JPH02145751A - Cr alloy steel - Google Patents
Cr alloy steelInfo
- Publication number
- JPH02145751A JPH02145751A JP29605388A JP29605388A JPH02145751A JP H02145751 A JPH02145751 A JP H02145751A JP 29605388 A JP29605388 A JP 29605388A JP 29605388 A JP29605388 A JP 29605388A JP H02145751 A JPH02145751 A JP H02145751A
- Authority
- JP
- Japan
- Prior art keywords
- alloy steel
- less
- creep
- strength
- weight ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 21
- 239000010959 steel Substances 0.000 title claims abstract description 21
- 229910000599 Cr alloy Inorganic materials 0.000 title claims abstract description 19
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 5
- 229910052758 niobium Inorganic materials 0.000 abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 239000011572 manganese Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
この発明は1例えばタービンケーシング、蒸気弁、高速
増殖炉等の圧力容器等に適用される場合。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is applied to, for example, turbine casings, steam valves, pressure vessels such as fast breeder reactors, etc.
クリープラブチャ、脆化等の諸特性を一段と高めるよう
改良を加えたCr合金鋼に関する。This invention relates to Cr alloy steel that has been improved to further enhance various properties such as creep rupture and embrittlement.
(従来の技術)
例えば、蒸気タービン装置では、ランキンサイクルの下
で再熱再生方式が採用され、出力増加が図られており、
その意図に沿うよう使用する蒸気条件も主蒸気温度53
8℃、再熱蒸気温度566℃、蒸気圧246kg/−の
ものが使用されている。(Prior art) For example, in steam turbine equipment, a reheat regeneration method is adopted under the Rankine cycle to increase output.
The main steam temperature is 53.
8°C, reheat steam temperature 566°C, and steam pressure 246 kg/- are used.
このため、従来機では、蒸気条件に見合う強度が保証さ
れるように材質が選定されており、例えばボイラからタ
ービンに蒸気を送る主蒸気管は、合金鋼やI Cr
I Mo 4 V合金鋼を使用している。For this reason, in conventional machines, materials are selected to ensure strength that meets the steam conditions; for example, the main steam pipe that sends steam from the boiler to the turbine is made of alloy steel or ICr.
I Mo 4 V alloy steel is used.
ところが、電力需要増と相まって出力効率の増加を目ざ
すこの種分野では、さらに従来機に使用されている蒸気
条件を今−歩アツブさせた、いわゆる超々臨界圧プラン
トの出現が求められ、かような要求を満たす材料の研究
開発が進められている。However, in this type of field, where the aim is to increase output efficiency in conjunction with the increase in electricity demand, there is a need for the emergence of so-called ultra-supercritical pressure plants, which are even more advanced than the steam conditions used in conventional machines. Research and development of materials that meet these requirements is underway.
(発明が解決しようとする課題)
かかる動向の中で、この種分野が、従来機に用いるCr
合金鋼をそのまま横すべりにすると、従来機とくらべて
大幅な肉厚の増加はまぬがれず、容易の厚肉化によって
器内外に温度差が生じ好ましくない現象があられれてい
る。例えば、器内外に温度差が生じると、局所的に過度
な熱応力があられれ、ましでは頻繁な起動・停止の運転
が繰返されると、過度な熱応力に重量された熱疲労があ
られれて材料の耐久性が低下する不具合を備えている。(Problem to be solved by the invention) In this trend, this type of field
If the alloy steel were to be used as is for sideways sliding, the wall thickness would inevitably increase significantly compared to conventional machines, and the increased wall thickness would create an undesirable temperature difference between the inside and outside of the vessel. For example, if there is a temperature difference between the inside and outside of the vessel, excessive thermal stress will be generated locally, and even worse, if the operation is started and stopped frequently, thermal fatigue caused by excessive thermal stress will occur. It has a defect that reduces the durability of the material.
かような不具合は、材料の金属組織変化によるところが
大きな原因であるだけに、金属組織の安定したCr合金
鋼の出現が求められている。さらに、高速増殖炉の分野
でも従来のオーステナイト系ステンレス鋼に代わる熱伝
導性の高いCr合金鋼の出現が求められている。Since such defects are largely caused by changes in the metallographic structure of the material, there is a need for a Cr alloy steel with a stable metallographic structure. Furthermore, in the field of fast breeder reactors, there is a demand for a Cr alloy steel with high thermal conductivity to replace the conventional austenitic stainless steel.
この発明は、かような事情にもとづいてなされてもので
、使用する蒸気条件が今以上にアップしても、それに適
用できるように材料の耐久性に改良を加えたCr合金鋼
ならびに熱伝導性の高いCr合金鋼を開示することを目
的とする。This invention was made based on the above-mentioned circumstances, and it is a Cr alloy steel that has improved material durability and thermal conductivity so that it can be applied even if the steam conditions used are higher than before. The object of the present invention is to disclose a high Cr alloy steel.
(fa題を解決するための手段)
Cr合金鋼にかかる発明の第1は、重量比で、C0.0
5〜0.20%、Si 0.10%以下、Mn 0.3
%以下、Ni 1.0%以下、Cr 8.0〜9.5%
、 Mo 0.5〜1.5%、V0.15〜0.30
%、Nb 0.05〜0.15%、N0.03〜0.0
8%、P 0.005%以下、S 0.005%以下、
残部F6および付随的不純物からなる組成のCr合金鋼
にしたものである。(Means for solving the fa problem) The first aspect of the invention related to Cr alloy steel is that, in terms of weight ratio, C0.0
5-0.20%, Si 0.10% or less, Mn 0.3
% or less, Ni 1.0% or less, Cr 8.0-9.5%
, Mo 0.5-1.5%, V0.15-0.30
%, Nb 0.05-0.15%, N0.03-0.0
8%, P 0.005% or less, S 0.005% or less,
This is a Cr alloy steel with a composition consisting of the balance F6 and incidental impurities.
第2の発明は、重量比で、C0,05〜0.20%、S
i0.10%以下、Mn 0.3%以下、Ni 1.0
%以下、Cr8.0〜9.5%、Mo 0.5〜1.5
%、V0.15〜0.30%、Nb 0.05−0.1
5%、N0.03〜0.08%、残部Feおよび付随的
不純物からなる組成に、重量比で0.2〜2.0%のW
を添加する構成にしたものである。The second invention has a weight ratio of C0.05 to 0.20%, S
i 0.10% or less, Mn 0.3% or less, Ni 1.0
% or less, Cr8.0-9.5%, Mo 0.5-1.5
%, V0.15-0.30%, Nb 0.05-0.1
5%, N0.03-0.08%, balance Fe and incidental impurities, and 0.2-2.0% W by weight.
The structure is such that it adds .
上記組成の量的限定理由は以下の通りである。The reason for the quantitative limitation of the above composition is as follows.
C(炭素):
Cは、焼入時におけるオーステナイト相を安定にし、さ
らに炭化物を生成してクリープラブチャ強度を高めるよ
うにしており、そのためには0.05%以−には必要で
ある。しかし、 0.20%を越えると炭化物が過剰に
なり、逆にクリープラブチャ強度が低下する。したがっ
て、Cは0.05〜0.20%にする。C (Carbon): C stabilizes the austenite phase during quenching and further generates carbides to increase the creep-rubber strength, and for this purpose, it is necessary in an amount of 0.05% or more. However, if it exceeds 0.20%, carbides become excessive, and creep-rubber strength decreases. Therefore, C should be 0.05 to 0.20%.
Cr (クロム):
Crは、高温環墳中での酸化を防止するとともに、クリ
ープラブチャ強度の向上を図るのに必要な元素である。Cr (Chromium): Cr is an element necessary to prevent oxidation in high-temperature ring tombs and to improve creep rubble strength.
この目的のためには8.0%以上の添加が必要であるが
、9.5% を越えると延・靭性が低下する。よって、
Crの量は8.0〜9,5%とする。For this purpose, it is necessary to add 8.0% or more, but if it exceeds 9.5%, elongation and toughness will decrease. Therefore,
The amount of Cr is 8.0 to 9.5%.
No (モリブデン):
MOは、クリープラブチャ強度の向上を図るために有効
な元素であり、そのためには0.5%以上の添加が必要
である。しかし、1.5% を越えるとデルタフェライ
トを生成し、クリープラブチャ強度や靭性の低下をきた
すので、0.5〜1.5%とする。No (molybdenum): MO is an effective element for improving creep rubber strength, and for this purpose, it is necessary to add 0.5% or more. However, if it exceeds 1.5%, delta ferrite is produced and creep roughness strength and toughness are reduced, so the content is set at 0.5 to 1.5%.
■(バナジウム):
■は、クリープラブチャ強度を向上させるのに有効な元
素である。そのためには0.15%以上の添加が必要で
あるが、 0.30%を越えるとデルタフェライトを生
成し易くなるので、 0.15〜0.30%とする。■ (Vanadium): ■ is an element effective in improving creep rubber strength. For this purpose, it is necessary to add 0.15% or more, but if it exceeds 0.30%, delta ferrite is likely to be produced, so the content is set at 0.15 to 0.30%.
Nbにオーダ):
Nbは、結晶粒を微細化して、延性、靭性を増す作用が
ある。さらに、Nbは、炭化物、炭窒化物を形成し、マ
トリックス中に微細に分散析出して、クリープ特性を著
しく改善する。これらの効果を得るためには、少なくと
も0.05%以上の添加が必要であるが、0.15%を
越えると、デルタフェライトを生成し、また、炭化物が
粗大に析出して好ましくない。よって、添加量は0.0
5〜0.15%とする。Nb (on the order of Nb): Nb has the effect of refining crystal grains and increasing ductility and toughness. Furthermore, Nb forms carbides and carbonitrides, finely disperses and precipitates in the matrix, and significantly improves creep properties. In order to obtain these effects, it is necessary to add at least 0.05%, but if it exceeds 0.15%, delta ferrite is produced and carbides are precipitated coarsely, which is not preferable. Therefore, the amount added is 0.0
5 to 0.15%.
N(窒素):
Nは、フェライト相の生成を抑制するのに有効であり、
またNbの炭窒化物を形成するのに必要な元素である。N (nitrogen): N is effective in suppressing the formation of ferrite phase,
It is also an element necessary to form Nb carbonitride.
この目的のためには、0.03%以上の添加が必要であ
るが、0.08%を越えると、延・靭性が低下するので
、0.03〜0.08%とする。For this purpose, it is necessary to add 0.03% or more, but if it exceeds 0.08%, the elongation and toughness will decrease, so the content should be 0.03 to 0.08%.
Mn (マンガン):
本発明の特徴とするMnに関しては、従来、その脱硫作
用および残存するフリーなSを抑制することを目的に0
.5%程度添加されていた。しかし、炉外精錬を適用す
ることにより、Sを0.002%前後まで低減させるこ
とが可能となり、Mn添加が不要となる。Sの低減化に
伴ってMnSの非金属介在物も極めて少なくなり、清浄
度が向上し、延・靭性が改善され、その結果として低サ
イクル疲労強度が向上する。そのため、Mnは0.30
%以下とする。Mn (manganese): Regarding Mn, which is a feature of the present invention, it has been used in the past for the purpose of suppressing its desulfurization effect and remaining free S.
.. Approximately 5% was added. However, by applying out-of-furnace refining, it becomes possible to reduce S to around 0.002%, and Mn addition becomes unnecessary. With the reduction of S, non-metallic inclusions of MnS are also extremely reduced, resulting in improved cleanliness, improved elongation and toughness, and as a result, improved low cycle fatigue strength. Therefore, Mn is 0.30
% or less.
ところで、 Mnは焼入性を向上させるため、圧力容器
のような大型肉厚構造材では、中心まで均質な強度を得
るのに重要な元素であると考えられていたが、 Mnを
0.30%以下として、500■厚の肉厚材を模擬して
実験を行った結果、中心部まで従来と同様の強度が得ら
れ、焼入性という観点からは、低Mnでも何ら問題のな
いことが判明した。この中心部におけるかたさおよび結
晶粒度のMn含有量に対する変化の様子を第1図に示し
である。By the way, Mn was thought to be an important element to improve hardenability and to obtain uniform strength down to the center in large thick structural materials such as pressure vessels, but when Mn was added to 0.30 % or less, we conducted an experiment simulating a thick material with a thickness of 500 mm, and as a result, the same strength as before was obtained up to the center, and from the viewpoint of hardenability, there was no problem even with low Mn. found. FIG. 1 shows how the hardness and grain size in the center change with respect to the Mn content.
SL (ケイ素):
Siは、従来、脱酸のために添加されていたが、真空鋳
込、真空カーボン脱酸を適用することにより、その必要
性がなくなり、また、非金属介在物を形成して、延・靭
性を損うことや、経年的な脆化を促進することから、極
力含有量を低減するのが望ましい、しかしながら、現状
の精錬技術を以ってしては不可避的に微量が残存するこ
とから、0.10%以下とする。SL (Silicon): Conventionally, Si was added for deoxidation, but by applying vacuum casting and vacuum carbon deoxidation, this need is eliminated and it also prevents the formation of nonmetallic inclusions. However, it is desirable to reduce the content as much as possible because it impairs elongation and toughness and promotes embrittlement over time. However, with the current refining technology, it is inevitable that trace amounts of Since it remains, the content should be 0.10% or less.
P (リン):
Pは、クリープラブチャ強度や延性の低下に直接関与す
る元素であるとともに、溶接性も低下させるため、可能
な限り、低減するのが望ましい。P (Phosphorus): P is an element that is directly involved in lowering creep-lubber strength and ductility, and also lowers weldability, so it is desirable to reduce it as much as possible.
しかしながら、現状の精錬技術を以ってしては、不可避
的に微量が残存することから、0.005%以下とする
。However, with the current refining technology, a trace amount inevitably remains, so the content is set to 0.005% or less.
S (硫黄):
Sも、Siと同様に、特にクリープ延性を損う作用があ
る。可能な限り低減するのが望ましい。しかしながら、
現状の精錬技術を以ってしては、不可避的に微量が残存
することから、0.oos%以下とする。S (sulfur): Like Si, S also has the effect of particularly impairing creep ductility. It is desirable to reduce it as much as possible. however,
With the current refining technology, a trace amount remains unavoidably, so 0. oos% or less.
Ni にッケル):
Niは、オーステナイト生成元素であり、焼入時のオー
ステナイト相を安定にし、デルタフェライトの生成を防
止するのに有効であるが、多く添加しすぎると、クリー
プラブチャ強度が低下し、また、Aex変態点が低下す
るため、1.0%以下とする。Ni (nickel): Ni is an austenite-forming element and is effective in stabilizing the austenite phase during quenching and preventing the formation of delta ferrite, but if too much is added, the creep-rubber strength decreases. However, since the Aex transformation point is lowered, the content is set to 1.0% or less.
W(タングステン):
Wは、 Moと同様に、クリープラブチャ強度を向上さ
せる作用があり、このためには0.2%を越える添加が
必要であるが、2.0% を越えると、デルタフェライ
トを生成し、延・靭性の低下、クリープラブチャ強度の
低下を生ずるため、添加量は。W (tungsten): Similar to Mo, W has the effect of improving creep rubber strength, and for this purpose it is necessary to add more than 0.2%, but if it exceeds 2.0%, the delta The amount of addition is limited because it produces ferrite, which causes a decrease in elongation and toughness, and a decrease in creep rubber strength.
0.2〜2.0%とする。The content should be 0.2 to 2.0%.
こうして元素の選定ならびに各元素の重量比を定めるこ
とによって、適用分野に対してその品質保証が発揮され
る。By selecting the elements and determining the weight ratio of each element in this way, quality assurance can be achieved in the field of application.
(実施例) この発明にかかるCr合金鋼の一実施例を詳述する。(Example) An embodiment of the Cr alloy steel according to the present invention will be described in detail.
第1表は、この発明にかかる’Cr合金鋼と従来のCr
合金鋼とを比較した組成の重量比である。Table 1 shows the 'Cr alloy steel according to the present invention and the conventional Cr alloy steel.
This is the weight ratio of the composition compared with alloy steel.
(以下余白)
上記組成のCr合金鋼を作製するには、原料を上記重量
比に配合して、高周波真空溶解炉で溶解後、金型に鋳込
んでインゴットを得た。このインゴットの表面を機械加
工で削り落した後、重油炉に装入し、1200℃に加熱
してハンマ鍛造を行ない、直径60mmの丸棒に鍛伸し
た。(Left below) To produce a Cr alloy steel having the above composition, raw materials were blended in the above weight ratio, melted in a high frequency vacuum melting furnace, and then cast into a mold to obtain an ingot. After the surface of this ingot was shaved off by machining, it was charged into a heavy oil furnace, heated to 1200°C, hammer forged, and forged into a round bar with a diameter of 60 mm.
こうして得られた丸棒を、電気炉において1050℃に
3時間加熱保持し、しかる後、室温まで空冷を行なった
。その後、電気炉にて750℃に8時間加熱して焼戻し
だ、この熱処理を終えた各素材を2群に分け、そのうち
1群については、そのまま機械加工して試験片を作製し
、引張試験、シャルピー衝撃試験、クリープラブチャ試
験および低サイクル疲労試験を実施した。残る1群につ
いては。The thus obtained round bar was heated and held at 1050° C. for 3 hours in an electric furnace, and then air-cooled to room temperature. After that, it was heated and tempered in an electric furnace at 750°C for 8 hours. After this heat treatment, each material was divided into two groups, and one group was machined as it was to prepare test pieces, which were then subjected to a tensile test. Charpy impact test, creep-butture test and low cycle fatigue test were conducted. As for the remaining group.
熱処理後、550℃の電気炉にて10,000時間加熱
した後、機械加工して試験片を作製し、シャルピー衝撃
試験を実施した。これらの結果を第2表に示す。After heat treatment, it was heated in an electric furnace at 550° C. for 10,000 hours, and then machined to prepare a test piece and subjected to a Charpy impact test. These results are shown in Table 2.
引張試験は、室温で実施した。クリープラブチャ試験は
温度、応力の異なる2条件で行ない、ラブチャ時間、破
断伸び、破断絞りについても第2表の中に示した。さら
に、シャルピー衝撃試験は一100℃から+100℃ま
での範囲で複数の温度で実施し、破面遷移温度(FAT
T)を求めた。Tensile tests were conducted at room temperature. The creep love test was conducted under two different conditions of temperature and stress, and the love time, elongation at break, and area of area at break are also shown in Table 2. Additionally, Charpy impact tests were conducted at multiple temperatures ranging from -100°C to +100°C, and the fracture surface transition temperature (FAT)
T) was calculated.
第2表に示した試験結果から、本発明にがかるCr合金
鋼である実施例1〜6は、比較例1・〜4に比べ、クリ
ープラブチャ強度が格段に優れていることが明らかであ
る。特に、低P化し、Wを添加した実施例3〜5で、特
に顕著である。また。From the test results shown in Table 2, it is clear that Examples 1 to 6, which are Cr alloy steels according to the present invention, have significantly superior creep rubber strength compared to Comparative Examples 1 to 4. . This is particularly noticeable in Examples 3 to 5, in which P was reduced and W was added. Also.
550℃にて、i0.ooo時間加熱した後のFATT
の変化、ΔFATT (加熱材のFATT−非加熱材の
FATT)をみると、比較例1〜4はいずれも、36℃
以上の上昇がみられるのに対して、実施例1〜6はSi
、ilが0.03〜0.05%であるため、 FATT
の上昇は5〜12℃にとどまっており、経年脆化が低く
抑えられている。At 550°C, i0. FATT after heating for ooo hours
Looking at the change in ΔFATT (FATT of heated material - FATT of non-heated material), Comparative Examples 1 to 4 all had a temperature of 36°C.
In contrast to the above increase, in Examples 1 to 6, the Si
, il is 0.03-0.05%, so FATT
The increase in temperature remains at 5 to 12°C, and aging embrittlement is suppressed to a low level.
さらに、550℃で、全ひずみ範囲、Δεtが 1.0
%の場合の低サイクル疲労試験における亀裂発生回数は
、実施例2〜5で増加しており、特に、SL+ Mn、
Sの低減化による低サイクル疲労強度の改善が認めら
れる。Furthermore, at 550°C, over the entire strain range, Δεt is 1.0
%, the number of crack occurrences in the low cycle fatigue test increased in Examples 2 to 5, especially for SL+Mn,
An improvement in low cycle fatigue strength due to the reduction of S was observed.
以上の説明から、この発明では耐久性あるいは熱伝導率
を高めるため、好ましい元素選定の下、重量比を適正に
定めたCr合金鋼にしたもので、この種分野の適用にあ
たってその信頼性が一段と高まることが期待できる。From the above explanation, in this invention, in order to increase durability or thermal conductivity, Cr alloy steel is used with preferable elements selected and the weight ratio appropriately determined, and its reliability will be further improved when applied to this type of field. We can expect it to increase.
図面は、 Mnの重量比増加量に対するビッカースかた
さおよび結晶粒度の関係を示すグラフである。
代理人 弁理士 則 近 憲 佑
同 第子丸 健The drawing is a graph showing the relationship between Vickers hardness and crystal grain size with respect to the increase in Mn weight ratio. Agent Patent Attorney Noriyuki Chika Yudo Ken Daishimaru
Claims (2)
0%以下、Mn0.3%以下、Ni1.0%以下、Cr
8.0〜9.5%、Mo0.5〜1.5%、V0.15
〜0.30%、Nb0.05〜0.15%、N0.03
〜0.08%、P0.005%以下、S0.005%以
下、残部Feおよび付随的不純物からなるCr合金鋼。(1) Weight ratio: C0.05-0.20%, Si0.1
0% or less, Mn 0.3% or less, Ni 1.0% or less, Cr
8.0-9.5%, Mo0.5-1.5%, V0.15
~0.30%, Nb0.05~0.15%, N0.03
Cr alloy steel consisting of ~0.08%, P 0.005% or less, S 0.005% or less, balance Fe and incidental impurities.
0%以下、Mn0.30%以下、Ni1.0%以下、C
r8.0〜9.5%、No0.5〜1.5%、V0.1
5〜0.30%、Nb0.05〜0.15%、N0.0
3〜0.08%、残部Feおよび付随的不純物からなる
組成に、重量比で0.2〜2.0%のWを添加したこと
を特徴とするCr合金鋼。(2) Weight ratio: C0.05-0.20%, Si0.1
0% or less, Mn 0.30% or less, Ni 1.0% or less, C
r8.0-9.5%, No.0.5-1.5%, V0.1
5-0.30%, Nb0.05-0.15%, N0.0
A Cr alloy steel characterized in that 0.2 to 2.0% by weight of W is added to a composition consisting of 3 to 0.08% of Fe, the balance being Fe and incidental impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29605388A JPH02145751A (en) | 1988-11-25 | 1988-11-25 | Cr alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29605388A JPH02145751A (en) | 1988-11-25 | 1988-11-25 | Cr alloy steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02145751A true JPH02145751A (en) | 1990-06-05 |
Family
ID=17828492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29605388A Pending JPH02145751A (en) | 1988-11-25 | 1988-11-25 | Cr alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02145751A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02197550A (en) * | 1989-01-27 | 1990-08-06 | Japan Steel Works Ltd:The | High purity heat resistant steel |
JPH05113106A (en) * | 1991-08-23 | 1993-05-07 | Japan Steel Works Ltd:The | High-purity heat-resistant steel and method for manufacturing high-low pressure integrated turbine rotor made of high-purity heat-resistant steel |
CN109207844A (en) * | 2017-06-30 | 2019-01-15 | 宝钢特钢有限公司 | A kind of overcritical heat-resisting steel sheet and plate and its manufacturing method |
-
1988
- 1988-11-25 JP JP29605388A patent/JPH02145751A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02197550A (en) * | 1989-01-27 | 1990-08-06 | Japan Steel Works Ltd:The | High purity heat resistant steel |
JPH05113106A (en) * | 1991-08-23 | 1993-05-07 | Japan Steel Works Ltd:The | High-purity heat-resistant steel and method for manufacturing high-low pressure integrated turbine rotor made of high-purity heat-resistant steel |
CN109207844A (en) * | 2017-06-30 | 2019-01-15 | 宝钢特钢有限公司 | A kind of overcritical heat-resisting steel sheet and plate and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100580119C (en) | Ferritic heat-resistant steel | |
KR0175075B1 (en) | Rotor for steam turbine and manufacturing method | |
EP1873270B1 (en) | Low alloy steel | |
EP0384433B1 (en) | Ferritic heat resisting steel having superior high-temperature strength | |
CN102234744B (en) | Ultra-pure alloy and method for manufacturing turbine rotor forging by using same | |
CN102453843B (en) | Ferrite heat resistant steel | |
JP2000345281A (en) | Low alloy heat-resistant steel excellent in weldability and low-temperature toughness and its manufacturing method | |
JPH10251809A (en) | High toughness ferritic heat resistant steel | |
JP2947913B2 (en) | Rotor shaft for high temperature steam turbine and method of manufacturing the same | |
JPS62109949A (en) | Nicrmo steel having excellent stress corrosion cracking resistance | |
US3650845A (en) | Method of manufacture of steel turbine blades | |
JP2001073092A (en) | 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE | |
JPH02145751A (en) | Cr alloy steel | |
JPH1192881A (en) | Ferritic heat-resistant steel with lath martensite structure and its manufacturing method | |
JPS5914097B2 (en) | Ferritic heat-resistant steel with improved toughness | |
JPH05311345A (en) | Ferritic heat resistant steel with excellent high temperature strength and toughness | |
JP3814836B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
JP4396561B2 (en) | Induction hardening steel | |
JPH05113106A (en) | High-purity heat-resistant steel and method for manufacturing high-low pressure integrated turbine rotor made of high-purity heat-resistant steel | |
JPH05311342A (en) | Ferritic heat resistant steel excellent in creep strength | |
JPH0770713A (en) | Heat resistant cast steel | |
JPH02145749A (en) | Turbine rotor | |
JPH0380865B2 (en) | ||
JPH05311344A (en) | Ferritic heat resistant steel excellent in high temperature strength and toughness | |
JPH08120414A (en) | Heat resistant steel |