JPH02138402A - Metal-coated metallic sulfide powder and manufacture thereof - Google Patents
Metal-coated metallic sulfide powder and manufacture thereofInfo
- Publication number
- JPH02138402A JPH02138402A JP1102970A JP10297089A JPH02138402A JP H02138402 A JPH02138402 A JP H02138402A JP 1102970 A JP1102970 A JP 1102970A JP 10297089 A JP10297089 A JP 10297089A JP H02138402 A JPH02138402 A JP H02138402A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- coated
- powder
- layer
- sulfide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 212
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 107
- 239000002184 metal Substances 0.000 title claims abstract description 107
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 62
- 229910000679 solder Inorganic materials 0.000 claims abstract description 55
- 238000007747 plating Methods 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 30
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 29
- 229910052718 tin Inorganic materials 0.000 claims abstract description 29
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 239000000126 substance Substances 0.000 claims abstract description 15
- -1 etc. Inorganic materials 0.000 claims abstract description 6
- 239000007791 liquid phase Substances 0.000 claims abstract description 5
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 97
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 66
- 239000010949 copper Substances 0.000 claims description 60
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 54
- 239000000243 solution Substances 0.000 claims description 43
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 32
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 26
- 239000011701 zinc Substances 0.000 claims description 26
- 238000009792 diffusion process Methods 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 239000000956 alloy Substances 0.000 claims description 20
- 239000010941 cobalt Substances 0.000 claims description 19
- 229910017052 cobalt Inorganic materials 0.000 claims description 19
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 19
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 8
- 239000008139 complexing agent Substances 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 claims description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 229910001379 sodium hypophosphite Inorganic materials 0.000 claims description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 3
- 239000005749 Copper compound Substances 0.000 claims description 2
- 150000001869 cobalt compounds Chemical class 0.000 claims description 2
- 150000001880 copper compounds Chemical class 0.000 claims description 2
- 150000002816 nickel compounds Chemical class 0.000 claims 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 abstract description 68
- 229910052982 molybdenum disulfide Inorganic materials 0.000 abstract description 66
- 239000011248 coating agent Substances 0.000 abstract description 29
- 238000000576 coating method Methods 0.000 abstract description 29
- 229910052745 lead Inorganic materials 0.000 abstract 3
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 229910052961 molybdenite Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 134
- 239000007789 gas Substances 0.000 description 19
- 239000011247 coating layer Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 13
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- GZCWPZJOEIAXRU-UHFFFAOYSA-N tin zinc Chemical compound [Zn].[Sn] GZCWPZJOEIAXRU-UHFFFAOYSA-N 0.000 description 8
- 235000010582 Pisum sativum Nutrition 0.000 description 7
- 240000004713 Pisum sativum Species 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000005275 alloying Methods 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 6
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 241001279686 Allium moly Species 0.000 description 5
- 235000019270 ammonium chloride Nutrition 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- PYPDMIQMPWEFHX-UHFFFAOYSA-N [Pb].[Co] Chemical compound [Pb].[Co] PYPDMIQMPWEFHX-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229960003280 cupric chloride Drugs 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 3
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- PPIIGEJBVZHNIN-UHFFFAOYSA-N [Cu].[Sn].[Pb] Chemical compound [Cu].[Sn].[Pb] PPIIGEJBVZHNIN-UHFFFAOYSA-N 0.000 description 2
- PDYXSJSAMVACOH-UHFFFAOYSA-N [Cu].[Zn].[Sn] Chemical compound [Cu].[Zn].[Sn] PDYXSJSAMVACOH-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- GVFOJDIFWSDNOY-UHFFFAOYSA-N antimony tin Chemical compound [Sn].[Sb] GVFOJDIFWSDNOY-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- WRAOBLMTWFEINP-UHFFFAOYSA-N [Sn].[Ag].[Ni] Chemical compound [Sn].[Ag].[Ni] WRAOBLMTWFEINP-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XPPWAISRWKKERW-UHFFFAOYSA-N copper palladium Chemical compound [Cu].[Pd] XPPWAISRWKKERW-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical group [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910001174 tin-lead alloy Inorganic materials 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Powder Metallurgy (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金属被覆金属硫化物粉末及びその製造方法に
関するものである。より詳しくは、本発明は、焼結や溶
射等の工程に於いても金属硫化物粉末が消耗することが
ない密着強度と均一被覆性の優れた新規な金属被覆金属
硫化物粉末、およびこの金属被覆金属硫化物粉末を安定
して確実にかつ経済的に得ることができる金属被覆金属
硫化物粉末の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal-coated metal sulfide powder and a method for producing the same. More specifically, the present invention provides a novel metal-coated metal sulfide powder with excellent adhesion strength and uniform coating properties, which prevents the metal sulfide powder from being consumed during processes such as sintering and thermal spraying, and this metal-coated metal sulfide powder. The present invention relates to a method for producing metal-coated metal sulfide powder that can stably, reliably, and economically obtain coated metal sulfide powder.
本発明に係る金属被覆金属硫化物粉末は、含油軸受け、
カーボンブラシ、摩擦材料、溶射材料等に適用できるも
のである。The metal-coated metal sulfide powder according to the present invention can be used for oil-impregnated bearings,
It can be applied to carbon brushes, friction materials, thermal spray materials, etc.
金属硫化物粉末は自己潤滑性を有することがら、銅粉、
銀粉等と混合された後、粉末冶金法や溶射法により軸受
は等に形成されて用いられている。Since metal sulfide powder has self-lubricating properties, copper powder,
After being mixed with silver powder or the like, a bearing is formed into a shape by powder metallurgy or thermal spraying.
ところが、ここに用いられる金属硫化物粉末、特にその
代表例である二硫化モリブデン粉末は、銅粉等と混合し
ても見掛は密度や表面状態の差等により均一な混合粉が
得られないこと、焼結中若しくは溶射中に消耗するなど
の欠点がある。このため、従来より金属硫化物粉末の表
面に銅、ニッケル等の金属を被覆したものが用いられて
いた。However, the metal sulfide powder used here, especially molybdenum disulfide powder, which is a typical example, cannot be mixed with copper powder, etc. due to differences in apparent density and surface condition, making it difficult to obtain a uniform mixed powder. Moreover, it has drawbacks such as being consumed during sintering or thermal spraying. For this reason, metal sulfide powder coated with a metal such as copper or nickel on the surface has conventionally been used.
二の金属被覆には、均一皮膜性と、混合若しくは溶射時
に剥離しない密着強度が要求されている。The second metal coating is required to have uniform coating properties and adhesion strength that will not peel off during mixing or thermal spraying.
従来、二硫化モリブデン粉末等の非金属粉末に銅、ニッ
ケル等を被覆する方法としては、イオン置換を利用する
セメンチージョン法、高温高圧下において水素等で金属
析出を行わす方法、あるいは白金族で活性化した無機粉
末上にセメンチージョンによる無電解メッキを施す方法
等が知られている。Conventionally, methods for coating non-metallic powders such as molybdenum disulfide powder with copper, nickel, etc. include the cementation method using ion replacement, the method of metal precipitation using hydrogen etc. under high temperature and high pressure, or the method of coating copper, nickel, etc. on non-metallic powder such as molybdenum disulfide powder. A method is known in which electroless plating is performed using cementation on an activated inorganic powder.
例えば、金属硫化物粉末に銅を被覆する方法としては、
銅より卑の金属と金属硫化物粉末との混合物中に、銅イ
オンを含む酸性溶液を添加するセメンチージョン反応を
利用する方法(特公昭57−31532.58−322
01)が知られている。しかし、表面が活性化されにく
い金属硫化物粉末においては、銅層を均一に被覆するこ
とが困難であり、また密着強度が小さいという欠点があ
った。For example, as a method for coating metal sulfide powder with copper,
A method using a cementation reaction in which an acidic solution containing copper ions is added to a mixture of a metal baser than copper and a metal sulfide powder (Japanese Patent Publication No. 57-31532.58-322)
01) is known. However, metal sulfide powder whose surface is difficult to activate has the disadvantage that it is difficult to uniformly coat the copper layer and the adhesion strength is low.
上記欠点を改良するために金属硫化物粉末を活性化前処
理する方法として、金属硫化物粉末の表面に白金族化合
物の熱分解により白金族被覆層を被覆した後、その表面
にセメンチージョン反応を利用して銅を被覆する方法(
特公昭57−31533)が提案されている。しかし、
この方法も本質的に卑の金属と銅との置換反応であり、
金属硫化物粉末に被覆するには均一な被覆性並びに密着
性に問題がある。In order to improve the above-mentioned drawbacks, a method of pre-activating metal sulfide powder is to coat the surface of the metal sulfide powder with a platinum group coating layer by thermal decomposition of a platinum group compound, and then apply a cementation reaction to the surface. How to coat copper using
Special Publication No. 57-31533) has been proposed. but,
This method is also essentially a substitution reaction between a base metal and copper,
When coating metal sulfide powder, there are problems with uniform coating and adhesion.
また、塩化パラジウムを活性側として浸漬処理を行い、
アンモニア性溶液中で弗化カルシウムをコアーとして、
高温高圧下、還元ガス中でコバルト、ニッケル等を被覆
する方法(特公昭55−1321)が提案されている。In addition, immersion treatment is performed with palladium chloride as the active side,
Calcium fluoride as a core in an ammoniacal solution,
A method of coating cobalt, nickel, etc. in reducing gas at high temperature and high pressure has been proposed (Japanese Patent Publication No. 55-1321).
しかしこの方法では高価な白金属を2g/f!以上添加
しなければならず、処理費用が増大し、また高温高圧下
での水素還元反応であり工業的でない。However, this method requires only 2 g/f of expensive white metal! It is necessary to add more than 100% of the total amount of hydrogen, which increases the processing cost, and the hydrogen reduction reaction is carried out at high temperature and high pressure, which is not industrially practical.
さらに、これらの問題解決の為、金属硫化物粉末を硫酸
第一鉄、塩化第一錫、硝酸銀水溶液で浸漬活性化処理を
する方法(特公昭6O−255902)が提案されてい
る。しかし、この方法は、処理が複雑で処理液の管理も
難しく、また、前記した特公昭55−1321の方法と
同様の高温高圧下での水素還元反応であることに伴う欠
点もある。Furthermore, in order to solve these problems, a method has been proposed in which metal sulfide powder is subjected to immersion activation treatment in an aqueous solution of ferrous sulfate, stannous chloride, and silver nitrate (Japanese Patent Publication No. 6O-255902). However, this method has disadvantages in that the treatment is complicated and the control of the treatment liquid is difficult, and the hydrogen reduction reaction is carried out under high temperature and pressure, similar to the method of Japanese Patent Publication No. 55-1321 mentioned above.
本発明者は、上述した各種の従来技術の諸課題を解決す
べ(種々研究を重ねた結果、遂に所期の目的を達成でき
る本発明を完成するに至ったのである。The inventor of the present invention has solved the various problems of the various conventional techniques mentioned above (as a result of various researches), and has finally completed the present invention which can achieve the intended purpose.
本発明に係る金属被覆金属硫化物粉末は二タイプがあり
、その−は金属硫化物粉末の表面に形成された被覆層が
、亜鉛層、錫層、鉛層若しくは半田層から選ばれる内層
と、銅層、ニッケル層若しくはコバルト層から選ばれる
外層とからなるタイプ(以下、「二重被覆層タイプ」と
いう。)であり、他の−は内層の金属と外層の金属とが
相互に拡散化乃至合金化されているタイプ(以下、「拡
散・合金型強化タイプ」という。)である。後者は、前
者を熱処理することによって得られるものであり、内層
或いは外層の金属の種類や熱処理条件によって、内層と
外層との区分を保つもの(以下、「拡散・合金型強化タ
イプ]」という。)と、内層と外層との区分を保たない
もの(以下、「拡散・合金型強化タイプ2」という。)
とに分けることができる。拡散・合金型強化タイプ1は
、内層と外層との少な(とも界面において、被覆層を構
成する内層の金属と外層の金属とが相互に拡散化乃至合
金化されていることを特徴とするものである。また1、
拡散・合金型強化タイプ2は、拡散・合金型強化タイプ
1の拡散化乃至合金化がさらに進んだものであり、金属
の表面に形成された被覆層が、亜鉛、錫、鉛若しくは半
田から選ばれる金属と、銅、ニッケル若しくはコバルト
から選ばれる金属との相互の拡散化物乃至合金化物であ
ることを特徴とするものである。There are two types of metal-coated metal sulfide powder according to the present invention, in which the coating layer formed on the surface of the metal sulfide powder is an inner layer selected from a zinc layer, a tin layer, a lead layer, or a solder layer; This type consists of an outer layer selected from a copper layer, a nickel layer, or a cobalt layer (hereinafter referred to as a "double coating layer type"). It is an alloyed type (hereinafter referred to as "diffusion/alloy strengthened type"). The latter is obtained by heat-treating the former, and maintains the distinction between the inner and outer layers depending on the type of metal in the inner or outer layer and the heat treatment conditions (hereinafter referred to as "diffusion/alloy reinforced type"). ), and those that do not maintain the distinction between the inner and outer layers (hereinafter referred to as "diffusion/alloy type strengthening type 2").
It can be divided into Diffusion/alloy type reinforcement type 1 is characterized by the fact that the metal of the inner layer and the metal of the outer layer that make up the coating layer are mutually diffused or alloyed at the interface between the inner layer and the outer layer. It is.Also 1,
Diffusion/alloy type reinforcement type 2 is a further progress in diffusion or alloying of diffusion/alloy type reinforcement type 1, and the coating layer formed on the surface of the metal is selected from zinc, tin, lead, or solder. It is characterized by being a mutually diffused product or alloy of a metal selected from copper, nickel, or cobalt.
次に、本発明に係る金属被覆金属硫化物粉末の製造方法
について説明する。Next, a method for producing metal-coated metal sulfide powder according to the present invention will be explained.
本発明に係る二重被覆層タイプの金属被覆金属硫化物粉
末の製造方法は、金属硫化物粉末と亜鉛粉、銀粉、鉛粉
若しくは半田粉から選ばれる金属粉とを容器に投入し、
該金属粉の液相発生温度以上に加熱しながら撹拌して金
属硫化物粉末の表面を亜鉛層、錫層、鉛層若しくは半田
層から選ばれる内層で被覆し、次いで、該内層の表面を
化学メッキにより銅層、ニッケル層若しくはコバルト層
から選ばれる外層で被覆して、金属硫化物粉末の表面が
内層と外層とによって二重被覆されている金属被覆金属
硫化物粉末を得ることを特徴とするものである。The method for producing a double coating layer type metal-coated metal sulfide powder according to the present invention includes charging a metal sulfide powder and a metal powder selected from zinc powder, silver powder, lead powder, or solder powder into a container;
The surface of the metal sulfide powder is coated with an inner layer selected from a zinc layer, a tin layer, a lead layer, or a solder layer by heating and stirring the metal powder to a temperature higher than the liquid phase generation temperature, and then the surface of the inner layer is coated with a chemical. It is characterized by coating with an outer layer selected from a copper layer, a nickel layer, or a cobalt layer by plating to obtain a metal-coated metal sulfide powder in which the surface of the metal sulfide powder is double coated with an inner layer and an outer layer. It is something.
また、本発明に係る拡散・合金型強化タイプの金属被覆
金属硫化物粉末の製造方法は、前記した方法によって得
た金属被覆金属硫化物粉末を還元性雰囲気又は不活性雰
囲気中で250〜700℃にて加熱することによって、
拡散・合金型強化タイプ]或いは拡散・合金型強化タイ
プ2を得ることを特徴とするものである。Further, the method for producing a diffusion/alloy type reinforced metal-coated metal sulfide powder according to the present invention includes heating the metal-coated metal sulfide powder obtained by the above-described method in a reducing atmosphere or an inert atmosphere at 250 to 700°C. By heating at
Diffusion/alloy type strengthening type] or diffusion/alloy type strengthening type 2 is obtained.
次に、本発明の構成について詳細に説明する。Next, the configuration of the present invention will be explained in detail.
本発明における金属硫化物粉末とは、自己?r11滑性
を有するもので、二硫化モリブデ〉・、二硫化タングス
テンが代表的なものである。What is the metal sulfide powder in the present invention? Typical examples include molybdenum disulfide and tungsten disulfide.
本発明に言う半田とは、ISOに規定されている軟ろう
で、錫−鉛、錫−亜鉛、錫−恨、錫−アンチモン、鉛−
恨、亜鉛−銀合金である。The solder referred to in the present invention is a soft solder defined by ISO, such as tin-lead, tin-zinc, tin-antimony, tin-antimony, and lead-tin.
Unfortunately, it is a zinc-silver alloy.
亜鉛、錫、鉛若しくは半田は、金属硫化物粉末に対し1
〜50 wtχ被覆させるのが好ましい。これが1wt
%以下では均一な被覆ができず、50w tχを超えて
被覆しても特性向上がみられないからである。Zinc, tin, lead or solder is 1% per metal sulfide powder.
It is preferable to coat with ~50 wtχ. This is 1wt
% or less, uniform coating cannot be achieved, and even if the coating exceeds 50 w tχ, no improvement in properties is observed.
本発明に係る金属被覆金属硫化物粉末は、金属硫化物粉
末の表面に亜鉛、錫、鉛若しくは半田が存在しているの
で、これらが金属硫化物中の硫黄と反応し、亜鉛、錫、
鉛(半田中の鉛を含む)との硫化物を形成する。その為
、この金属硫化物との反応性が少ない白金族に比べ、亜
鉛、錫、鉛若しくは半田と金属硫化物との密着強度が向
上する。The metal-coated metal sulfide powder according to the present invention has zinc, tin, lead, or solder on the surface of the metal sulfide powder, so these react with sulfur in the metal sulfide, and zinc, tin,
Forms sulfides with lead (including lead in solder). Therefore, the adhesion strength between zinc, tin, lead or solder and the metal sulfide is improved compared to platinum group metals which have less reactivity with the metal sulfide.
また、価格が白金族に比べ安いので多く被覆させること
ができ、従ってその分だけ被覆が均一となる。さらに、
亜鉛、錫、鉛若しくは半田は、銅。In addition, since the price is lower than that of platinum group metals, a large amount of metal can be coated, and therefore the coating can be made more uniform. moreover,
Zinc, tin, lead or solder is copper.
ニッケル若しくはコバルトに対してもメッキのつきまわ
り性が良好で、密着強度も大きい。It has good plating coverage even with nickel or cobalt, and has high adhesion strength.
次に、本発明に係る二重被覆層タイプの金属被覆金属硫
化物粉末の製造方法について説明するが、この製造方法
においては、金属硫化物粉末の表面に亜鉛層、錫層、鉛
層若しくは半田層から選ばれる内層を被覆させる工程と
、その上に銅層、ニッケルNHしくはコバルト層から選
ばれる外層を被覆させる工程とに大別される。Next, a method for producing a double coating layer type metal-coated metal sulfide powder according to the present invention will be explained. The process is roughly divided into a process of coating an inner layer selected from the layers, and a process of coating the outer layer selected from a copper layer, nickel NH, or cobalt layer thereon.
金属硫化物粉末の表面に外層を被覆するには、気相メッ
キあるいは熔融メッキ等が適用できるが、製造コスト、
被覆の均一性、密着強度の諸点から考えて溶融メッキが
好ましい。溶融メッキの具体的な方法は次の通りである
。密閉式回転ドラムの中に、金属硫化物粉末および所定
の被覆量となる様な亜鉛粉、銀粉、鉛粉若しくは半田粉
から選ばれる金属粉を投入する。この際、20重量%ま
での塩化アンモニウム等のフラックスを同時に投入して
おくと、金属粉と金属硫化物粉末との濡れ性が良くなる
ので、メッキがし易くなる。また、ガラスピーズ、ステ
ンレスビーズ等のビーズを同時に投入しておくと、金属
粉と金属硫化物粉末との混練性が良くなるので、メッキ
がし易くなる。回転ドラムを回しながら、ガスバーナー
等を用いて投入した金属粉の液相発生温度以上で10〜
60分間加熱する。投入した金属粉の液相発生温度以下
では溶融メッキが不可能であるので、これ以上で加熱す
る必要がある。この加熱を空気中で行う場合には、金属
硫化物の分解を防ぐため、450℃以下で処理しなけれ
ばならない。これに対し、還元性雰囲気又は不活性雰囲
気中で加熱する場合には、450℃以上でも金属硫化物
が分解することはないので、より高温での処理も可能で
ある。加熱処理が終わると冷却し、その後に内層で被覆
された金属硫化物粉末をビーズと区別して取り出す。Vapor phase plating or melt plating can be applied to coat the surface of metal sulfide powder with an outer layer, but manufacturing costs and
Hot-dip plating is preferred from the viewpoint of coating uniformity and adhesion strength. The specific method of hot-dip plating is as follows. A metal sulfide powder and a metal powder selected from zinc powder, silver powder, lead powder, or solder powder to achieve a predetermined coating amount are charged into a closed rotary drum. At this time, if up to 20% by weight of flux such as ammonium chloride is added at the same time, the wettability between the metal powder and the metal sulfide powder will improve, making plating easier. Furthermore, if beads such as glass beads and stainless steel beads are added at the same time, the kneading properties of the metal powder and metal sulfide powder will improve, making plating easier. While rotating the rotating drum, heat the metal powder using a gas burner etc. at a temperature higher than the temperature at which the liquid phase occurs.
Heat for 60 minutes. Since hot-dip plating is impossible below the liquid phase generation temperature of the introduced metal powder, it is necessary to heat the metal powder above this temperature. When this heating is performed in air, the temperature must be 450° C. or lower to prevent decomposition of the metal sulfide. On the other hand, when heating in a reducing atmosphere or an inert atmosphere, the metal sulfide does not decompose even at 450° C. or higher, so treatment at higher temperatures is also possible. After the heat treatment is completed, it is cooled, and then the metal sulfide powder coated with the inner layer is separated from the beads and taken out.
また、この溶融メッキを行うことにより、金属硫化物粉
末の粒径が細かいものでも、被覆される金属が結着剤と
して働くので、金属硫化物粉末が造粒又は整粒される。Moreover, by performing this hot-dip plating, even if the particle size of the metal sulfide powder is small, the coated metal acts as a binder, so the metal sulfide powder is granulated or sized.
このようにして得た内層で被覆された金属硫化物粉末を
用いると、均一な外層をメッキ効率良く得ることができ
る。By using the metal sulfide powder coated with the inner layer thus obtained, a uniform outer layer can be obtained with high plating efficiency.
次に、内層で被覆された金属硫化物粉末の表面に銅層、
ニッケル層若しくはコバル+−iがら選ばれる外層を被
覆するには、化学メッキの他、置換メッキ、電気メッキ
、気相メッキ等を適用できるが、安定性から化学メッキ
が好ましい。化学メッキの処理条件については、使用す
る金属の種類に応じて区々であるので、各金属毎に説明
する。Next, a copper layer on the surface of the metal sulfide powder coated with an inner layer,
To coat the outer layer selected from the nickel layer and cobal +-i, other methods such as displacement plating, electroplating, vapor phase plating, etc. can be applied in addition to chemical plating, but chemical plating is preferred from the viewpoint of stability. The processing conditions for chemical plating vary depending on the type of metal used, so they will be explained for each metal.
銅を被覆する場合には、銅とキレート結合を起こさせる
ような錯化剤、例えばpH10〜13に調整したロッセ
ル塩、クエン酸若しくはエチレンヂアミン四酢酸の溶液
中に、内層で被覆された金属硫化物粉末を投入する。次
いで、これを撹拌しつつ上記PHに維持しながらホルマ
リン溶液と銅化合物水溶液を徐々に滴下することにより
、銅をメッキする事が出来る。反応温度としては、ロッ
セル塩浴のときは15〜40″C、クエン酸塩浴のとき
は25〜45℃1エチレンヂアミン四酢酸浴のときは2
5〜60℃が好ましい。前記した温度の上限を超えると
、メッキ浴が分解し易く、異常析出した銅粉が金属被覆
金属硫化物粉末中に存在し、製品の品質を悪くする恐れ
がある。また一方、前記した下限の温度に至らないと、
メッキ反応が進行し難い。When coating copper, the metal coated with the inner layer is added to a solution of a complexing agent capable of forming a chelate bond with copper, such as Rossel's salt, citric acid, or ethylenediaminetetraacetic acid adjusted to pH 10 to 13. Add sulfide powder. Next, by gradually dropping a formalin solution and an aqueous copper compound solution while stirring and maintaining the pH above, copper can be plated. The reaction temperature is 15-40"C in the case of Rosselle's salt bath, 25-45"C in the case of citrate bath, 2 degrees Celsius in the case of ethylenediaminetetraacetic acid bath.
The temperature is preferably 5 to 60°C. If the temperature exceeds the above upper limit, the plating bath is likely to decompose, and abnormally precipitated copper powder will be present in the metal-coated metal sulfide powder, which may deteriorate the quality of the product. On the other hand, if the temperature does not reach the lower limit mentioned above,
Plating reaction is difficult to proceed.
ニッケルを被覆する場合は、pH8〜13に調整したロ
ッセル塩又はクエン酸塩のアルカリ溶液中に、内層で被
覆された金属硫化物粉末を投入する。When coating with nickel, the metal sulfide powder coated with the inner layer is placed in an alkaline solution of Rosselle's salt or citrate adjusted to pH 8-13.
次いで、これを撹拌しつつ上記pHに維持しながら次亜
リン酸ナトリウム、ヒドラジン、若しくは水素化ホウ化
物から選ばれる還元剤と二・シケル化合物水溶液を徐々
に滴下することにより、ニッケルをメ・ンキすることが
出来る。反応温度としては60〜95℃が好ましい。Next, while stirring and maintaining the above pH, a reducing agent selected from sodium hypophosphite, hydrazine, or borohydride and an aqueous di-Sikel compound solution are gradually added dropwise to remove nickel. You can. The reaction temperature is preferably 60 to 95°C.
コバルトを被覆する場合は、PHを11〜13に維持す
ること、コバルト化合物水溶液を金属源とする以外はニ
ッケル被覆と同様の操作で行うことが出来る。When coating with cobalt, the same operation as for nickel coating can be performed except that the pH is maintained at 11 to 13 and an aqueous cobalt compound solution is used as the metal source.
このような上記化学メッキ法によると、注入した金属の
略全量が内層の表面上にメッキされ、しかも所望の外層
を裔精度をもって而単に形成することができ、さらに浴
の管理が非常にたやずいという特長がある。According to the above chemical plating method, almost the entire amount of the injected metal is plated on the surface of the inner layer, and the desired outer layer can be easily formed with precision, and bath management is very easy. It has the characteristic of being wet.
なお、上記したメッキを終了した後、水洗、乾燥を行う
ことによって、本発明に係る二重被覆層タイプの金属被
覆金属硫化物粉末を得る。Incidentally, after completing the above-mentioned plating, washing with water and drying are performed to obtain a double coating layer type metal-coated metal sulfide powder according to the present invention.
前記した方法によって得た二重被覆層タイプの金属被覆
金属硫化物粉末は、均一被覆性、密着性共に良好なもの
である。しかし、利用分野によっては、さらに強固な密
着性をもつことが望まれることがある。例えば、焼結金
属等に使用する場合、銅粉末などの異種金属粉との混合
時の被覆層の剥離を防止することが必要である。このよ
うな特性を満足できる金属被覆金属硫化物粉末が本発明
に係る拡散・合金型強化タイプのものである。以下、そ
の製造方法について説明する。前記した方法によって得
た二重被覆層タイプの金属被覆金属硫化物粉末を、水素
あるいはアンモニア分解ガス等の還元性雰囲気中、また
はチッソ、アルゴン、ヘリウム等の不活性雰囲気中で加
熱すればよい。加熱条件は、250〜700″Cで10
分間〜数時間熱処理を施せばよい。熱処理を250”C
以下にすると、拡散化乃至合金化または外層の軟質化が
十分には進まないので、密着性を向上させることができ
難くなる傾向がある。一方700℃以上にすると、金属
被覆金属硫化物粉末自体の焼結が起こり易くなり、この
ように焼結したものを粉砕機で処理すると被覆層の破砕
を生じ、金属硫化物の露出が起こる。The double coating layer type metal-coated metal sulfide powder obtained by the method described above has good uniform coating properties and good adhesion. However, depending on the field of use, even stronger adhesion may be desired. For example, when used for sintered metals, it is necessary to prevent the coating layer from peeling off when mixed with dissimilar metal powder such as copper powder. A metal-coated metal sulfide powder that satisfies such characteristics is a diffusion/alloy type reinforced type powder according to the present invention. The manufacturing method will be explained below. The double layer type metal-coated metal sulfide powder obtained by the method described above may be heated in a reducing atmosphere such as hydrogen or ammonia decomposition gas, or in an inert atmosphere such as nitrogen, argon, helium, etc. Heating conditions are 250-700″C for 10
Heat treatment may be performed for a minute to several hours. Heat treatment at 250”C
If it is below, diffusion or alloying or softening of the outer layer will not proceed sufficiently, so it will tend to be difficult to improve adhesion. On the other hand, if the temperature is 700° C. or higher, sintering of the metal-coated metal sulfide powder itself tends to occur, and when the sintered powder is processed in a pulverizer, the coating layer is crushed and the metal sulfide is exposed.
このようにして二重被覆層タイプの金属被覆金属硫化物
粉末を所定の温度で熱処理すると、金属硫化物と内層を
構成する亜鉛、錫、鉛若しく半田との反応が活発となる
。さらに、それと同時に内層及び外層が焼結によって収
縮する。この焼結の際に、内層の金属と外層の金属との
相互の拡散化乃至合金化が進む。これは、溶融メッキに
よる金属の析出粒子並びに化学メッキによる被覆金属析
出粒子が、非常に微細かつ緻密で活性に富んでいる為に
起こるものと推定される。拡散化又は合金化の何れが起
こるかは、二重被覆層タイプの金属被覆金属硫化物粉末
の熱処理条件によって決定される。また、、内層の金属
と外層の金属との組み合わせ(例えば、内層が鉛で外層
が銅)の場合には、相互の拡散化又は合金化の起こり難
いものがある。When the double coating layer type metal-coated metal sulfide powder is heat-treated at a predetermined temperature in this manner, the reaction between the metal sulfide and the zinc, tin, lead, or solder constituting the inner layer becomes active. Furthermore, at the same time, the inner layer and the outer layer shrink due to sintering. During this sintering, mutual diffusion or alloying between the metal of the inner layer and the metal of the outer layer progresses. It is presumed that this occurs because the metal precipitated particles by hot-dip plating and the coated metal precipitated particles by chemical plating are extremely fine, dense, and highly active. Whether diffusion or alloying occurs is determined by the heat treatment conditions of the double layer type metal-coated metal sulfide powder. Further, in the case of a combination of an inner layer metal and an outer layer metal (for example, the inner layer is lead and the outer layer is copper), mutual diffusion or alloying may be difficult to occur.
しかし、この場合も、上記の熱処理をすることによって
、化学メッキにより生じた外層内のひずみが除去され軟
化され、その結果として外層を安定化させることができ
る。ところで、前記した内層の金属と外層の金属との相
互の拡散化乃至合金化は、内層或いは外層の金属の種類
や熱処理条件によって、内層と外層との区分を保つ拡散
・合金型強化タイプ1になったり、内層と外層との区分
を保たない拡散・合金型強化タイプ2になったりする。However, in this case as well, by performing the above heat treatment, the strain in the outer layer caused by chemical plating is removed and softened, and as a result, the outer layer can be stabilized. By the way, the above-mentioned mutual diffusion or alloying of the metal of the inner layer and the metal of the outer layer can be achieved by diffusion/alloy reinforcement type 1, which maintains the separation between the inner layer and the outer layer, depending on the type of metal of the inner layer or outer layer and the heat treatment conditions. In other cases, it becomes diffusion/alloy type reinforcement type 2, which does not maintain the distinction between the inner and outer layers.
このようにして得た本発明に係る拡散・合金型強化タイ
プの金属被覆金属硫化物粉末は、これを異種金属粉と混
合しても銅、ニッケル若しくはコバルト層の剥離が殆ど
見られないものとなる。The diffusion/alloy-type reinforced metal-coated metal sulfide powder according to the present invention thus obtained shows almost no peeling of the copper, nickel or cobalt layer even when mixed with different metal powder. Become.
次に本発明の構成を実施例に基づいて説明する。 Next, the configuration of the present invention will be explained based on examples.
実施例1
密閉式回転ドラム(500mft容量)に、市販の二硫
化モリブデン粉末(住鉱潤滑剤■製:商品名「モリパウ
ダー」)20g、半田(錫63%−鉛)粉1g、市販の
1級塩化アンモニウム1g、ガラスピーズ(直径2mm
)5gを同時に投入し、ドラムを回転させながらガスバ
ーナーにて190″C,30分間加熱処理を行い、二硫
化モリブデン粉末の表面が半田(錫−鉛)層で被覆され
た粉末を得た。Example 1 In a closed rotary drum (500 mft capacity), 20 g of commercially available molybdenum disulfide powder (manufactured by Sumiko Lubricants ■, trade name "Moly Powder"), 1 g of solder (tin 63%-lead) powder, and commercially available 1 grade ammonium chloride 1g, glass beads (diameter 2mm)
) and heat-treated at 190''C for 30 minutes with a gas burner while rotating the drum to obtain molybdenum disulfide powder whose surface was coated with a solder (tin-lead) layer.
次に、この粉末をふるい分けした後、pH12,0〜1
2.5に調整したロッセル塩(150g/f ) 20
0ml溶液中に添加し、これを撹拌しつつ上記pHを維
持しながら塩化第二銅液(銅20g、10%溶液)とホ
ルマリン35%溶液とを含むメッキ液を滴下してメッキ
を行った。そして、濾別、乾燥後、前記した半田(錫−
鉛)層の表面に銅層が被覆された銅−半田(錫−鉛)被
覆二硫化モリブデン粉末40gを得た。Next, after sieving this powder, pH 12,0-1
Rossel salt adjusted to 2.5 (150g/f) 20
Plating was performed by dropping a plating solution containing a cupric chloride solution (20 g of copper, 10% solution) and a 35% formalin solution while stirring and maintaining the above pH. After filtering and drying, the solder (tin-
40 g of copper-solder (tin-lead) coated molybdenum disulfide powder was obtained, the surface of which was coated with a copper layer.
反応終了後の液中の銅イオン濃度は0.02P P m
であり、注入した銅イオンの約100%がメッキされ、
色調、つきまわり性も申し分なかった。The copper ion concentration in the solution after the reaction is 0.02P P m
Approximately 100% of the implanted copper ions are plated,
The color tone and coverage were also perfect.
実施例2
実施例1によって得た銅−半田(錫−鉛)被覆二硫化モ
リブデン粉末20gを、水素ガス雰囲気中350℃,2
時間熱処理を行い、外層を形成していた銅と内層を形成
していた半田(錫−鉛)とが合金化した銅−錫一鉛合金
被覆二硫化モリブデン粉末を得た。Example 2 20 g of the copper-solder (tin-lead) coated molybdenum disulfide powder obtained in Example 1 was heated at 350°C for 2 hours in a hydrogen gas atmosphere.
A time heat treatment was performed to obtain a copper-tin-lead alloy coated molybdenum disulfide powder in which the copper forming the outer layer and the solder (tin-lead) forming the inner layer were alloyed.
実施例3
実施例1で用いた密閉式回転ドラムに、市販の二硫化モ
リブデン粉(AMAX社製:商品名「テクニカルグレー
ド」)20g、半田(錫92%−亜鉛)粉(250メツ
シユアンダー)2g、市販の1級塩化アンモニウム2g
、ガラスピーズ8g (Fill 2mm)を投入し、
ガスバーナーにて210 ’C,40分間加熱を行い、
二硫化モリブデン粉末の表面が半ETI (錫亜鉛)N
で被覆された粉末を得た。Example 3 Into the closed rotary drum used in Example 1, 20 g of commercially available molybdenum disulfide powder (manufactured by AMAX, trade name "Technical Grade") and solder (92% tin-zinc) powder (250 mesh under) were added. 2g, commercially available primary ammonium chloride 2g
, add 8g of glass peas (Fill 2mm),
Heated at 210'C for 40 minutes with a gas burner.
The surface of molybdenum disulfide powder is semi-ETI (tin zinc) N
A powder coated with was obtained.
次に、銅の被覆量が50%になる様に、硫酸銅(銅22
g、10%溶液)とホルマリンとを含むメッキ液を用い
、また錯化剤として2Na−エチレンヂアミン四酢酸(
150g/ l ) 200 mAを用い、実施例1と
同様に化学メッキを行った。その結果、前記した半田(
錫−亜鉛)Hの表面に銅層が被覆された銅−半田(錫−
亜鉛)−銅被覆二硫化モリブデン粉末44gを得た。Next, add copper sulfate (copper 22
g, 10% solution) and formalin, and 2Na-ethylenediaminetetraacetic acid (2Na-ethylenediaminetetraacetic acid) was used as a complexing agent.
Chemical plating was performed in the same manner as in Example 1 using 150 g/l) and 200 mA. As a result, the solder described above (
Copper-solder (tin-zinc) H coated with a copper layer
44 g of copper-coated molybdenum disulfide powder was obtained.
実施例4
実施例3によって得た銅−半田(錫−亜鉛)被覆二硫化
モリブデン粉末20gを水素ガス70Volχ。Example 4 20 g of the copper-solder (tin-zinc) coated molybdenum disulfide powder obtained in Example 3 was added to 70 Volx of hydrogen gas.
窒素ガス30Volχの雰囲気中400″C,30分熱
処理を行い、外層を形成していた銅と内層を形成してい
た半田(錫−鉛)とが合金化した銅−錫一亜鉛合金被覆
二硫化モリブデン粉末を得た。Heat treated at 400''C for 30 minutes in an atmosphere of nitrogen gas 30 Volχ to form a copper-tin-zinc alloy coated disulfide alloy in which the copper forming the outer layer and the solder (tin-lead) forming the inner layer were alloyed. Molybdenum powder was obtained.
実施例5
実施例1で用いた密閉式回転ドラム中に、二硫化モリブ
デン粉末(住鉱潤滑剤■製:商品名「モリパウダー」)
20g、銀粉0.6g、ガラスピーズ5gを投入し、ガ
スバーナーにて230°c、30分間加熱処理を行い、
二硫化モリブデン粉末の表面が錫層で被覆された粉末を
得た。Example 5 In the closed rotary drum used in Example 1, molybdenum disulfide powder (manufactured by Sumiko Lubricants ■: trade name "Moly Powder") was placed.
20g, 0.6g of silver powder, and 5g of glass peas were heated at 230°C for 30 minutes using a gas burner.
A powder was obtained in which the surface of molybdenum disulfide powder was coated with a tin layer.
次に、銅被覆量が60%となるように、この粉末の表面
に実施例1と同様にして化学メッキを行い、前記した錫
層の表面に銅層が被覆された銅−錫被覆二硫化モリブデ
ン粉末51gを得た。Next, the surface of this powder was chemically plated in the same manner as in Example 1 so that the copper coating amount was 60%, and the copper-tin-coated disulfide powder was coated with a copper layer on the surface of the tin layer. 51 g of molybdenum powder was obtained.
実施例6
実施例5によって得た銅−錫被覆二硫化モリブデン粉末
20gをアルゴンガス中、500℃で30分間熱処理を
行い、外層を形成していた銅と内層を形成していた錫と
が合金化した銅−錫合金被覆二硫化モリブデン粉末を得
た。Example 6 20 g of the copper-tin-coated molybdenum disulfide powder obtained in Example 5 was heat-treated at 500°C for 30 minutes in argon gas to form an alloy between the copper forming the outer layer and the tin forming the inner layer. A copper-tin alloy coated molybdenum disulfide powder was obtained.
実施例7
実施例1で用いた密閉式回転ドラム中に、二硫化モリブ
デン粉末(住鉱潤滑剤■製:商晶名「モリパウダー」)
20g、亜鉛粉15g1ガラスピーズ20gを投入し、
ガスバーナーにて430℃で30分間加熱処理を行い、
二硫化モリブデン粉末の表面が亜鉛層で被覆された粉末
を得た。Example 7 In the closed rotary drum used in Example 1, molybdenum disulfide powder (manufactured by Sumiko Lubricants ■: trade name "Moly Powder") was added.
Add 20g of zinc powder and 15g of zinc powder and 20g of glass peas.
Heat treatment was performed at 430°C for 30 minutes using a gas burner.
A powder was obtained in which the surface of molybdenum disulfide powder was coated with a zinc layer.
次に、この粉末の表面に、銅被覆量が50%となるよう
に実施例1と同様にして化学メッキを行い、前記した亜
鉛層の表面にw4層が被覆された銅−亜鉛被覆二硫化モ
リブデン粉末70gを得た。Next, chemical plating was performed on the surface of this powder in the same manner as in Example 1 so that the amount of copper coating was 50%, and the surface of the above-mentioned zinc layer was coated with a W4 layer. 70 g of molybdenum powder was obtained.
実施例8
実施例7によって得た銅−亜鉛被覆二硫化モリブデン粉
末20gを水素ガス中、550℃で1時間熱処理を行い
、外層を形成していた銅と内層を形成していた亜鉛とが
合金化した銅−亜鉛合金被覆二硫化モリブデン粉末を得
た。Example 8 20 g of the copper-zinc coated molybdenum disulfide powder obtained in Example 7 was heat-treated in hydrogen gas at 550°C for 1 hour to form an alloy between the copper forming the outer layer and the zinc forming the inner layer. A copper-zinc alloy coated molybdenum disulfide powder was obtained.
比較例1
開放型回転ドラム(1000d容量)に、二硫化モリブ
デン粉末(住鉱潤滑剤■製:商品名[モリパウダーj、
平均粒径15μ)200gに硝酸パラジウム水溶液(パ
ラジウム0.1g/f溶液) 200mff1を加え
て混合し、赤外ランプで乾燥脱水後ガスバーナーにて3
50℃、30分間加熱処理を行った。次に、これと粒度
200メツシユアンダーの還元鉄粉180gとを撹拌機
付きセメンチージョン容器に投入し、混合しながら酸性
硫酸銅溶液(遊離酸200g/ f 。Comparative Example 1 Molybdenum disulfide powder (manufactured by Sumiko Lubricants ■: product name [Moly Powder J,
Add 200 mff1 of palladium nitrate aqueous solution (palladium 0.1 g/f solution) to 200 g (average particle size 15 μ), mix, dry with an infrared lamp, dehydrate, and dry with a gas burner for 30 minutes.
Heat treatment was performed at 50°C for 30 minutes. Next, this and 180 g of reduced iron powder with a particle size of 200 mesh under were placed in a cementation container equipped with a stirrer, and while mixing, an acidic copper sulfate solution (free acid 200 g/f) was added.
銅50g/14j2を徐々に添加し、セメンチージョン
反応を15分間行った。水洗乾燥後の銅析出量は49%
であった。このようにして、二硫化モリブデン粉末の表
面に内層としてパラジウム層が被覆され、外層として銅
層が被覆された銅−パラジウム被覆二硫化モリブデン粉
末を得た。50g/14j2 of copper was gradually added and the cementation reaction was carried out for 15 minutes. The amount of copper precipitation after washing with water and drying is 49%
Met. In this way, a copper-palladium-coated molybdenum disulfide powder was obtained, in which the surface of the molybdenum disulfide powder was coated with a palladium layer as an inner layer and a copper layer as an outer layer.
上記した実施例1〜8及び比較例1によって得た金属被
覆二硫化モリブデン粉末の被覆層の剥離試験結果及び被
覆層の構成XMAを表−1に示す。Table 1 shows the peel test results of the coating layer of the metal-coated molybdenum disulfide powder obtained in Examples 1 to 8 and Comparative Example 1 and the structure XMA of the coating layer.
麦二上
※1:実体顕微鏡(250倍率)の観察によって、完全
に被覆された粉体の全体に占める割合をランダムに5視
野サンプリングし、その平均値をもって定めた。Mugijo*1: The ratio of completely covered powder to the whole was randomly sampled from 5 visual fields by observation using a stereomicroscope (250x magnification), and the average value was determined.
※2:実施例1〜8及び比較例1で得た金属被覆二硫化
モリブデン粉末を対象とした。*2: The metal-coated molybdenum disulfide powders obtained in Examples 1 to 8 and Comparative Example 1 were targeted.
※3:実施例1〜8及び比較例1で得た金属被覆二硫化
モリブデン粉末70volχをガラスピーズ(直径2価
) 30volχと共に1時間回転混合した後にふるい
分けしたものを対象とした。*3: The metal-coated molybdenum disulfide powder obtained in Examples 1 to 8 and Comparative Example 1 (70 vol.
※4:X線マイクロアナライザーを使用して表面組成を
解析した。*4: Surface composition was analyzed using an X-ray microanalyzer.
実施例9
密閉式回転ドラム(500+++j!容量)に市販の二
硫化モリブデン粉末(AMAX製:商品名「テクニカル
ファイン」、平均粒径0.8μ)20g、銀粉2g、市
販の1級塩化アンモニウムIg、ガラスピーズ(直径2
mm) 5gを同時に投入し、ドラムを回転させながら
ガスバーナーにて250“Cで1時間加熱処理を行い、
二硫化モリブデン粉末の表面が錫層で被覆された粉末を
得た。Example 9 In a closed rotary drum (500 + + + j! capacity), 20 g of commercially available molybdenum disulfide powder (manufactured by AMAX: trade name "Technical Fine", average particle size 0.8 μ), 2 g of silver powder, commercially available primary ammonium chloride Ig, Glass peas (diameter 2
mm) 5g was added at the same time and heated at 250"C for 1 hour with a gas burner while rotating the drum.
A powder was obtained in which the surface of molybdenum disulfide powder was coated with a tin layer.
次に、この粉末をふるい分けした後、pH12,0〜1
2.5に調整したロッセル塩(150g/ 1 )20
0m:容ン夜中に添加し、これを撹拌しつつ上記p H
に維持しながら塩化第二銅液(銅として51g、 10
%溶液)とホルマリン35%溶液とを含み温度20〜2
5℃に調整したメッキ液を滴下してメッキを行った。Next, after sieving this powder, pH 12,0-1
Rossel salt adjusted to 2.5 (150g/1) 20
0m: Added during the night, and while stirring, the above pH
Cupric chloride solution (51 g as copper, 10
% solution) and formalin 35% solution at a temperature of 20 to 2
Plating was performed by dropping a plating solution adjusted to 5°C.
そして濾別、乾燥後、前記した錫層の表面に銅層が被覆
された銅−錫被覆二硫化モリブデン粉末72gを得た。After filtering and drying, 72 g of copper-tin-coated molybdenum disulfide powder was obtained, in which the surface of the tin layer was coated with a copper layer.
反応終了後の液中の銅イオン濃度は0.02p p m
であり、注入した銅・イオンの約100%がメッキされ
、色調、つきまわり性も申し分なかった。The copper ion concentration in the solution after the reaction is 0.02 p p m
Approximately 100% of the implanted copper and ions were plated, and the color tone and throwing power were perfect.
実施例10
実施例9によって得た銅−錫被覆二硫化モリブデン粉末
20gを水素ガス雰囲気中400’Cで1時間熱処理を
行い、外層を形成していた銅と内層を形成していた錫と
が合金化した強化型銅−錫被覆二硫化モリブデン粉末を
得た。Example 10 20 g of the copper-tin coated molybdenum disulfide powder obtained in Example 9 was heat-treated at 400'C for 1 hour in a hydrogen gas atmosphere, so that the copper forming the outer layer and the tin forming the inner layer were separated. An alloyed reinforced copper-tin coated molybdenum disulfide powder was obtained.
実施例11
実施例9で用いた密閉式回転ドラム中に、市販の二硫化
モリブデン粉末(住鉱潤滑剤■製:商品名「モリパウダ
ーPBJ平均粒径15μ)20g、半田(錫63%−鉛
)粉1g、市販の1級塩化アモンニウム2g+ガラスピ
ーズ7g(直径2mm)を投入し、ガスバーナーにて1
90℃240分間加熱を行い、二硫化モリブデン粉末の
表面が半田(錫−鉛)で被覆された粉末を得た。Example 11 In the closed rotary drum used in Example 9, 20 g of commercially available molybdenum disulfide powder (manufactured by Sumiko Lubricants ■: trade name "Molypowder PBJ average particle size 15 μm") and solder (63% tin - lead) were added. ) powder, 2 g of commercially available primary ammonium chloride + 7 g of glass peas (diameter 2 mm), and heated with a gas burner.
Heating was performed at 90° C. for 240 minutes to obtain molybdenum disulfide powder whose surface was coated with solder (tin-lead).
次に、銅被覆量が50%となるように、メッキ液として
塩化第二銅液(銅として21g、 10%溶液)とホル
マリン溶液とを含む溶液を用い、また錯化剤としてpH
を12.0〜12.5に調整した2Na−エチレンヂア
ミン四酢酸(150g/ l )250mllを用い、
反応温度50℃にて実施例9と同様に化学メッキを行っ
た。Next, a solution containing a cupric chloride solution (21 g of copper, 10% solution) and a formalin solution was used as a plating solution so that the copper coating amount was 50%, and a pH
Using 250 ml of 2Na-ethylenediaminetetraacetic acid (150 g/l) adjusted to 12.0 to 12.5,
Chemical plating was performed in the same manner as in Example 9 at a reaction temperature of 50°C.
その結果、前記した半田(錫−鉛)層の表面に銅層が被
覆された銅−半田(錫−鉛)被覆二硫化モリブデン粉末
42gを得た。As a result, 42 g of copper-solder (tin-lead) coated molybdenum disulfide powder was obtained, in which the surface of the solder (tin-lead) layer described above was coated with a copper layer.
実施例12
実施例11によって得た銅−半田(錫−鉛)被覆二硫化
モリブデン粉末20gを水素ガス雰囲気中250℃93
0分間熱処理を行い、外層の銅層と内層の半田層(錫−
鉛)との界面で銅と半田(錫−鉛)とが合金化した強化
型銅−錫一鉛被覆二硫化モリブデン粉末を得た。Example 12 20 g of copper-solder (tin-lead) coated molybdenum disulfide powder obtained in Example 11 was heated at 250° C.93 in a hydrogen gas atmosphere.
Heat treatment is performed for 0 minutes, and the outer copper layer and inner solder layer (tin-
A strengthened copper-tin-lead coated molybdenum disulfide powder was obtained in which copper and solder (tin-lead) were alloyed at the interface with lead).
実施例13
実施例9で用いた密閉式回転ドラム中に二硫化モリブデ
ン粉末(AM^X製:「テクニカルグレード」平均粒径
7μ)20g、半田(錫92パーセント亜鉛)粉0.6
g、ガラスピース5gを投入し、ガスバーナーにて21
0℃230分間加熱処理を行い、二硫化モリブデン粉末
の表面が半田(錫−亜鉛)層で被覆された粉末を得た。Example 13 In the closed rotating drum used in Example 9, 20 g of molybdenum disulfide powder (manufactured by AM^X: "Technical grade" average particle size 7 μm) and 0.6 g of solder (tin 92% zinc) powder were placed.
g, put 5g of glass pieces and burn it on a gas burner for 21 hours.
Heat treatment was performed at 0° C. for 230 minutes to obtain molybdenum disulfide powder whose surface was coated with a solder (tin-zinc) layer.
次に、この粉末の表面に、銅被覆量が60%となるよう
に実施例9と同様にして化学メッキを行い、前記した半
田層の表面に銅層が被覆された銅−半田(錫−亜鉛)被
覆二硫化モリブデン粉末52gを得た。Next, chemical plating was performed on the surface of this powder in the same manner as in Example 9 so that the copper coating amount was 60%, and copper-solder (tin-solder) was coated with a copper layer on the surface of the solder layer described above. 52 g of zinc-coated molybdenum disulfide powder was obtained.
実施例14
実施例13によって得た銅−半田(錫−亜鉛)被覆二硫
化モリブデン粉末20gを水素ガス70volχ。Example 14 20 g of the copper-solder (tin-zinc) coated molybdenum disulfide powder obtained in Example 13 was added to 70 vol x of hydrogen gas.
窒素30vo Iχ雰囲気中350℃で1.5時間熱処
理を行い、外層を形成していた銅と内層を形成していた
半田(錫−亜鉛)とが合金化した強化型銅−錫一亜鉛被
覆二硫化モリブデン粉末を得た。Heat treatment was performed at 350°C for 1.5 hours in a nitrogen 30vo Iχ atmosphere to form a strengthened copper-tin-zinc coated two in which the copper forming the outer layer and the solder (tin-zinc) forming the inner layer were alloyed. Molybdenum sulfide powder was obtained.
実施例15
実施例9で用いた密閉式回転ドラム中に、二硫化モリブ
デン粉末(モリパウダーP[l)20g、半田(錫93
.5%−銀)粉1g、ガラスピーズ10gを投入し、ガ
スバーナーにて230℃,1時間加熱処理を行い、二硫
化モリブデン粉末の表面が半田(錫−銀)層で被覆され
た粉末を得た。Example 15 In the closed rotating drum used in Example 9, 20 g of molybdenum disulfide powder (Moly powder P[l) and solder (tin 93
.. 1 g of 5%-silver) powder and 10 g of glass peas were added and heat-treated at 230°C for 1 hour using a gas burner to obtain a powder in which the surface of the molybdenum disulfide powder was covered with a solder (tin-silver) layer. Ta.
次にこの粉末をふるい分けした後、pH11〜11゜5
に調整したロッセル塩(100g/ l )200mf
溶液中に添加し、これを撹拌しつつ上記pHに維持しな
がら塩化ニッケル液にッケルとして21g、 10χ溶
液)と次亜リン酸ナトリウム溶液(10χ溶液)とを含
み反応温度80〜85℃に調整したメッキ液を滴下して
メッキを行った。そして濾別、乾燥後、前記した半田(
錫−銀)層の表面にニッケル層が被覆されたニッケル二
半田(錫−銀)被覆二硫化モリブデン粉末42gを得た
。Next, after sieving this powder, the pH was adjusted to 11-11°5.
Rossel salt (100g/l) adjusted to 200mf
Add 21 g of nickel to the nickel chloride solution (10χ solution) and sodium hypophosphite solution (10χ solution) and adjust the reaction temperature to 80 to 85°C while stirring and maintaining the above pH. Plating was performed by dropping the plating solution. After filtering and drying, the solder described above (
42 g of molybdenum disulfide powder coated with nickel solder (tin-silver) was obtained, in which the surface of the tin-silver layer was coated with a nickel layer.
実施例16
実施例15によって得たニッケルー半田被覆二硫化モリ
ブデン粉末20gをアルゴンガス中450’C,1時間
熱処理を行い、外層を形成していたニッケルと内層を形
成していた半田(錫−銀)とが合金化した強化型ニッケ
ルー錫−銀被覆二硫化モリブデン粉末を得た。Example 16 20 g of the nickel-solder coated molybdenum disulfide powder obtained in Example 15 was heat-treated at 450'C in argon gas for 1 hour to separate the nickel forming the outer layer and the solder (tin-silver forming the inner layer). ) was obtained. A reinforced type nickel-tin-silver coated molybdenum disulfide powder was obtained.
実施例17
実施例9で用いた密閉式回転ドラム中に、二硫化モリブ
デン粉末(AMAXテクニカルグレード)20g、亜鉛
粉10g、ガラスピーズ10gを投入し、ガスバーナー
にて430”C,30分間加熱処理を行い、二硫化モリ
ブデン粉末の表面が亜鉛層で被覆された粉末を得た。Example 17 20 g of molybdenum disulfide powder (AMAX technical grade), 10 g of zinc powder, and 10 g of glass peas were placed in the closed rotating drum used in Example 9, and heat treated with a gas burner at 430"C for 30 minutes. A powder in which the surface of molybdenum disulfide powder was coated with a zinc layer was obtained.
次にこの粉末の表面にニッケル被覆量が60χとなるよ
うに、硫酸ニッケル、ヒドラジン溶液を滴下してpH8
〜8.5.温度90〜95℃で実施例9と同様にしてメ
ッキを行った。錯化剤としてはクエン酸ナトリウム溶液
(150g/ I!、 )を200 ml用いた。前記
した亜鉛層の表面にニッケル層が被覆されたニッケルー
亜鉛被覆二硫化モリブデン粉末75gを得た。Next, a nickel sulfate and hydrazine solution was dropped onto the surface of this powder so that the amount of nickel coated was 60χ, and the pH was adjusted to 8.
~8.5. Plating was carried out in the same manner as in Example 9 at a temperature of 90 to 95°C. As a complexing agent, 200 ml of sodium citrate solution (150 g/I!) was used. 75 g of nickel-zinc coated molybdenum disulfide powder was obtained, in which the surface of the zinc layer was coated with a nickel layer.
実施例18
実施例I7によって得たニッケルー亜鉛被覆二硫化モリ
ブデン粉末20gを窒素ガス中350’C,30分間熱
処理を行い、外層のニッケル層と内層の亜鉛層との界面
で銅と亜鉛とが合金化した強化型ニッケルー亜鉛被覆二
硫化モリブデン粉末を得た。Example 18 20 g of the nickel-zinc coated molybdenum disulfide powder obtained in Example I7 was heat-treated at 350'C in nitrogen gas for 30 minutes to form an alloy between copper and zinc at the interface between the outer nickel layer and the inner zinc layer. A reinforced nickel-zinc coated molybdenum disulfide powder was obtained.
実施例19
実施例9で用いた密閉式回転ドラム中に、二硫化モリブ
デン粉末(テクニカル)20g、鉛1512g+ステン
レスビーズ(直径i 、5mm) logを投入し、ガ
スバーナーにて330”C,45分間加熱処理を行い、
二硫化モリブデン粉末の表面が鉛層で被覆された粉末を
得た。Example 19 Into the closed rotary drum used in Example 9, 20 g of molybdenum disulfide powder (technical), 1512 g of lead + stainless steel beads (diameter i, 5 mm) log were put, and heated at 330"C for 45 minutes with a gas burner. Perform heat treatment,
A powder was obtained in which the surface of molybdenum disulfide powder was coated with a lead layer.
次にコバルトの被31が60χとなるように、硫酸コバ
ルト (コバルトとして33g、 10χ溶液)と次亜
リン酸ナトリウム10χ溶液)をメッキ液とし、クエン
酸ナトリウム(150i、!りを錯化剤とし、p Hl
l、0〜1工、5、反応温度85〜90℃に調整しなが
ら実施例9と同様にしてコバルトメッキを行った。Next, cobalt sulfate (33g of cobalt, 10χ solution) and sodium hypophosphite (10χ solution) were used as the plating solution so that the cobalt coating was 60χ, and sodium citrate (150i,!) was used as the complexing agent. , p Hl
Cobalt plating was carried out in the same manner as in Example 9 while adjusting the reaction temperature to 85 to 90°C.
その結果、鉛層の表面にコバルト層が均一に被覆された
コバルト−鉛被覆二硫化モリブデン粉末55gを得た。As a result, 55 g of cobalt-lead coated molybdenum disulfide powder was obtained, in which the surface of the lead layer was uniformly coated with a cobalt layer.
実施例20
実施例19によって得たコバルト−鉛被1シー硫化モリ
ブデン粉末20gを水射ガス中550″C、1,5時間
熱処理を行い、外層のコバルト層が軟質化した強化型コ
バルト−鉛被覆二硫化モリブデン粉末を得た。Example 20 20 g of the cobalt-lead coated molybdenum sulfide powder obtained in Example 19 was heat-treated in water injection gas at 550''C for 1.5 hours to form a reinforced cobalt-lead coat with a softened outer cobalt layer. Molybdenum disulfide powder was obtained.
比較例2
開放型回転ドラム(1000mf容量)に、二硫化モリ
ブデン粉末(AMAX社製= 「テクニカルファイン。Comparative Example 2 Molybdenum disulfide powder (manufactured by AMAX = "Technical Fine.
平均粒径0.8μ)200 gに硝酸パラジウム水溶液
(パラジウム0.15g#!溶液) 200mRを加
えて混合し、赤外ランプで乾燥脱水後ガスバーナーにて
350℃130分間加熱処理を行った。次に、これと粒
度200メツシユアンダーの還元鉄粉420gとを撹拌
機付きセメンチージョン容器に投入し、混合しながら酸
性硫酸銅溶液(′t1離酸200g/ j2 、銅50
g/f)9.44!を徐々に添加し、セメンチージョン
反応を15分間行った。反応終了後の銅析出量は69%
であったが、均一な被覆粉が得られず、一部に二硫化モ
リブデンと銅粉の混合粉が存在した。200 mR of palladium nitrate aqueous solution (palladium 0.15 g #! solution) was added to 200 g of 0.8 µm (average particle size) and mixed, dried and dehydrated with an infrared lamp, and then heated with a gas burner at 350° C. for 130 minutes. Next, this and 420 g of reduced iron powder with a particle size of 200 mesh under were placed in a cementation container equipped with a stirrer, and while mixing, an acidic copper sulfate solution ('t1 200 g/j2, copper 50
g/f) 9.44! was gradually added and the cementation reaction was carried out for 15 minutes. The amount of copper precipitated after the reaction is 69%
However, a uniform coated powder could not be obtained, and a mixed powder of molybdenum disulfide and copper powder was present in some parts.
比較例3
開放型回転ドラム(1000mff容量)に、粒径の大
きい二硫化モリブデン粉末(AM^×社製: XLP−
1,平均粒径40〜50μ)200gに硝酸パラジウム
水溶液(パラジウム0.15g/ffi溶液> 20
0dを加えて混合し7、赤外ランプで乾燥脱水後ガスバ
ーナーにて350゛C130分間加熱処理を行った。次
に、これと粒度200メツシユアンダーの還元鉄粉42
0gとを撹拌機付きセメンチージョン容器に投入し、混
合しながら酸性硫酸銅溶液(遊離酸20h/ l 、銅
50g719.4fを徐々に添加し、セメンチージョン
反応を15分間行った。水洗乾燥後の銅析出量は49%
であった。このようにして、二硫化モリブデン粉末の表
面に内層としてパラジウム層が被覆され、外層として銅
層が被覆されたIi−パラジウム被覆二硫化モリブデン
粉末を得た。Comparative Example 3 Molybdenum disulfide powder with a large particle size (manufactured by AM^X: XLP-) was placed in an open rotating drum (1000 mff capacity).
1. Add palladium nitrate aqueous solution (palladium 0.15 g/ffi solution > 20
0d was added and mixed 7, and after drying and dehydration using an infrared lamp, heat treatment was performed at 350°C for 130 minutes using a gas burner. Next, this and reduced iron powder 42 with a particle size of 200 mesh under
0g of copper was added to a cementation container equipped with a stirrer, and while mixing, an acidic copper sulfate solution (20h/l of free acid, 50g of copper, 719.4f of copper) was gradually added, and a cementation reaction was performed for 15 minutes. Washed with water and dried. The amount of copper precipitation after is 49%
Met. In this way, Ii-palladium-coated molybdenum disulfide powder was obtained, in which the surface of the molybdenum disulfide powder was coated with a palladium layer as an inner layer and a copper layer as an outer layer.
上記した実施例9〜20及び比較例2.3によって得た
金属被覆二硫化モリブデン粉末の被覆層の剥離試験結果
及び被覆層の構成XMAを表−2に示す。Table 2 shows the peel test results of the coating layer of the metal-coated molybdenum disulfide powder obtained in Examples 9 to 20 and Comparative Example 2.3 and the structure XMA of the coating layer.
表−2
※1:実体顕微鏡(250倍率)の観察によって、完全
に被覆された粉体の全体に占める割合をランダムに5視
野サンプリングし、その平均値をもって定めた。Table 2 *1: By observation using a stereomicroscope (250x magnification), the percentage of completely covered powder in the total was randomly sampled from 5 fields, and the average value was determined.
※2:実施例9〜20及び比較例2,3で得た金属被覆
二硫化モリブデン粉末を対象とした。*2: The metal-coated molybdenum disulfide powders obtained in Examples 9 to 20 and Comparative Examples 2 and 3 were targeted.
※3:実施例9〜20及び比較例2.3で得た金属被覆
二硫化モリブデン粉末70volχをガラスピーズ(直
径2mm) 30volχと共に1時間回転混合した後
にふるい分けしたものを対象とした。*3: The metal-coated molybdenum disulfide powder obtained in Examples 9 to 20 and Comparative Example 2.3, 70 vol.chi., was rotary mixed for 1 hour with 30 vol.
※4:X線マイクロアナライザーを使用して表面組成を
解析した。*4: Surface composition was analyzed using an X-ray microanalyzer.
※5:パラジウム被覆二硫化モリブデンと銅粉の混合物
が60%以上観察された。*5: More than 60% of the mixture of palladium-coated molybdenum disulfide and copper powder was observed.
本発明は以上の構成よりなるから、次の効果が奏される
。即ち、本発明に係る二重被覆層タイプの金属被覆金属
硫化物粉末は、金属硫化物粉末の表面上に亜鉛、錫、鉛
若しくは半田が存在しているので、これらの金属が金属
硫化物中の硫黄と反応して硫化物を形成する。その為、
この化合物の形成の少ない白金族金属を使用する場合に
比べ、亜鉛、錫、鉛若しくは半田と金属硫化物とのなじ
み性が良く、密着強度も大きい。また、本発明に係る拡
散・合金型強化タイプの金属被覆金属硫化物粉末は、内
層を形成している亜鉛、錫、鉛若しくは半田と外層を形
成している銅、ニッケル若しくはコバルトとが拡散化乃
至合金化されているので、より強固な密着性を与えるこ
とができる。Since the present invention has the above configuration, the following effects are achieved. That is, in the double coating layer type metal-coated metal sulfide powder according to the present invention, since zinc, tin, lead, or solder is present on the surface of the metal sulfide powder, these metals are present in the metal sulfide. reacts with sulfur to form sulfides. For that reason,
Compared to the case of using platinum group metals with less formation of this compound, the compatibility between zinc, tin, lead, or solder and metal sulfide is better, and the adhesion strength is also greater. In addition, in the diffusion/alloy reinforced type metal-coated metal sulfide powder according to the present invention, zinc, tin, lead, or solder forming the inner layer and copper, nickel, or cobalt forming the outer layer are diffused. Since it is alloyed, stronger adhesion can be provided.
本発明に係る二重被覆層タイプの金属被覆金属硫化物粉
末の製造方法は、溶融メッキ法によって金属硫化物粉末
の表面に亜鉛層、錫層、鉛層若しくは半田層から選ばれ
る内層を形成し、化学メッキ法によってこれらの金属層
の表面に銅層、ニッケル若しくはコバルト層から選ばれ
る外層を形成しているので、簡単且つ安価に処理するこ
とができ、また浴管理も容易である。また、本発明に係
る拡散・合金型強化タイプの金属被覆金属硫化物粉末の
製造方法は、二重被覆層タイプの金属被覆金属硫化物粉
末を比較的低温で熱処理するだけであるから、密着強度
の大きな金属被覆金属硫化物粉末を簡単に得ることがで
きる。The method for producing a double coating layer type metal-coated metal sulfide powder according to the present invention includes forming an inner layer selected from a zinc layer, a tin layer, a lead layer, or a solder layer on the surface of a metal sulfide powder by a hot-dip plating method. Since an outer layer selected from a copper layer, a nickel layer, or a cobalt layer is formed on the surface of these metal layers by a chemical plating method, processing can be performed simply and inexpensively, and bath management is also easy. In addition, since the method for manufacturing the diffusion/alloy-type reinforced metal-coated metal sulfide powder according to the present invention only heat-treats the double-layer type metal-coated metal sulfide powder at a relatively low temperature, the adhesion strength is improved. large metal-coated metal sulfide powders can be easily obtained.
従って、本発明は、二硫化モリブデンの様なセラミック
ス粉の金属化の為の工業的製造に多大な貢献を与える。The present invention therefore makes a significant contribution to the industrial production of ceramic powders such as molybdenum disulfide for metallization.
Claims (1)
しくは半田層から選ばれる内層と、銅層、ニッケル層若
しくはコバルト層から選ばれる外層とによって二重被覆
されていることを特徴とする金属被覆金属硫化物粉末。 (2)内層と外層との少なくとも界面において、内層の
金属と外層の金属とが相互に拡散化乃至合金化されてい
ることを特徴とする請求項(1)記載の金属被覆金属硫
化物粉末。(3)金属硫化物粉末の表面が、亜鉛、錫、
鉛若しくは半田から選ばれる金属と、銅、ニッケル若し
くはコバルトから選ばれる金属との相互の拡散化物乃至
合金化物によって被覆されていることを特徴とする金属
被覆金属硫化物粉末。 (4)金属硫化物粉末と亜鉛粉、銀粉、鉛粉若しくは半
田粉から選ばれる金属粉とを容器に投入し、該金属粉の
液相発生温度以上に加熱しながら撹拌して金属硫化物粉
末の表面を亜鉛層、錫層、鉛層若しくは半田層から選ば
れる内層で被覆し、次いで、該内層の表面を化学メッキ
により銅層、ニッケル層若しくはコバルト層から選ばれ
る外層で被覆して、金属硫化物粉末の表面が内層と外層
とによって二重被覆されている金属被覆金属硫化物粉末
を得ることを特徴とする金属被覆金属硫化物粉末の製造
方法。 (5)内層で被覆した金属硫化物粉末を、pH10〜1
3に調整したロッセル塩、クエン酸塩若しくはエチレン
ヂアミン四酢酸から選ばれる錯化剤の溶液中に添加し、
次いでこれを撹拌しつつ上記pHに維持しながらホルマ
リン及び銅化合物水溶液を添加して、金属硫化物粉末の
表面が内層と外層とによって二重被覆されている金属被
覆金属硫化物粉末を得ることを特徴とする請求項(4)
に記載の金属被覆金属硫化物粉末の製造方法。 (6)内層で被覆した金属硫化物粉末を、pH8〜13
に調整したロッセル塩又はクエン酸塩から選ばれる錯化
剤の溶液中に添加し、次いでこれを撹拌しつつ上記pH
に維持しながら次亜リン酸ナトリウム、ヒドラジン、若
しくは水素化ホウ化物から選ばれる還元剤及びニッケル
化合物水溶液を添加して、金属硫化物粉末の表面が内層
と外層とによって二重被覆されている金属被覆金属硫化
物粉末を得ることを特徴とする請求項(4)に記載の金
属被覆金属硫化物粉末の製造方法。 (7)内層で被覆した金属硫化物粉末を、pH11〜1
3に調整したロッセル塩又はクエン酸塩から選ばれる錯
化剤の溶液中に添加し、次いでこれを撹拌しつつ上記p
Hに維持しながら次亜リン酸ナトリウム、ヒドラジン、
若しくは水素化ホウ化物から選ばれる還元剤及びコバル
ト化合物水溶液を添加して、金属硫化物粉末の表面が内
層と外層とによって二重被覆されている金属被覆金属硫
化物粉末を得ることを特徴とする請求項(4)に記載の
金属被覆金属硫化物粉末の製造方法。 (8)請求項(4)、(5)、(6)、(7)のいずれ
かに記載の製造方法によって得た金属被覆金属硫化物粉
末を還元性雰囲気又は不活性雰囲気中で250〜700
℃にて加熱することによって、内層と外層との少なくと
も界面において内層の金属と外層の金属とが相互に拡散
化乃至合金化されているか、または外層の金属が軟質化
されている金属被覆金属硫化物粉末を得ることを特徴と
する金属被覆金属硫化物粉末の製造方法。 (9)請求項(4)、(5)、(6)、(7)のいずれ
かに記載の製造方法によって得た金属被覆金属硫化物粉
末を還元性雰囲気又は不活性雰囲気中で250〜700
℃にて加熱することによって、金属硫化物粉末の表面が
亜鉛、錫、鉛若しくは半田から選ばれる金属と銅、ニッ
ケル若しくはコバルトから選ばれる金属との相互の拡散
化物乃至合金化物によって被覆されている金属被覆金属
硫化物粉末を得ることを特徴とする金属被覆金属硫化物
粉末の製造方法。[Claims] (1) The surface of the metal sulfide powder is double layered with an inner layer selected from a zinc layer, a tin layer, a lead layer, or a solder layer, and an outer layer selected from a copper layer, a nickel layer, or a cobalt layer. A metal-coated metal sulfide powder characterized by being coated. (2) The metal-coated metal sulfide powder according to claim (1), wherein the metal of the inner layer and the metal of the outer layer are mutually diffused or alloyed at least at the interface between the inner layer and the outer layer. (3) The surface of the metal sulfide powder contains zinc, tin,
A metal-coated metal sulfide powder characterized in that it is coated with a mutually diffused product or alloy of a metal selected from lead or solder and a metal selected from copper, nickel, or cobalt. (4) Put metal sulfide powder and metal powder selected from zinc powder, silver powder, lead powder, or solder powder into a container, and stir while heating to a temperature higher than the liquid phase generation temperature of the metal powder to produce metal sulfide powder. The surface of the metal is coated with an inner layer selected from a zinc layer, a tin layer, a lead layer, or a solder layer, and then the surface of the inner layer is coated with an outer layer selected from a copper layer, a nickel layer, or a cobalt layer by chemical plating. A method for producing a metal-coated metal sulfide powder, which comprises obtaining a metal-coated metal sulfide powder in which the surface of the sulfide powder is double coated with an inner layer and an outer layer. (5) The metal sulfide powder coated with the inner layer has a pH of 10 to 1.
3 into a solution of a complexing agent selected from Rossell's salt, citrate or ethylenediaminetetraacetic acid,
Next, formalin and a copper compound aqueous solution are added while stirring and maintaining the above pH to obtain a metal-coated metal sulfide powder in which the surface of the metal sulfide powder is double coated with an inner layer and an outer layer. Characteristic claim (4)
A method for producing a metal-coated metal sulfide powder according to . (6) The metal sulfide powder coated with the inner layer has a pH of 8 to 13.
The solution of a complexing agent selected from Rossel's salt or citrate was adjusted to
A reducing agent selected from sodium hypophosphite, hydrazine, or borohydride and an aqueous nickel compound solution are added while maintaining the metal sulfide powder surface to be double coated with an inner layer and an outer layer. The method for producing a metal-coated metal sulfide powder according to claim 4, characterized in that a coated metal sulfide powder is obtained. (7) The metal sulfide powder coated with the inner layer has a pH of 11 to 1.
3 into a solution of a complexing agent selected from Rossel's salt or citrate, and then, while stirring, the above p.
Sodium hypophosphite, hydrazine, while maintaining H.
Alternatively, a reducing agent selected from borohydrides and an aqueous cobalt compound solution are added to obtain a metal-coated metal sulfide powder in which the surface of the metal sulfide powder is double coated with an inner layer and an outer layer. The method for producing a metal-coated metal sulfide powder according to claim (4). (8) The metal-coated metal sulfide powder obtained by the production method according to any one of claims (4), (5), (6), and (7) is heated to a concentration of 250 to 700 in a reducing atmosphere or an inert atmosphere.
A metal-coated metal sulfide in which the metal of the inner layer and the metal of the outer layer are mutually diffused or alloyed at least at the interface between the inner layer and the outer layer, or the metal of the outer layer is softened by heating at ℃. 1. A method for producing a metal-coated metal sulfide powder, the method comprising obtaining a metal-coated metal sulfide powder. (9) The metal-coated metal sulfide powder obtained by the production method according to any one of claims (4), (5), (6), and (7) is heated to a concentration of 250 to 700 in a reducing atmosphere or an inert atmosphere.
By heating at ℃, the surface of the metal sulfide powder is coated with a mutual diffusion product or alloy of a metal selected from zinc, tin, lead, or solder and a metal selected from copper, nickel, or cobalt. A method for producing metal-coated metal sulfide powder, the method comprising obtaining metal-coated metal sulfide powder.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-209270 | 1988-08-22 | ||
JP20927088 | 1988-08-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02138402A true JPH02138402A (en) | 1990-05-28 |
JPH079003B2 JPH079003B2 (en) | 1995-02-01 |
Family
ID=16570167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1102970A Expired - Fee Related JPH079003B2 (en) | 1988-08-22 | 1989-04-20 | Metal-coated metal sulfide powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH079003B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114250466A (en) * | 2022-03-01 | 2022-03-29 | 潍坊学院 | A kind of preparation method of titanium alloy surface laser cladding coating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5553017A (en) * | 1978-10-16 | 1980-04-18 | Nippon Mining Co | Method of manufacturing multiple coating composite powder |
-
1989
- 1989-04-20 JP JP1102970A patent/JPH079003B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5553017A (en) * | 1978-10-16 | 1980-04-18 | Nippon Mining Co | Method of manufacturing multiple coating composite powder |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114250466A (en) * | 2022-03-01 | 2022-03-29 | 潍坊学院 | A kind of preparation method of titanium alloy surface laser cladding coating |
CN114250466B (en) * | 2022-03-01 | 2022-05-03 | 潍坊学院 | Preparation method of laser cladding coating on titanium alloy surface |
Also Published As
Publication number | Publication date |
---|---|
JPH079003B2 (en) | 1995-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3032436A (en) | Method and composition for plating by chemical reduction | |
Aixiang et al. | Electroless Ni–Co–P coating of cenospheres using [Ag (NH3) 2]+ activator | |
WO2016031723A1 (en) | Reduction-type electroless gold plating solution and electroless gold plating method using said plating solution | |
US4780342A (en) | Electroless nickel plating composition and method for its preparation and use | |
Djokić | Electroless deposition of cobalt using hydrazine as a reducing agent | |
US5391402A (en) | Immersion plating of tin-bismuth solder | |
Huang et al. | Effect of deposition potential on electrodeposition of Sn-Ag-Cu ternary alloy solderable coating in deep eutectic solvent | |
JP3479639B2 (en) | Electroless nickel plating solution | |
JPH1161426A (en) | Electroless tin and tin alloy plating bath, electroless plating and electronic part coated with tin or tin alloy film in the electroless plating bath | |
JPH02138402A (en) | Metal-coated metallic sulfide powder and manufacture thereof | |
JPH067679A (en) | Production of platinum alloy catalyst for phosphoric acid type fuel cell | |
JP3689861B2 (en) | Electroless copper plating method and plating powder | |
JPH03146602A (en) | Metal coating powder and manufacture thereof | |
JPH02185901A (en) | Copper-silver-coated metal sulfide powder and manufacture thereof | |
JP2004169058A (en) | Electroless gold plating liquid, and electroless gold plating method | |
JPH08269726A (en) | Electroless nickel plating solution and plating method | |
JP3393190B2 (en) | Method for selectively activating copper pattern and activator used therefor | |
JPS6254161B2 (en) | ||
CN115141949B (en) | Preparation method of network structure magnesium-zinc alloy | |
KR20090051452A (en) | Silver coating method of whisker powder and whisker powder silver-coated by the method | |
JPH0565659A (en) | Electroless copper-nickel alloy plating method | |
JPS62192501A (en) | Co-w coated wc powder | |
JPH09511547A (en) | Palladium colloid solution and its use | |
JP3389959B2 (en) | Manufacturing method of metal coated powder | |
JP3796321B2 (en) | Method for producing sintered material using tin-coated copper powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |