[go: up one dir, main page]

JPH02153327A - Light amplification module - Google Patents

Light amplification module

Info

Publication number
JPH02153327A
JPH02153327A JP30690388A JP30690388A JPH02153327A JP H02153327 A JPH02153327 A JP H02153327A JP 30690388 A JP30690388 A JP 30690388A JP 30690388 A JP30690388 A JP 30690388A JP H02153327 A JPH02153327 A JP H02153327A
Authority
JP
Japan
Prior art keywords
light
signal light
filter
optical fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30690388A
Other languages
Japanese (ja)
Inventor
Shigeru Shikii
滋 式井
Yasuaki Tamura
安昭 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP30690388A priority Critical patent/JPH02153327A/en
Publication of JPH02153327A publication Critical patent/JPH02153327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the number of components and adjustment positions and to reduce light loss by using a narrow-band interference filter. CONSTITUTION:High-output exciting light 111 from a light source 11 for excitation is passed through a collimator lens 12 and reflected by the narrow-band interference filter 15 to pass through the collimator lens 16, thereby entering a long-sized transmission optical fiber 17. Signal light which is propagated in the fiber 17, on the other hand, enters the filter 15 through a lens 16. Therefore, the light 111 and signal light coexist in the fiber 17 and the signal light is amplified by Raman scattering with the light 111. Then the amplified signal light in multiple light is transmitted through the filter 15, the majority of the exciting light except a component nearby the signal light frequency is reflected by the filter 15, and the amplified signal light enters the fiber 13 through a lens 14. A multiplexer demultiplexer is not necessary as compared with a case wherein a multiplexer demultiplexer and a narrow-band filter are used to decrease the number of components and adjustment points, thereby reducing the light loss.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバの誘導ラマン散乱を用いて信号光
を増幅する光直接増幅システムにおいて使用される光増
幅モジュールに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical amplification module used in an optical direct amplification system that amplifies signal light using stimulated Raman scattering of an optical fiber.

(従来の技術) 従来、光伝送路を伝送する信号光を直接増幅する手段の
一つとして、光ファイバの誘導ラマン散乱を利用するこ
とが知られていた。
(Prior Art) Conventionally, it has been known to utilize stimulated Raman scattering of an optical fiber as one means for directly amplifying signal light transmitted through an optical transmission line.

第2図は、この誘導ラマン散乱を利用した光直接増幅シ
ステムの一例を示す構成図である(例えば、「昭和60
年度電子通信学会総合全国大会講演文集〔分冊4〕」(
昭6O−3−5)社団法人電子通信学会P、4−239
)。第2図において、増幅されるべき信号光は信号光用
光ファイバ21および合分波器22を通って伝送州党フ
ァイバ23に入射する。入射した信号光は伝送用光ファ
イバ23を伝搬した後、ファイバラマン増幅モジュール
28を構成する合分波器26および狭帯域光フィルタ2
7を通って出射する。一方、励起用光源24から出射さ
れた増幅用の励起光は励起光用光ファイバ25を通り、
合分波器26により伝送用光ファイバ23からの信号光
と波長多重され、該伝送用ファイバ23に受信側から送
信側へ向って入射する。このとき前記励起光は狭帯域光
フィルタ27側には漏れない。伝送用光ファイバ23に
入射した励起光はその中を伝搬した後、合分波器22に
より信号光と分離され終端器に入射し、信号光用光フア
イバ2ノへは入射しない。
FIG. 2 is a configuration diagram showing an example of an optical direct amplification system using stimulated Raman scattering (for example, "Showa 60
"Collection of lectures at the Annual National Conference of the Institute of Electronics and Communication Engineers [Volume 4]" (
1986-3-5) Institute of Electronics and Communication Engineers P, 4-239
). In FIG. 2, the signal light to be amplified passes through a signal light optical fiber 21 and a multiplexer/demultiplexer 22 and enters a transmission fiber 23. After the incident signal light propagates through the transmission optical fiber 23, it passes through the multiplexer/demultiplexer 26 and the narrowband optical filter 2 that constitute the fiber Raman amplification module 28.
7 and exits. On the other hand, the pumping light for amplification emitted from the pumping light source 24 passes through the pumping light optical fiber 25,
It is wavelength-multiplexed with the signal light from the transmission optical fiber 23 by the multiplexer/demultiplexer 26, and enters the transmission fiber 23 from the receiving side to the transmitting side. At this time, the excitation light does not leak to the narrow band optical filter 27 side. After the excitation light incident on the transmission optical fiber 23 propagates therein, it is separated from the signal light by the multiplexer/demultiplexer 22, enters the terminator, and does not enter the signal light optical fiber 2.

ところで、角周波数ωの光が物質に入射したとき、物質
固有の励起状態、回転状態の遷移に対応する角周波数ω
±Δωの光が発生するという現象(ラマン散乱)が知ら
れている。ここでω−Δωの角周波数を有する光をスト
ークス光という。第2図に示した光直接増幅システムは
このラマン散乱を利用したものであって、励起光により
生ずるストークス光の波長が増幅されるべき信号光の波
長とほぼ同一となるように前記励起光の波長を選定した
ものである。すなわち、伝送用光ファイバ23の後方向
から強い励起光を入射し、前方から信号光を入射すると
誘導ラマン散乱が生じて励起光のエネルギーの一部が信
号光に遷移し、信号光はエネルギーが増幅されて伝送用
光ファイバ23の後方向側から出射される。
By the way, when light with an angular frequency ω is incident on a material, the angular frequency ω corresponding to the transition between the excited state and rotational state unique to the material
A phenomenon (Raman scattering) in which light of ±Δω is generated is known. Here, light having an angular frequency of ω-Δω is called Stokes light. The optical direct amplification system shown in FIG. 2 utilizes this Raman scattering, and the pumping light is adjusted so that the wavelength of the Stokes light generated by the pumping light is almost the same as the wavelength of the signal light to be amplified. The wavelength is selected. In other words, when strong excitation light is input from the back of the transmission optical fiber 23 and signal light is input from the front, stimulated Raman scattering occurs and part of the energy of the excitation light is transferred to the signal light, and the signal light loses its energy. The signal is amplified and output from the rear side of the transmission optical fiber 23.

しかし、励起光からは第3図に示すようにストークス光
の波長付近の数十nmから百数十nmにわたって自然ラ
マン散乱光が生ずる。この自然ラマン散乱光の強度は、
伝送用光ファイバ23の損失による減衰を受けない該伝
送用光ファイバ23の励起光入射口で最も強く、また等
方性である。従って、第2図に示すように励起光を受信
側から送信側へ向って伝搬させる光増幅方式、いわゆる
後方向ファイバラマン増幅の場合においては、受信側に
第4図に示すように信号光と共により強い自然ラマン散
乱光が出射されることとなるが、この自然ラマン散乱光
は信号とは無関係のノイズ成分であるため光直接増幅シ
ステムの受信感度を劣化させる原因となる。
However, as shown in FIG. 3, natural Raman scattered light is generated from the excitation light over a range from several tens of nanometers to over a hundred nanometers near the wavelength of Stokes light. The intensity of this natural Raman scattered light is
It is strongest at the excitation light entrance of the transmission optical fiber 23, which is not attenuated by loss in the transmission optical fiber 23, and is isotropic. Therefore, in the case of an optical amplification method in which the pumping light is propagated from the receiving side to the transmitting side as shown in Fig. 2, so-called backward fiber Raman amplification, the pumping light is propagated along with the signal light on the receiving side as shown in Fig. 4. Although stronger natural Raman scattered light is emitted, this natural Raman scattered light is a noise component unrelated to the signal, and therefore causes deterioration of the receiving sensitivity of the optical direct amplification system.

この受信感度の劣化を防止するため、従来、第5図に示
すような通過帯域幅の極めて狭い狭帯域光フィルタ27
を合分波器26の後に設けて第6図に示すように信号光
は低損失で通過させ、自然ラマン散乱光の大部分を除去
していた。
In order to prevent this deterioration of reception sensitivity, conventionally, a narrowband optical filter 27 with an extremely narrow passband width as shown in FIG.
was installed after the multiplexer/demultiplexer 26, and as shown in FIG. 6, the signal light was passed through with low loss and most of the natural Raman scattered light was removed.

(発明が解決しようとする課題) しかしながら、上記構成の光直接増幅システムでは、光
増幅モジュール28を励起光と信号光とを波長多重し、
信号光のみを取り出すために合分波器26を、信号光に
混入して来る自然ラマン散乱光を除去するために、狭帯
域光フィルタ27をそれぞれ別個に設けていたので、光
増幅された信号光が前記光増幅モジュールを通過する際
、合分波器26のLWPF (Long Wave P
a5s Filter )と狭帯域光フィルタ27のB
PF (Band Pa5s Filter )とによ
り損失を受けるという問題点があった。
(Problems to be Solved by the Invention) However, in the optical direct amplification system having the above configuration, the optical amplification module 28 wavelength-multiplexes the pumping light and the signal light,
Since the multiplexer/demultiplexer 26 was provided separately to extract only the signal light, and the narrowband optical filter 27 was separately provided to remove the natural Raman scattering light mixed into the signal light, the optically amplified signal When the light passes through the optical amplification module, the LWPF (Long Wave P
a5s Filter) and B of the narrowband optical filter 27
There is a problem in that a loss is caused by a PF (Band Pa5s Filter).

本発明は上述の問題点を除去し、信号光に対する損失が
小さい光増幅モノニールを提供することを目的とするも
のである。
An object of the present invention is to eliminate the above-mentioned problems and provide an optical amplification monoyl with low loss for signal light.

(課題を解決するための手段) 本発明は、伝送用光ファイバに励起光を入射させると共
に、該伝送用光ファイバから出射される光から信号光の
みを取シ出す帯域幅の狭い狭帯域光フィルタを備えたも
のである。
(Means for Solving the Problems) The present invention provides a narrow-band light beam having a narrow bandwidth for inputting excitation light into a transmission optical fiber and extracting only signal light from the light emitted from the transmission optical fiber. It is equipped with a filter.

(作用) 伝送用光ファイバからの出射光は、誘導ラマン散乱によ
って光増幅された信号光の池に、励起光に基づく強い自
然ラマン散乱光を伴うが、光増幅モジュールを通過する
際、信号光と励起光との波長多重をも行う帯域幅の狭い
狭帯域光フィルタにより前記自然ラマン散乱光の大部分
が除去されるので、受信感度の低下は防止される。従っ
て、従来のように、合分波器の他に狭帯域光フィルタを
別個に設ける必要はないので、信号光に対する損失を小
さくすることができる。
(Function) The light emitted from the transmission optical fiber is amplified by stimulated Raman scattering and is accompanied by strong natural Raman scattering light based on the excitation light, but when passing through the optical amplification module, the signal light Most of the natural Raman scattered light is removed by a narrow-band optical filter with a narrow bandwidth that also performs wavelength multiplexing of the light and the excitation light, thereby preventing a decrease in reception sensitivity. Therefore, it is not necessary to separately provide a narrowband optical filter in addition to the multiplexer/demultiplexer as in the conventional case, so that the loss to the signal light can be reduced.

(実施例) 第1図は本発明の第1の実施例を示す構成図であって、
第2図に示した光直接増幅システムにおける光増幅モジ
ゴール28に対応するものである。
(Example) FIG. 1 is a configuration diagram showing a first example of the present invention,
This corresponds to the optical amplification module 28 in the optical direct amplification system shown in FIG.

第1図において、1ノは励起光源としてYAG、Er等
の固体レーザや、半導体レーデ等を用い、高出力の励起
光を出射する励起用光源であって、励起光源として半導
体レーザを用いる場合には高出力の励起光を得るために
同波長の複数の半導体レザからの出力を偏波合成し、必
要により更に近似する波長の半導体レーザからの出力と
波長多重合成する。12,14.16は無反射コーティ
ングを施したコリメートレンズ、13は信号光用ヤアイ
バ 15は狭帯域光フィルタとして働く狭帯域干渉フィ
ルタである。この狭帯域干渉フィルタ15は励起光の波
長付近にある光は反射し、信号光の波長付近の帯域幅数
nm以内にある光は透過し、更には信号光の波長付近に
数十nmから百数士nmにわたって発光する自然ラマン
散乱光を前記信号光の波長付近にあるものを除いて反射
するものである。17は信号光および励起光が伝搬する
伝送用光ファイバであって、第2図に示す伝送用光ファ
イバ23に対応する。なお、信号光の波長を伝送用光フ
ァイバ17の伝送損失が小さい1.3μm帯または1,
5μm帯に選定すると、ファイバラマン増幅を行うため
の励起光の波長は1.2μmまたは1.4μmの近傍に
設定する必要がある。
In Fig. 1, No. 1 is an excitation light source that emits high-output excitation light using a solid-state laser such as YAG or Er or a semiconductor laser as an excitation light source. In order to obtain high-power pumping light, the outputs from multiple semiconductor lasers having the same wavelength are polarized and combined, and if necessary, the outputs from semiconductor lasers having similar wavelengths are wavelength-multiplexed. 12, 14, and 16 are collimating lenses with anti-reflection coating, 13 is a signal light filter, and 15 is a narrow band interference filter that functions as a narrow band optical filter. This narrow band interference filter 15 reflects light near the wavelength of the excitation light, transmits light within a bandwidth of several nanometers near the wavelength of the signal light, and even transmits light within a bandwidth of several nanometers to hundreds of nanometers near the wavelength of the signal light. Natural Raman scattered light emitted over several nanometers is reflected except for light in the vicinity of the wavelength of the signal light. Reference numeral 17 denotes a transmission optical fiber through which signal light and excitation light propagate, and corresponds to the transmission optical fiber 23 shown in FIG. Note that the wavelength of the signal light is set to the 1.3 μm band or 1.3 μm band, where the transmission loss of the optical fiber 17 is small.
If the 5 μm band is selected, the wavelength of the pumping light for performing fiber Raman amplification needs to be set in the vicinity of 1.2 μm or 1.4 μm.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

励起用光源11から出射された高出力の励起光11ノは
コリメートレンズ12を通って狭帯域干渉フィルタ15
に入射する。入射した励起光111は狭帯域干渉フィル
タ15により反射され、コリメートレンズ16を通って
伝送用光ファイバ17に入射し、その中を伝搬して行く
。一方、長尺の前記伝送用光ファイバ17を前方向から
伝搬して来た信号光は、コリメートレンズ16を通り狭
帯域干渉フィルタ15に入射する。従って、伝送用光フ
アイバ17中には、後方向から入射して来た高出力の励
起光と前方向から入射して来た信号光とが共存し、信号
光は誘導ラマン散乱によって励起光で増幅される。狭帯
域干渉フィルタ15に入射した信号光はそのまま透過し
、コリメートレンズ14を通って信号光用光ファイバ1
3に入射する。伝送用光フアイバ17中で発光した自然
ラマン散乱光は信号光と共にコリメートレンズ16を通
って狭帯域光フィルタ15に入射するが、信号光の波長
付近の帯域幅数nmの範囲内にある極くわずかの部分を
除き全て反射されるので信号用光ファイバ13には入射
しない。すなわち、狭帯域干渉フィルタ15は励起光と
信号光とを波長多重し、信号光のみを取り出すと共に自
然ラマン散乱光の大部分を除去する働きをし、更には信
号光用光ファイバへの励起光の漏れ込みを極めて少いも
のとする働きをしている。
The high-power excitation light 11 emitted from the excitation light source 11 passes through the collimating lens 12 and passes through the narrow band interference filter 15.
incident on . The incident excitation light 111 is reflected by the narrow band interference filter 15, passes through the collimating lens 16, enters the transmission optical fiber 17, and propagates therein. On the other hand, the signal light propagating from the front through the long transmission optical fiber 17 passes through the collimating lens 16 and enters the narrow band interference filter 15 . Therefore, in the transmission optical fiber 17, high-power excitation light entering from the rear direction and signal light entering from the front direction coexist, and the signal light is converted into excitation light by stimulated Raman scattering. amplified. The signal light incident on the narrowband interference filter 15 is transmitted as it is, passes through the collimating lens 14, and is connected to the signal light optical fiber 1.
3. The natural Raman scattered light emitted in the transmission optical fiber 17 passes through the collimating lens 16 together with the signal light and enters the narrow band optical filter 15. Since all but a small portion of the light is reflected, it does not enter the signal optical fiber 13. In other words, the narrowband interference filter 15 wavelength-multiplexes the pumping light and the signal light, extracts only the signal light, and removes most of the natural Raman scattered light, and furthermore, the narrowband interference filter 15 functions to wavelength-multiplex the pumping light and the signal light, and removes most of the natural Raman scattered light. It works to minimize the leakage of water.

以上、説明したように本実施例によれば光増幅モジュー
ルを狭帯域干渉フィルタ1個で構成したので、合分波器
26と狭帯域光フィルタ27とを用いた第2図に示す従
来の光増幅モジュール28に比べ信号光に対する損失を
小さくすることができる。
As explained above, according to this embodiment, the optical amplification module is configured with one narrowband interference filter, so the conventional optical amplification module shown in FIG. Compared to the amplification module 28, loss for signal light can be reduced.

第7図は本発明の第2の実施例を示す構成図であって、
第1図に示した狭帯域干渉フィルタ15に代えて回折格
子77を狭帯域光フィルタとして用いたものであり、第
1の実施例と同様の効果が得られる。
FIG. 7 is a configuration diagram showing a second embodiment of the present invention,
A diffraction grating 77 is used as a narrowband optical filter in place of the narrowband interference filter 15 shown in FIG. 1, and the same effects as in the first embodiment can be obtained.

第7図において、励起用光源71からの励起光はコリメ
ートレンズ72、回折格子77およびコリメートレンズ
76を通って伝送用光ファイバ74に入射し、伝搬して
いく。このとき、前記励起光は信号光用光ファイバ73
へ漏れて入射することはない。一方、伝送用光ファイバ
74からの信号光はコリメートレンズ76、回折格子7
7およびコリメートレンズ75を通って信号光用光ファ
イバ73に入射する。このとき、伝送用光ファイバ74
から前記信号光と共に自然ラマン散乱光も出射されるが
、その大部分は回折格子77によって除去され、信号光
用光ファイバ73には入射しない。
In FIG. 7, excitation light from an excitation light source 71 passes through a collimator lens 72, a diffraction grating 77, and a collimator lens 76, enters a transmission optical fiber 74, and propagates. At this time, the excitation light is transmitted to the signal light optical fiber 73.
It will not leak into the system. On the other hand, the signal light from the transmission optical fiber 74 passes through the collimating lens 76 and the diffraction grating 7.
7 and a collimating lens 75 to enter the signal light optical fiber 73. At this time, the transmission optical fiber 74
Natural Raman scattered light is also emitted along with the signal light, but most of it is removed by the diffraction grating 77 and does not enter the signal light optical fiber 73.

なお、上述の第1および第2の実施例は後方向誘導ラマ
ン散乱による光増幅について適用したものであるが、前
方向誘導ラマン散乱による光増幅の場合にも応用するこ
とができる。
Although the first and second embodiments described above are applied to optical amplification by backward stimulated Raman scattering, they can also be applied to optical amplification by forward stimulated Raman scattering.

(発明の効果) 以上詳細に説明したように本発明によれば、従来、合分
波器と狭帯域光フィルタとで構成していた光増幅モジュ
ールを帯域幅の非常に狭い1個の狭帯域光フィルタによ
り構成したので、光信号に対する損失を小さくすること
ができ、実質的に増幅度を上げたと同じ効果を得ること
ができる。
(Effects of the Invention) As described above in detail, according to the present invention, an optical amplification module that conventionally consisted of a multiplexer/demultiplexer and a narrowband optical filter can be replaced with a single narrowband optical amplifier having a very narrow bandwidth. Since it is constituted by an optical filter, it is possible to reduce the loss to the optical signal, and it is possible to obtain substantially the same effect as increasing the amplification degree.

更に、光増幅モジュールを構成する部品数および調整箇
所が減り、低コスト化を図ることができる。
Furthermore, the number of parts and adjustment parts constituting the optical amplification module are reduced, and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す構成図、第2図は
従来の誘導ラマン散乱による光直接増幅システムを示す
構成図、第3図は自然ラマン散乱光の波長特性を示す図
、第4図は信号光と自然ラマン散乱光の波長特性を示す
図、第5図は狭帯域干渉フィルタの波長特性を示す図、
第6図は狭帯域干渉フィルタ通過後の信号光と自然ラマ
ン散乱光の波長特性を示す図、第7図は本発明の第2の
実施例を示す構成図である。 11.71・・・励起用光源、12,14,16゜72
.75.76・・・コリメートレンズ、13゜73・・
・信号光用光ファイバ ノ5・・・狭帯域干渉フィルタ
、17.74・・・伝送用光ファイバ 77・・・回折
格子。 特許出願人 沖電気工業株式会社 本発vp a’14. I v実施免]第1図 28 九港%モー2ル 伎条7詭癲ラマンkgL IMより光に椿1−鳴シズ7
ム第2図
Fig. 1 is a block diagram showing the first embodiment of the present invention, Fig. 2 is a block diagram showing a conventional optical direct amplification system using stimulated Raman scattering, and Fig. 3 is a diagram showing the wavelength characteristics of natural Raman scattering light. , FIG. 4 is a diagram showing the wavelength characteristics of signal light and natural Raman scattered light, and FIG. 5 is a diagram showing the wavelength characteristics of a narrowband interference filter.
FIG. 6 is a diagram showing wavelength characteristics of signal light and natural Raman scattered light after passing through a narrow band interference filter, and FIG. 7 is a configuration diagram showing a second embodiment of the present invention. 11.71...Excitation light source, 12, 14, 16°72
.. 75.76...Collimating lens, 13°73...
- Optical fiber for signal light No. 5... Narrow band interference filter, 17.74... Optical fiber for transmission 77... Diffraction grating. Patent applicant: Oki Electric Industry Co., Ltd. Honsha vp a'14. I v implementation license] Fig. 1 28 Kyuko % mo 2 le Kijo 7 Sophistry Raman kgL IM to Hikari ni Tsubaki 1 - Narushizu 7
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 伝送用光ファイバに励起光を入射させると共に、該伝送
用光ファイバから出射される光から自然ラマン散乱光を
除去し信号光のみを取り出す帯域幅の狭い狭帯域光フィ
ルタを備えたことを特徴とする光増幅モジュール。
It is characterized by being equipped with a narrow band optical filter that allows excitation light to enter the transmission optical fiber, removes natural Raman scattered light from the light emitted from the transmission optical fiber, and extracts only the signal light. optical amplification module.
JP30690388A 1988-12-06 1988-12-06 Light amplification module Pending JPH02153327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30690388A JPH02153327A (en) 1988-12-06 1988-12-06 Light amplification module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30690388A JPH02153327A (en) 1988-12-06 1988-12-06 Light amplification module

Publications (1)

Publication Number Publication Date
JPH02153327A true JPH02153327A (en) 1990-06-13

Family

ID=17962652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30690388A Pending JPH02153327A (en) 1988-12-06 1988-12-06 Light amplification module

Country Status (1)

Country Link
JP (1) JPH02153327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055094A (en) * 1998-03-20 2000-04-25 Fujitsu Limited Optical amplifying apparatus
US6061172A (en) * 1998-04-27 2000-05-09 Fujitsu Limited Active optical fiber and optical fiber amplifier
US6501592B2 (en) 1998-04-27 2002-12-31 Fujitsu Limited Optical amplifier reflecting spontaneous emission back into the amplifier to improve efficiency
FR2834137A1 (en) * 2001-12-21 2003-06-27 Fujitsu Ltd RAMAN AMPLIFIER AND OPTICAL TRANSMISSION SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101629A (en) * 1982-12-01 1984-06-12 Nec Corp Optical amplifying device in fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101629A (en) * 1982-12-01 1984-06-12 Nec Corp Optical amplifying device in fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055094A (en) * 1998-03-20 2000-04-25 Fujitsu Limited Optical amplifying apparatus
US6061172A (en) * 1998-04-27 2000-05-09 Fujitsu Limited Active optical fiber and optical fiber amplifier
US6501592B2 (en) 1998-04-27 2002-12-31 Fujitsu Limited Optical amplifier reflecting spontaneous emission back into the amplifier to improve efficiency
FR2834137A1 (en) * 2001-12-21 2003-06-27 Fujitsu Ltd RAMAN AMPLIFIER AND OPTICAL TRANSMISSION SYSTEM
US6671083B2 (en) 2001-12-21 2003-12-30 Fujitsu Limited Raman amplifier and optical transmission system

Similar Documents

Publication Publication Date Title
RU2166839C2 (en) Device for damping optical noise caused by four-wave displacement
JP2633224B2 (en) Channel width adjustment device for multi-channel optical fiber amplification light source
JPH0727149B2 (en) Optical coupler
JP2734778B2 (en) Optical amplifier
JP3884716B2 (en) Broadband erbium-doped fiber amplifier with gain enhancement
KR100407334B1 (en) Dispersion compensated erbium doped fiber amplifier
JPH02153327A (en) Light amplification module
US8004753B2 (en) Optical amplifier, fiber laser, and method of eliminating reflected light
JP2007221037A (en) Optical amplifier, fiber laser, and reflection light removal method
JPH08330650A (en) Optical amplifier
JPH03135081A (en) Optical amplifier
JPS5885588A (en) Wavelength multiplex light amplifying device
US20030113063A1 (en) Method and apparatus for enhancing power saturation in semiconductor optical amplifiers
JP2000106465A (en) Optical amplifier
JPS58115948A (en) Bidirectional optical amplifier
US6252701B1 (en) Optical fiber amplifier
JPH11258463A (en) Light source module incorporating lightwave multiplexing function, and optical amplifier and bidirectional optical transmitter using the light source module
KR100281642B1 (en) Inductive Brillouin Scattering and Erbium Multi Wavelength Generator
JP2897076B2 (en) Optical fiber amplifier
CN114744480B (en) Light distribution type amplifying structure
JP4283936B2 (en) Excitation light source with open output detection circuit
JPH09251176A (en) Optical amplifier device with noise removing function
JPS6022638Y2 (en) High power optical pulse generator
JPH0854511A (en) Optical amplifier
JPH0223322A (en) Optical fiber raman amplification module