head
JPH07202541A (en) Three-axis control antenna system
Zhang et al. 2-DOF camera stabilization platform for robotic fish based on active disturbance rejection control
CA3058338C (en) Satellite attitude control system using eigen vector, non-linear dynamic inversion, and feedforward control
JPH10253349A (en) Visual axis-directing apparatus
KR102127962B1 (en) Pan-tilt-gimbal integrated system and control method thereof
EP1059577B1 (en) Time delay compensation for spacecraft motion compensation
JPS6327723B2 (en)
Sconyers et al. Rotorcraft control and trajectory generation for target tracking