[go: up one dir, main page]

JPH0216867B2 - - Google Patents

Info

Publication number
JPH0216867B2
JPH0216867B2 JP57002117A JP211782A JPH0216867B2 JP H0216867 B2 JPH0216867 B2 JP H0216867B2 JP 57002117 A JP57002117 A JP 57002117A JP 211782 A JP211782 A JP 211782A JP H0216867 B2 JPH0216867 B2 JP H0216867B2
Authority
JP
Japan
Prior art keywords
temperature sensor
oxidation catalyst
gas
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57002117A
Other languages
Japanese (ja)
Other versions
JPS58118951A (en
Inventor
Shosaku Maeda
Tadashi Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP211782A priority Critical patent/JPS58118951A/en
Publication of JPS58118951A publication Critical patent/JPS58118951A/en
Publication of JPH0216867B2 publication Critical patent/JPH0216867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 本発明は、主として燃料用ガスの熱量測定に用
いられるガス用カロリーメータに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas calorimeter mainly used for measuring the calorific value of fuel gas.

近来、都市ガス等の精製工程管理用あるいは取
引用として、連続的かつ即時的にガスの熱量を測
定する要求が生じており、従来においては、ガス
通路中へ、白金線等の表面へ触媒を固着させたセ
ンサを設け、ガスと触媒との反応による発熱量を
白金線等の抵抗値変化として検出する手段が提案
されている。
In recent years, there has been a demand for continuous and instantaneous measurement of the calorific value of gas for the purpose of controlling the refining process of city gas, etc., or for trading purposes. A method has been proposed in which a fixed sensor is provided and the amount of heat generated by the reaction between the gas and the catalyst is detected as a change in the resistance value of a platinum wire or the like.

しかし、かゝる手段においては、ガスの極く一
部のみしかセンサと接触せず、測定確度が低下す
ると共に、白金線等へ触媒を固着させる場合、ス
ラリー状とした触媒を塗布のうえ焼結しており、
これに高度の技術を要する割合には、極細白金線
等を用いるため機械的強度が弱く、かつ、触媒を
スラリー状とする際の溶媒が残留し、これが悪影
響を与える等の理由により、センサとしての信頼
性が劣化する欠点を生じている。
However, with such means, only a small portion of the gas comes into contact with the sensor, reducing measurement accuracy.In addition, when fixing the catalyst to a platinum wire, etc., it is necessary to apply a slurry of the catalyst and then sinter it. It is tied,
This requires a high level of technology, as the mechanical strength is weak due to the use of ultra-fine platinum wires, and the solvent left when making the catalyst into a slurry remains, which can have an adverse effect on the sensor. The disadvantage is that the reliability of the system deteriorates.

本発明は、従来のかゝる欠点を根本的に解決す
る目的を有し、ガスの通路中へ封入した粉粒状の
酸化触媒と、これの酸化反応による温度を検出す
る温度センサとを有するカロリーメータと、これ
の酸化触媒封入部の外側へ設けた保温用のヒータ
とを備え、かつ、温度センサの検出々力に応じて
ヒータの発熱状況を制御することにより、酸化触
媒におけるガスの酸化反応に伴なう温度を検出し
てガスの熱量を測定すると共に、酸化触媒部の発
熱放散を外側のヒータによる保温によつて阻止す
るものとした高信頼性かつ極めて正確な、ガス用
カロリーメータを提供するものである。
The present invention has an object of fundamentally solving the above drawbacks of the conventional calorimeter, and has a calorimeter that includes a powdery oxidation catalyst sealed in a gas passage and a temperature sensor that detects the temperature caused by the oxidation reaction of the oxidation catalyst. and a heat-retaining heater installed outside the oxidation catalyst enclosing part, and by controlling the heat generation status of the heater according to the detected power of the temperature sensor, the gas oxidation reaction in the oxidation catalyst can be controlled. Provides a highly reliable and extremely accurate gas calorimeter that measures the calorific value of gas by detecting the associated temperature, and prevents heat dissipation in the oxidation catalyst section by keeping it warm with an external heater. It is something to do.

以下、実施例を示す図によつて本発明の詳細を
説明する。
Hereinafter, details of the present invention will be explained with reference to figures showing examples.

第1図は断面図を示し、カロリーメータ1にお
いては、パイオレツクスガラス等の円管を用いた
ガスGの通路を形成するケース2の両端部側に、
枝管2a,2bが設けてあり、枝管2a側のケー
ス2内には、温度センサRSが挿入されたうえ、
これの周囲にアルミナ粉粒3が充填されており、
枝管2b側のケース2内には、温度センサSSが
挿入されたうえ、これの周囲に粉粒状の酸化触媒
4が封入されている。
FIG. 1 shows a cross-sectional view. In the calorimeter 1, a circular tube made of pyrex glass or the like is used at both ends of a case 2 that forms a passage for gas G.
Branch pipes 2a and 2b are provided, and a temperature sensor RS is inserted into the case 2 on the side of the branch pipe 2a.
Alumina powder particles 3 are filled around this,
A temperature sensor SS is inserted into the case 2 on the side of the branch pipe 2b, and a powdery oxidation catalyst 4 is sealed around it.

また、温度センサRS,SSのリード線5a,5
bは、ケース2の端部へ溶融のうえ充填されたガ
ラス封止部6a,6bを気密状に貫通し、外部へ
引出されている。
In addition, the lead wires 5a and 5 of the temperature sensors RS and SS
b passes through the glass sealing parts 6a and 6b which are melted and filled into the end of the case 2 in an airtight manner, and is drawn out to the outside.

なお、酸化触媒4とガラス封止部6bとの間に
は、アルミナ粉粒3が充填されていると共に、空
隙部および枝管2a,2bには、ガラスウール7
が充填されており、各部を固定すると同時に、ア
ルミナ粉粒3の漏出を阻止している。
Incidentally, alumina powder particles 3 are filled between the oxidation catalyst 4 and the glass sealing part 6b, and glass wool 7 is filled in the gap and the branch pipes 2a, 2b.
is filled to fix each part and at the same time prevent leakage of the alumina powder particles 3.

したがつて、空気または酸素等の支燃気体によ
り希釈されたガスGを枝管2aから供給すれば、
ガスGが温度センサRSを経て酸化触媒4へ至り、
こゝにおいて酸化反応を行ない反応熱を生じたう
え、枝管2bから排ガスRGとして排出されるた
め、温度センサSSによつて酸化反応による温度
を検出することにより、ガスGの熱量を求めるこ
とができる。
Therefore, if gas G diluted with a combustion supporting gas such as air or oxygen is supplied from the branch pipe 2a,
Gas G passes through temperature sensor RS and reaches oxidation catalyst 4.
Here, an oxidation reaction occurs and reaction heat is generated, which is then discharged from the branch pipe 2b as exhaust gas RG. Therefore, the amount of heat of gas G can be determined by detecting the temperature caused by the oxidation reaction with temperature sensor SS. can.

たゞし、温度センサRSによつては酸化反応前
の温度を検出しており、これの検出々力により、
温度センサSSの検出々力を補正するものとすれ
ば、正確にガスGの熱量が求められる。
However, the temperature sensor RS detects the temperature before the oxidation reaction, and due to its detection power,
If the detection power of the temperature sensor SS is to be corrected, the calorific value of the gas G can be determined accurately.

しかし、酸化触媒4における発熱は、ケース2
を介して外側へ放散され、これが測定上の誤差と
なるため、酸化触媒4の封入部外側には、ウール
等の断熱材11および耐熱絶縁材12を介し、ニ
クロム線等のヒータHが巻回してあり、これらの
外囲は、耐熱性と絶縁性とを無する材料からなる
カバー13により包囲してある。
However, the heat generated in the oxidation catalyst 4 is
This causes a measurement error. Therefore, a heater H such as a nichrome wire is wound around the outside of the enclosure of the oxidation catalyst 4 through a heat insulating material 11 such as wool and a heat-resistant insulating material 12. These outer enclosures are surrounded by a cover 13 made of a heat-resistant and insulating material.

なお、ヒータHの内側には、温度センサCSが
介挿されており、これによつて、この部分の温度
を検出している。
Note that a temperature sensor CS is inserted inside the heater H to detect the temperature of this portion.

したがつて、温度センサSSとCSとの検出々力
が等しくなる方向へ、ヒータHの発熱量を制御す
れば、酸化触媒4と外側との温度差が零となり、
酸化触媒4の発熱が全く放散されないものとなる
ため、温度センサSSによる測定結果が極めて正
確となる。
Therefore, if the calorific value of the heater H is controlled in a direction in which the detection forces of the temperature sensors SS and CS become equal, the temperature difference between the oxidation catalyst 4 and the outside becomes zero, and
Since the heat generated by the oxidation catalyst 4 is not dissipated at all, the measurement result by the temperature sensor SS becomes extremely accurate.

第2図は、温度センサSS,SRの検出々力によ
り熱量を表示すると共に、ヒータHの通電を制御
する付属回路の回路図であり、電源+E・−Eを
低抗器R1および定電圧ダイオードZDにより安定
化のうえ、温度センサSS,RS,CSおよび抵抗器
R2〜R4からなる各直列回路へ印加しており、温
度センサSS,RS,CSの抵抗値が温度に応じて変
化すれば、抵抗器R2〜R4の端子電圧も変化する
ため、抵抗器R3,R4の端子電圧を、抵抗器R5
R6を介し、抵抗器R7により負帰還の施された差
動増幅器A1の反転入力および非反転入力へ与え、
両入力の差を求めたうえ、測定出力として表示回
路DPへ与え、これによつてガスGの熱量を表示
するものとなつている。
Figure 2 is a circuit diagram of an attached circuit that displays the amount of heat based on the detection power of temperature sensors SS and SR and controls the energization of heater H. Stabilized by diode ZD, temperature sensors SS, RS, CS and resistors
It is applied to each series circuit consisting of R 2 to R 4 , and if the resistance values of temperature sensors SS, RS, and CS change according to temperature, the terminal voltage of resistors R 2 to R 4 also changes. The terminal voltage of resistors R 3 and R 4 is changed to the terminal voltage of resistors R 5 and
Via R6 , it is applied to the inverting and non-inverting inputs of the differential amplifier A1 , which is provided with negative feedback by the resistor R7 .
After determining the difference between the two inputs, it is given as a measurement output to the display circuit DP, thereby displaying the amount of heat of the gas G.

また、温度センサCSとSSとの検出々力に応じ
てヒータHへの通電を制御し、酸化触媒4の熱放
散を阻止するため、抵抗器R2,R3の端子電圧を、
抵抗器R8,R9を介し、抵抗器R10により負帰還の
施された差動増幅器A2の反転入力および非反転
入力へ与え、両入力の差を求めたうえ、周期的な
スイツチング動作を行なうサイリスタ等を用いた
制御回路CTへ与えており、これによつて、交流
電源ACからヒータHへ通ずる電流の流通角を可
変している。
In addition, in order to control the energization to the heater H according to the detected power of the temperature sensors CS and SS and to prevent heat dissipation from the oxidation catalyst 4, the terminal voltages of the resistors R 2 and R 3 are set as follows.
It is applied via resistors R 8 and R 9 to the inverting and non-inverting inputs of differential amplifier A 2 which is provided with negative feedback by resistor R 10 , and the difference between both inputs is determined, and periodic switching operation is performed. This is applied to a control circuit CT using a thyristor or the like that performs this, thereby varying the angle of flow of current from the AC power source AC to the heater H.

したがつて、温度センサCSとSSとの検出々力
が等しくなる方向へヒータHの発熱状況が制御さ
れ、酸化触媒4からの熱放散が阻止されるものと
なり、測定結果が極めて正確に維持される。
Therefore, the heat generation state of the heater H is controlled in such a direction that the detection forces of the temperature sensors CS and SS are equalized, and heat dissipation from the oxidation catalyst 4 is prevented, so that the measurement results are maintained extremely accurately. Ru.

なお、酸化触媒4の劣化状況をチエツクするに
は、排ガスRG中に残存する燃焼可能な成分を検
出すればよいため、公知の可燃性ガスセンサを枝
管2b側へ封入し、これによつて燃焼可能成分を
検出するか、可搬型の可燃性ガス検出器により排
ガスRGを点検すればよい。
Note that in order to check the deterioration status of the oxidation catalyst 4, it is sufficient to detect the combustible components remaining in the exhaust gas RG. Either detect possible components or check the exhaust gas RG using a portable combustible gas detector.

また、酸化触媒4が劣化した場合は、ガスGの
単位時間当り供給量を減少させ、供給されるガス
Gのすべてが酸化反応を生ずるものとすればよ
く、連続的な使用が可能となる。
Furthermore, if the oxidation catalyst 4 deteriorates, the amount of gas G supplied per unit time may be reduced so that all of the supplied gas G undergoes an oxidation reaction, allowing continuous use.

このほか、温度センサSS,RS,CSとしては、
アルミナセラミツク等の管中へ、白金細線等を封
入したものが好適であり、酸化触媒4としては、
Cu2O,C0O,MnO2,Cr2O3,ZnO,Fe2O3
V2O5,M0O3、等のいずれかゞ用いられる。
In addition, temperature sensors SS, RS, and CS include:
A tube made of alumina ceramic or the like with thin platinum wires sealed in it is suitable, and as the oxidation catalyst 4,
Cu 2 O, C 0 O, MnO 2 , Cr 2 O 3 , ZnO, Fe 2 O 3 ,
Either V 2 O 5 , M 0 O 3 , etc. is used.

たゞし、複数種のものを混合して用いれば、
各々の特性が相補的に作用するため、各種の可燃
性成分に対しより確実な酸化反応を得ることがで
きるものとなり好適である。
However, if you use a mixture of multiple types,
Since each characteristic acts complementarily, it is possible to obtain a more reliable oxidation reaction with respect to various combustible components, which is preferable.

なお、酸化触媒4中へ、アルミナ粉粒等の不活
性粉粒を混合すれば、粉粒状酸化触媒の融着によ
る相互結合が阻止され、これの表面積減少が防止
されるため効果的である。
Note that it is effective to mix inert particles such as alumina powder into the oxidation catalyst 4 because this prevents mutual bonding due to fusion of the granular oxidation catalyst and prevents a decrease in the surface area of the oxidation catalyst.

したがつて、表面積の多い粉粒状の酸化触媒4
とガスGの流通するすべてが完全に接触し、すべ
てのガスGが酸化反応に関与するものとなるた
め、ガスGの熱量を完全かつ正確に検出できるも
のになると共に、露出した極細白金線等を使用し
ないうえ、触媒の塗布、固着等を必要としないた
め、全体としての信頼性が大幅に向上する。
Therefore, a powdery oxidation catalyst 4 with a large surface area
Since everything in which gas G flows is in complete contact and all gas G participates in the oxidation reaction, the calorific value of gas G can be detected completely and accurately. Since this method does not require catalyst coating or adhesion, the overall reliability is greatly improved.

このほか、ヒータHの形状は任意の選定が可能
であり、条件によつては断熱材11を省略しても
よく、カバー13の形状も状況に応じた選定が任
意であり、付属回路の構成も条件にしたがつて
種々の選定が可能である。
In addition, the shape of the heater H can be arbitrarily selected, the heat insulating material 11 may be omitted depending on the conditions, the shape of the cover 13 can also be arbitrarily selected according to the situation, and the configuration of the attached circuit Various selections can also be made depending on the conditions.

なお、ケース2は、耐熱性、気密性および化学
的不活性を有するものであれば、任意の材料によ
り製してよく、その形状も選定が可能であり、温
度センサSS,RS,CSには、サーミスタ等の半導
体または熱電対等を用いても同様であるうえ、ア
ルミナ粉粒3およびガラスウール7の代りに同等
の性質を呈する他の物質を用いてもよい等、種々
の変形が自在である。
Case 2 may be made of any material as long as it has heat resistance, airtightness, and chemical inertness, and its shape can be selected. Various modifications are possible, such as using a semiconductor such as a thermistor or a thermocouple, and other substances exhibiting the same properties may be used instead of the alumina powder particles 3 and glass wool 7. .

以上の説明により明らかなとおり本発明によれ
ば、簡単かつ製造の容易な構成により、正確かつ
高信頼性のカロリーメータが得られるため、各種
可燃性ガスの連続的かつ即時的な熱量測定が自在
となり、燃料用ガス等の精製工程管理および取引
上、顕著な効果が得られる。
As is clear from the above description, according to the present invention, an accurate and highly reliable calorimeter can be obtained with a simple and easy-to-manufacture configuration, so that continuous and instantaneous calorific value measurement of various combustible gases can be performed freely. As a result, remarkable effects can be obtained in terms of refining process management and trading of fuel gas, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、第1図は断面図、
第2図は付属回路の回路図である。 1……カロリーメータ、2……ケース、4……
酸化触媒、11……断熱材、RS,SS,CS……温
度センサ、H……ヒータ、G……ガス。
The figures show an embodiment of the present invention, and FIG. 1 is a sectional view;
FIG. 2 is a circuit diagram of the attached circuit. 1...Calorimeter, 2...Case, 4...
Oxidation catalyst, 11...Insulating material, RS, SS, CS...Temperature sensor, H...Heater, G...Gas.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスの通路入口側に封入された不活性粉粒、
酸化反応前の温度を検出する第1の温度センサお
よび通路出口側に封入された酸化触媒、該酸化触
媒の反応による温度を検出する第2の温度センサ
を有するカロリーメータと、該カロリーメータに
おける前記酸化触媒封入部の外側に設けられた第
3の温度センサと、前記カロリーメータにおける
前記酸化触媒封入部の外側に前記第3の温度セン
サに近接して設けられた保温用のヒータと、前記
第2の温度センサと第3の温度センサとの検出出
力がほぼ同等となる方向へ前記保温用のヒータの
通電を制御するヒータ温度制御回路と、前記第1
の温度センサと第2の温度センサとの検出出力に
応じてガスの熱量を表示する表示手段とを備えた
ことを特徴とするガス用カロリーメータ。
1 Inert powder particles sealed on the gas passage entrance side,
A calorimeter having a first temperature sensor that detects the temperature before the oxidation reaction, an oxidation catalyst sealed on the exit side of the passage, and a second temperature sensor that detects the temperature due to the reaction of the oxidation catalyst; a third temperature sensor provided outside the oxidation catalyst enclosure; a heat-retaining heater provided outside the oxidation catalyst enclosure in the calorimeter in close proximity to the third temperature sensor; a heater temperature control circuit that controls energization of the heat-retaining heater in a direction such that detection outputs of the second temperature sensor and the third temperature sensor are approximately equal;
1. A gas calorimeter comprising: a temperature sensor; and a display means for displaying the amount of heat of the gas according to the detection output of the temperature sensor and the second temperature sensor.
JP211782A 1982-01-09 1982-01-09 Calorimeter for gas Granted JPS58118951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP211782A JPS58118951A (en) 1982-01-09 1982-01-09 Calorimeter for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP211782A JPS58118951A (en) 1982-01-09 1982-01-09 Calorimeter for gas

Publications (2)

Publication Number Publication Date
JPS58118951A JPS58118951A (en) 1983-07-15
JPH0216867B2 true JPH0216867B2 (en) 1990-04-18

Family

ID=11520402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP211782A Granted JPS58118951A (en) 1982-01-09 1982-01-09 Calorimeter for gas

Country Status (1)

Country Link
JP (1) JPS58118951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236860A (en) * 1990-12-05 1992-08-25 Inpro Co Inc Device and method for sealing shaft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195933A (en) * 1989-12-25 1991-08-27 Mitsubishi Electric Corp Calorie meter
AU2001100612A4 (en) * 2001-12-03 2002-01-10 Emwest Products Pty Limited Gas meter with improved calorific measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073697A (en) * 1973-10-30 1975-06-17
JPS56141546A (en) * 1980-04-07 1981-11-05 Yamatake Honeywell Co Ltd Calorific value measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073697A (en) * 1973-10-30 1975-06-17
JPS56141546A (en) * 1980-04-07 1981-11-05 Yamatake Honeywell Co Ltd Calorific value measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236860A (en) * 1990-12-05 1992-08-25 Inpro Co Inc Device and method for sealing shaft

Also Published As

Publication number Publication date
JPS58118951A (en) 1983-07-15

Similar Documents

Publication Publication Date Title
US3251654A (en) Combustible gas detecting elements and apparatus
US4151503A (en) Temperature compensated resistive exhaust gas sensor construction
JPS58124943A (en) Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor
US3767469A (en) In-situ oxygen detector
JPS6026977B2 (en) Combustible gas detection device
US3869370A (en) Method and apparatus for continuously sensing the condition of a gas stream
JPH0664004B2 (en) Apparatus and method for measuring oxygen content of gas
GB2138566A (en) Thermal mass flow sensor for fluids
JPH0216867B2 (en)
GB2159631A (en) Fluid flow measurement
JPH11118566A (en) Flow sensor
JPS6133132B2 (en)
JPH07243888A (en) Flow rate sensor
JP2529895B2 (en) Flow sensor
JPS58115359A (en) Gas calorimeter device
US6086251A (en) Process for operating a thermocouple to measure velocity or thermal conductivity of a gas
JPS58115358A (en) Calibrating method of calorimeter for gas
JPS58115356A (en) gas calorie meter
JPH0399273A (en) Hot-wire anemometer with deterioration prevention device
JPS58115355A (en) gas calorie meter
JPS58115357A (en) Calorimeter for gas
JPH084610Y2 (en) Oxygen sensor with heater
JPS6036944A (en) Apparatus for measuring heat conductivity
JPH032848Y2 (en)
PLESS Vacuum rated flow controllers for inert gas ion engines