JPH03135081A - Optical amplifier - Google Patents
Optical amplifierInfo
- Publication number
- JPH03135081A JPH03135081A JP1272896A JP27289689A JPH03135081A JP H03135081 A JPH03135081 A JP H03135081A JP 1272896 A JP1272896 A JP 1272896A JP 27289689 A JP27289689 A JP 27289689A JP H03135081 A JPH03135081 A JP H03135081A
- Authority
- JP
- Japan
- Prior art keywords
- light
- pumping light
- optical
- fiber
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 54
- 238000005086 pumping Methods 0.000 claims abstract description 28
- 230000003321 amplification Effects 0.000 claims abstract description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 10
- 230000005284 excitation Effects 0.000 claims description 18
- 239000000835 fiber Substances 0.000 abstract description 34
- 229910052691 Erbium Inorganic materials 0.000 abstract description 6
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 abstract description 6
- 230000002238 attenuated effect Effects 0.000 abstract description 4
- 238000004891 communication Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光通信システムに於ける光増幅器に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical amplifier in an optical communication system.
(従来の技術)
近年、大容量の情報を伝送するための光通信システムと
して、伝送速度がギガビットレンジの光通信装置の開発
が活発に行われている。このような光通信装置の中で、
光増幅器は光通信システムに新たな展開をもたらすと期
待されている。特にエルビウムドープファイバ増幅器は
高利得で低雑音であるため、強度変調l直接検波方式の
受信感度の改善が可能となり、ギガビットレンジでの長
距離伝送実験が報告されている。(例えば、萩本らによ
る“ファイバ増幅器を用いた5Gb/s、 201km
光伝送実験’1989年電子情報通信学会、秋季全国大
会、B−430)
この伝送実験では、ファイバ増幅器をポストアンプとプ
リアンプに用いることにより中継器利得を大幅に拡大し
ており、ファイバ増幅器の有効性を示している。このフ
ァイバ増幅器ではエルビウムドープファイバの入力端に
波長1.535pmの光信号と、波長1.4811mの
励起光を合波するダイクロイックミラーを用い、光信号
と励起光を低損失で合波している。この場合、約50m
Wの励起光パワー入射時に、30dBの信号光利得を実
験している。(Prior Art) In recent years, optical communication devices with transmission speeds in the gigabit range have been actively developed as optical communication systems for transmitting large amounts of information. In such optical communication equipment,
Optical amplifiers are expected to bring new developments to optical communication systems. In particular, erbium-doped fiber amplifiers have high gain and low noise, making it possible to improve the reception sensitivity of the intensity modulation direct detection method, and long-distance transmission experiments in the gigabit range have been reported. (For example, “5Gb/s using fiber amplifier, 201km by Hagimoto et al.
Optical Transmission Experiment '1989 Institute of Electronics, Information and Communication Engineers, Autumn National Conference, B-430) In this transmission experiment, the repeater gain was greatly expanded by using a fiber amplifier for the post-amplifier and pre-amplifier, and the effectiveness of the fiber amplifier was It shows gender. This fiber amplifier uses a dichroic mirror at the input end of the erbium-doped fiber to combine an optical signal with a wavelength of 1.535 pm and a pump light with a wavelength of 1.4811 m, and combines the optical signal and pump light with low loss. . In this case, about 50m
We are experimenting with a signal light gain of 30 dB when W pumping light power is input.
(発明が解決しようとする課題)
上述のように、ファイバ増幅器では、30dB以上の信
号光利得を得ることができるが、そのためには50mW
以上の励起光パワーが必要になる。現在の長波長帯半導
体レーザで50mW以上の励起光パワーを実現するもの
は困難であり、上述の実験系では、偏波面多重回路と2
個の波長1.4811m半導体レーザを用いて、2個の
半導体レーザの出力を偏波面多重することにより高出力
パワーを実験している。(Problems to be Solved by the Invention) As mentioned above, a fiber amplifier can obtain a signal light gain of 30 dB or more, but in order to do so, it requires 50 mW.
A pumping light power of more than 100% is required. It is difficult to achieve a pumping light power of 50 mW or more with current long-wavelength semiconductor lasers, and in the above experimental system, the polarization multiplex circuit and two
Using two semiconductor lasers with a wavelength of 1.4811 m, we are experimenting with high output power by polarization multiplexing the outputs of two semiconductor lasers.
従って、このファイバ増幅器では、励起光部の構成が複
雑になり、増幅器の信頼性、コストが低下すると言う問
題があった。本発明の目的は、低い励起光パワーでも高
い利得を実現する光増幅器を提供することにある。Therefore, this fiber amplifier has a problem in that the configuration of the pumping light section becomes complicated and the reliability and cost of the amplifier decrease. An object of the present invention is to provide an optical amplifier that achieves high gain even with low pumping light power.
(課題を解決するための手段)
本発明の光増幅器は、光増幅媒質を光導波路内に含むと
ともに、該光導波路の1入力端から入射した励起光によ
って前記光増幅媒質を励起することにより、該光導波路
に入射し伝搬する信号光を増幅する光増幅器において、
前記光増幅器出射端に前記励起光波長に対して、反射特
性を有する反射板を設けたことを特徴とする。(Means for Solving the Problems) The optical amplifier of the present invention includes an optical amplification medium in an optical waveguide, and excites the optical amplification medium with excitation light incident from one input end of the optical waveguide. In an optical amplifier that amplifies signal light that enters and propagates in the optical waveguide,
The present invention is characterized in that a reflection plate having reflection characteristics for the wavelength of the excitation light is provided at the output end of the optical amplifier.
(作用) 以下に本発明の詳細な説明する。(effect) The present invention will be explained in detail below.
本発明の光増幅器は、励起光の有効利用が主な特徴であ
る。すなわち、エルビウム等をドープしたファイバ増幅
器の入射端から励起光を入射する一方、ファイバ増幅器
の出射端から出た励起光を反射させ、再びファイバ増幅
器内に戻す構成をとっている。一般にファイバ増幅器は
吸収の非飽和領域で用いるが、この場合、励起光の利用
効率は約50%程度であり、減衰した励起光はファイバ
増幅器の出射端より無駄に放射されていた。本発明では
この減衰した励起光を反射鏡等により反射させ、再びフ
ァイバ増幅器内に戻すことにより励起光の利用効率を従
来の50%程度から75%程度に改善させ、励起光、光
源の低いパワー化を図るものである。The main feature of the optical amplifier of the present invention is effective use of pumping light. That is, a configuration is adopted in which pumping light is input from the input end of a fiber amplifier doped with erbium or the like, while pumping light exiting from the output end of the fiber amplifier is reflected and returned into the fiber amplifier. Generally, a fiber amplifier is used in a non-saturated region of absorption, but in this case, the utilization efficiency of pumping light is about 50%, and the attenuated pumping light is wasted and emitted from the output end of the fiber amplifier. In the present invention, this attenuated pump light is reflected by a reflecting mirror or the like and returned to the fiber amplifier, thereby improving the utilization efficiency of the pump light from about 50% to about 75%. The aim is to
(実施例)
以下、実施例を示して、本発明の詳細な説明する。第1
回に本発明の第1の実施例である光増幅器の構成図を示
す。(Example) Hereinafter, the present invention will be described in detail by showing examples. 1st
1 shows a configuration diagram of an optical amplifier according to a first embodiment of the present invention.
本実施例では励起光光源2には波長1.48pmの半導
体レーザを用い、波長1.53511mの信号光6と励
起光7との合波にはダイクロイックミラー4を用いた。In this embodiment, a semiconductor laser with a wavelength of 1.48 pm was used as the excitation light source 2, and a dichroic mirror 4 was used to combine the signal light 6 with a wavelength of 1.53511 m and the excitation light 7.
また、エルビウムドープファイバlとしては、エルビウ
ムのドープ量300ppm、長さ25mのものを使用し
ている。図中10はアイソレータである。本光増幅器は
、エルビウムドープファイバ1を通過した光ガダイクロ
イックミラ−5により波長1.535pmの信号光9と
、減衰した励起光8に分離され、励起光8はミラー3で
反射されて、再びエルビウムドープファイバ1に入射す
る構成となっている。Further, as the erbium-doped fiber 1, one with an erbium doping amount of 300 ppm and a length of 25 m is used. In the figure, 10 is an isolator. In this optical amplifier, an optical dichroic mirror 5 that passes through an erbium-doped fiber 1 separates a signal light 9 with a wavelength of 1.535 pm and an attenuated pumping light 8, and the pumping light 8 is reflected by a mirror 3 and then reused. The configuration is such that the light is incident on the erbium-doped fiber 1.
以上の構成で波長1.535pm、入力パワー−30d
Bmの信号光6に対する光増幅実験を行った。With the above configuration, the wavelength is 1.535 pm and the input power is -30 d.
An optical amplification experiment was conducted for signal light 6 of Bm.
本実験では、本発明の効果を明確にするため、ミラー3
を取り除いた場合(従来の光増幅器)、およびミラー3
を用いた場合(本発明の光増幅器)について、光増幅特
性を測定した。まず、ミラー3を取り除いた場合、信号
光6を25dB増幅するのに必要な励起光7のパワーは
55mWであった。その時、エルビウムドープファイバ
1の出射光の一部となる励起光8のパワーは25mWで
あった。In this experiment, in order to clarify the effect of the present invention, mirror 3
(conventional optical amplifier), and mirror 3
(optical amplifier of the present invention), the optical amplification characteristics were measured. First, when the mirror 3 was removed, the power of the pumping light 7 required to amplify the signal light 6 by 25 dB was 55 mW. At that time, the power of the excitation light 8, which was part of the light emitted from the erbium-doped fiber 1, was 25 mW.
一方ミラー3を用いて、励起光8を反射させ再びエルビ
ウムドープファイバに入力した場合には、信号光6を2
5dB増幅するのに必要な励起光7のパワーは30mW
であり、励起光のパワーを小さくしても十分な信号光利
得を得ることが確認できた。本発明の第2の実施例であ
る光増幅器の構成を第2図に示す。本実施例では、励起
光源の冗長化を考慮して、波長1.48pmの半導体レ
ーザによる第1、第2の励起光源2.14を用いた。こ
れらの励起光源2.14からの励起光15.16はそれ
ぞれ偏波が直交した状態となっており、偏波合成器17
で損失なく合波され、エルビウムドープファイバ1に入
射する。On the other hand, if the mirror 3 is used to reflect the excitation light 8 and input it into the erbium-doped fiber again, the signal light 6 is
The power of pumping light 7 required for 5dB amplification is 30mW.
It was confirmed that sufficient signal light gain could be obtained even if the power of the pumping light was reduced. FIG. 2 shows the configuration of an optical amplifier that is a second embodiment of the present invention. In this embodiment, in consideration of redundancy of the excitation light sources, the first and second excitation light sources 2.14 are semiconductor lasers with a wavelength of 1.48 pm. The excitation lights 15 and 16 from these excitation light sources 2 and 14 have their polarizations orthogonal to each other, and the polarization synthesizer 17
The signals are multiplexed without loss and input into the erbium-doped fiber 1.
第2図中の光フィルタ13は干渉膜により構成した光フ
ィルタであり、波長1.48pmの励起光8は反射し、
波長1.535pmの信号光19は殆ど透過する特性を
有するものである。The optical filter 13 in FIG. 2 is an optical filter composed of an interference film, and the excitation light 8 with a wavelength of 1.48 pm is reflected.
The signal light 19 having a wavelength of 1.535 pm has a characteristic of being almost transmitted.
以上の構成に於ても光増幅特性を測定した。その結果、
光フィルタ13による励起光8の再励起の効果のため、
25dBの信号光利得を得るための励起光7のパワーは
28mWであった。すなわち、本実施例では励起光7の
パワーを28mWと小さくしても十分な利得が得られる
とともに励起光源2.14の冗長化を行っているため、
本光増幅覗の高信頼化が期待できる。The optical amplification characteristics were also measured in the above configuration. the result,
Due to the effect of reexcitation of the excitation light 8 by the optical filter 13,
The power of the pump light 7 to obtain a signal light gain of 25 dB was 28 mW. That is, in this embodiment, sufficient gain can be obtained even if the power of the pumping light 7 is reduced to 28 mW, and the pumping light source 2.14 is made redundant.
High reliability of this optical amplification system can be expected.
以上、エルビウムドープファイバを用いた光増幅器につ
いて述べたが、光増幅器は以上の例に限らず、例えば励
起光源としては波長、0.9811mの半導体レーザを
用いてもよい。また励起光・と信号光の合波にはダイク
ロイックミラーを用いたが代わりに、光ファイバを融着
したファイバカップラ等を用いてもよい。さらに励起光
を反射させ、再びエルビウムドープファイバに入射させ
る反射板には、ミラー、光フィルタの他に回折格子等を
用いてもよい。また信号光の波長は1.53611mに
限らす、1.5511m帯を用いてもよい。Although an optical amplifier using an erbium-doped fiber has been described above, the optical amplifier is not limited to the above example. For example, a semiconductor laser with a wavelength of 0.9811 m may be used as the excitation light source. Furthermore, although a dichroic mirror is used to combine the excitation light and signal light, a fiber coupler or the like in which optical fibers are fused may be used instead. Furthermore, in addition to mirrors and optical filters, a diffraction grating or the like may be used as a reflection plate that reflects the excitation light and makes it enter the erbium-doped fiber again. Further, the wavelength of the signal light is limited to 1.53611 m, and the 1.5511 m band may be used.
実施例ではファイバ増幅器として、エルビウムを添加し
たファイバを用いたが、他に他の希土類を添加したファ
イバ増幅器を用いてもよい。In the embodiment, a fiber doped with erbium was used as the fiber amplifier, but a fiber amplifier doped with other rare earth elements may also be used.
(発明の効果)
以上、説明した様に本発明によれば少ない励起光パワー
で大きな利得の得られる光増幅器が実現できる。その結
果、光増幅器の消費パワーの低下、光源の信頼性向上に
よる光増幅器の長寿命化等を図ることができる。(Effects of the Invention) As described above, according to the present invention, an optical amplifier that can obtain a large gain with a small pumping light power can be realized. As a result, the power consumption of the optical amplifier can be reduced, the reliability of the light source can be improved, and the life of the optical amplifier can be extended.
第1図は本発明の第1の実施例である光増幅器の構成図
、第2図は本発明の第2の実施例である光増幅器の構成
図である。図中1、エルビウムドープファイバ、2.1
4・・・励起光源、3・・・ミラー、4.5・・・ダイ
クロイックミラー、6.9・・・信号光、7.8.15
.16・・・励起光、10・・・アイ−ルータ、11.
12・・ルンズ、13・・・光フィルタ、17・・・偏
波合成器である。FIG. 1 is a block diagram of an optical amplifier according to a first embodiment of the present invention, and FIG. 2 is a block diagram of an optical amplifier according to a second embodiment of the present invention. In the figure 1, erbium-doped fiber, 2.1
4... Excitation light source, 3... Mirror, 4.5... Dichroic mirror, 6.9... Signal light, 7.8.15
.. 16...Excitation light, 10...I-router, 11.
12... Luns, 13... Optical filter, 17... Polarization combiner.
Claims (1)
から入射した励起先によって前記光増幅媒質を励起する
ことにより、該光導波路に入射し伝搬する信号光を増幅
する光増幅器において、前記光増幅器出射端に前記励起
光波長に対して、反射特性を有する反射板を設けたこと
を特徴とする光増幅器。In an optical amplifier that includes an optical amplification medium in an optical waveguide and amplifies signal light that enters and propagates into the optical waveguide by exciting the optical amplification medium with a pumping destination that enters from one input end of the optical waveguide, An optical amplifier characterized in that a reflection plate having reflection characteristics for the wavelength of the excitation light is provided at the output end of the optical amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1272896A JPH03135081A (en) | 1989-10-20 | 1989-10-20 | Optical amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1272896A JPH03135081A (en) | 1989-10-20 | 1989-10-20 | Optical amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03135081A true JPH03135081A (en) | 1991-06-10 |
Family
ID=17520269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1272896A Pending JPH03135081A (en) | 1989-10-20 | 1989-10-20 | Optical amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03135081A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05142595A (en) * | 1991-11-22 | 1993-06-11 | Nec Corp | Optical information signal amplifier |
EP0954070A2 (en) | 1998-04-27 | 1999-11-03 | Fujitsu Limited | Optical amplifier with means to reinject the spontaneous emission back into the amplifier |
US6055094A (en) * | 1998-03-20 | 2000-04-25 | Fujitsu Limited | Optical amplifying apparatus |
US6061172A (en) * | 1998-04-27 | 2000-05-09 | Fujitsu Limited | Active optical fiber and optical fiber amplifier |
WO2003077383A1 (en) * | 2002-03-13 | 2003-09-18 | Nikon Corporation | Light amplifying device and method of manufacturing the device, light source device using the light amplifying device, light treatment device using the light source device, and exposure device using the light source device |
JP2007103704A (en) * | 2005-10-05 | 2007-04-19 | Nichia Chem Ind Ltd | Light emitting device, laser display and endoscope |
JP2008023262A (en) * | 2006-07-25 | 2008-02-07 | Nichia Chem Ind Ltd | Light-emitting device, laser display, and endoscope |
US7391562B2 (en) | 1995-03-20 | 2008-06-24 | Fujitsu Limited | Optical fiber amplifier and dispersion compensating fiber module for optical fiber amplifier |
EP2535988A3 (en) * | 2011-06-16 | 2014-05-07 | Laser Quantum Inc. | Laser and optical amplifier |
-
1989
- 1989-10-20 JP JP1272896A patent/JPH03135081A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05142595A (en) * | 1991-11-22 | 1993-06-11 | Nec Corp | Optical information signal amplifier |
US7391562B2 (en) | 1995-03-20 | 2008-06-24 | Fujitsu Limited | Optical fiber amplifier and dispersion compensating fiber module for optical fiber amplifier |
US7466477B2 (en) | 1995-03-20 | 2008-12-16 | Fujitsu Limited | Optical fiber amplifier and dispersion compensating fiber module for optical fiber amplifier |
US6055094A (en) * | 1998-03-20 | 2000-04-25 | Fujitsu Limited | Optical amplifying apparatus |
EP0954070A2 (en) | 1998-04-27 | 1999-11-03 | Fujitsu Limited | Optical amplifier with means to reinject the spontaneous emission back into the amplifier |
US6061172A (en) * | 1998-04-27 | 2000-05-09 | Fujitsu Limited | Active optical fiber and optical fiber amplifier |
US6501592B2 (en) | 1998-04-27 | 2002-12-31 | Fujitsu Limited | Optical amplifier reflecting spontaneous emission back into the amplifier to improve efficiency |
WO2003077383A1 (en) * | 2002-03-13 | 2003-09-18 | Nikon Corporation | Light amplifying device and method of manufacturing the device, light source device using the light amplifying device, light treatment device using the light source device, and exposure device using the light source device |
JP2007103704A (en) * | 2005-10-05 | 2007-04-19 | Nichia Chem Ind Ltd | Light emitting device, laser display and endoscope |
JP2008023262A (en) * | 2006-07-25 | 2008-02-07 | Nichia Chem Ind Ltd | Light-emitting device, laser display, and endoscope |
EP2535988A3 (en) * | 2011-06-16 | 2014-05-07 | Laser Quantum Inc. | Laser and optical amplifier |
US8755415B2 (en) | 2011-06-16 | 2014-06-17 | Laser Quantum Inc. | Laser and optical amplifier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3025210B2 (en) | Apparatus including optical fiber Raman amplifier | |
JP2734209B2 (en) | Optical fiber amplifier | |
RU2160949C2 (en) | Fiber-optic amplifier for amplifying weak incident optical signal | |
EP1263096B1 (en) | Improved wide band erbium-doped fiber amplifier (EDFA) | |
US5392153A (en) | Optical amplifier | |
US20240178629A1 (en) | Gain equalization in c+l erbium-doped fiber amplifiers | |
JP3217037B2 (en) | Multi-stage optical fiber amplifier | |
JPH03135081A (en) | Optical amplifier | |
JP2870235B2 (en) | Optical fiber amplifier | |
JP2852161B2 (en) | Amplifier using amplified optical fiber | |
US6862132B1 (en) | Suppression of double rayleigh backscattering and pump reuse in a raman amplifier | |
JP3019828B2 (en) | Bidirectional optical amplifier | |
Smart et al. | An investigation of the noise figure and conversion efficiency of 0.98 mu m pumped erbium-doped fiber amplifiers under saturated conditions | |
JP3251223B2 (en) | Optical amplifier | |
JPH11242130A (en) | Light source module incorporating synthesizing function, optical amplifier using this module, and bidirectional optical transmission equipment | |
US6252701B1 (en) | Optical fiber amplifier | |
JP2687680B2 (en) | Optical fiber amplifier | |
JPH0392828A (en) | Optical fiber laser amplifier | |
JP3752002B2 (en) | Optical fiber amplifier | |
JPH11122171A (en) | Wavelength dispersion compensation type optical amplifier and optical communication system using the same | |
WO2022142754A1 (en) | Optical signal amplification apparatus and related optical communication device | |
JPH0728106A (en) | Optical fiber amplifier and photo-signal transmitting system | |
JP2005011989A (en) | Optical amplifier | |
JP2737596B2 (en) | Optical fiber amplifier | |
JP2758243B2 (en) | Optical fiber amplifier |