[go: up one dir, main page]

JPH0213261B2 - - Google Patents

Info

Publication number
JPH0213261B2
JPH0213261B2 JP54137898A JP13789879A JPH0213261B2 JP H0213261 B2 JPH0213261 B2 JP H0213261B2 JP 54137898 A JP54137898 A JP 54137898A JP 13789879 A JP13789879 A JP 13789879A JP H0213261 B2 JPH0213261 B2 JP H0213261B2
Authority
JP
Japan
Prior art keywords
colored
coloring
liquid
liquid sample
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54137898A
Other languages
Japanese (ja)
Other versions
JPS5661634A (en
Inventor
Kazuo Hiiro
Takashi Tanaka
Akinobu Kawahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13789879A priority Critical patent/JPS5661634A/en
Publication of JPS5661634A publication Critical patent/JPS5661634A/en
Publication of JPH0213261B2 publication Critical patent/JPH0213261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 本発明は、液体試料中の呈色性化合物を光学的
に分析する液体試料の光学定量法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical quantitative method for a liquid sample in which a color-forming compound in the liquid sample is optically analyzed.

従来、海水や河川水等の中の微量有害物質、例
えばリン化合物等を目的成分とし、その目的成分
を液体試料中から検出し定量するため、吸光光度
法やそれに更にに溶媒抽出法を応用した方法が提
案されている。
Conventionally, trace amounts of harmful substances such as phosphorus compounds in seawater or river water have been targeted as target components, and spectrophotometric methods and solvent extraction methods have been applied to detect and quantify the target components in liquid samples. A method is proposed.

前者の吸光光度法は、液体試料に適当な発色試
薬を加えて液体試料中の定量目的成分と反応さ
せ、ここに生成した呈色化合物を含む着色液を吸
収セルに入れて、その液の着色の強さ、具体的に
は吸光度を測定する方法である。しかし、この方
法では、液体試料中の定量目的成分のの濃度がき
わめて低いときには着色液の吸光度が低く定量で
きない欠点がある。このような場合には、吸光度
測定のための吸収セルの光路長を通常の10mmのも
のから20mmあるいは50mmに変えることにより、感
度の向上をはかる工夫がとられるが、この操作に
よる感度の増大もわずか2〜5倍にすぎない。
The former spectrophotometric method involves adding an appropriate coloring reagent to a liquid sample, allowing it to react with the quantitative target component in the liquid sample, and placing the colored liquid containing the generated coloring compound in an absorption cell to determine the coloring of the liquid. This method measures the intensity of light, specifically absorbance. However, this method has the disadvantage that when the concentration of the component to be quantified in the liquid sample is extremely low, the absorbance of the colored liquid is low and quantification is not possible. In such cases, measures are taken to improve sensitivity by changing the optical path length of the absorption cell for absorbance measurement from the usual 10 mm to 20 mm or 50 mm, but this operation also increases sensitivity. It is only 2 to 5 times as large.

また、後者の溶媒抽出法を応用した方法は、水
相の容量の5分の1量または10分の1量の有機溶
媒を用いて水相中の着色した呈色化合物を有機溶
媒中に抽出して、有機溶媒相の着色の強度を水相
の強度の5倍または10倍に増大させた上、測定す
る方法である。しかし、この方法による感度の向
上も高々5〜10倍程度にすぎず、また呈色化合物
の種類、性状によつては有機溶媒中に抽出されな
いか抽出不充分な場合があり、常にこの方法が有
効に適用できるとは限らない。
In addition, in the latter method, a colored compound in the aqueous phase is extracted into an organic solvent using an organic solvent in an amount of one-fifth or one-tenth of the volume of the aqueous phase. This is a method in which the coloring intensity of the organic solvent phase is increased to 5 or 10 times the intensity of the aqueous phase and then measured. However, the improvement in sensitivity achieved by this method is only about 5 to 10 times at most, and depending on the type and properties of the color-forming compound, it may not be extracted into the organic solvent or may be insufficiently extracted. It may not be possible to apply it effectively.

このように、従来の吸光光度法では、液体試料
中の定量目的成分の濃度が低いときには、光路長
の大きい吸収セルの使用あるいは溶媒抽出法の応
用などの方法を用いても、飛躍的な感度の向上が
得られず、これが吸光光度法の限界と考えられて
いる。
In this way, when the concentration of the target component to be quantified in a liquid sample is low, conventional spectrophotometric methods can achieve dramatic increases in sensitivity, even if methods such as the use of an absorption cell with a long optical path length or the application of a solvent extraction method are used. This is considered to be the limit of the spectrophotometric method.

本発明は、このような従来方法の限界を解消
し、液体試料中の定量目的成分が微量であつても
高感度かつ高精度でそれを測定できる液体試料の
光学定量法を提供せんとするものであり、その特
徴とするところは、呈色性化合物を含む液体試料
に発色試薬を添加して沈澱物を含まない着色した
液体試料を形成し、該着色した液体試料を濾材を
用いて濾過し、前記発色試薬により着色した前記
呈色性化合物が該濾材上に濃縮した状態で該濾材
を着色させ、該着色した濾材に光を照射して該着
色した濾材からの反射光または該着色した濾材の
透過光の強度を測定して前記液体試料中の前記呈
色性化合物濃度を求めることにある。
The present invention aims to eliminate the limitations of such conventional methods and provide an optical quantitative method for liquid samples that can measure the target component in a liquid sample with high sensitivity and precision even if it is in a trace amount. Its characteristics are that a coloring reagent is added to a liquid sample containing a color-forming compound to form a colored liquid sample that does not contain precipitates, and the colored liquid sample is filtered using a filter medium. , coloring the filter medium in a state in which the color-forming compound colored by the coloring reagent concentrates on the filter medium, and irradiating the colored filter medium with light to emit reflected light from the colored filter medium or the colored filter medium. The method is to determine the concentration of the color-forming compound in the liquid sample by measuring the intensity of transmitted light.

本発明は、上述のように材を使用しその着色
部における照射光の強度の測定によりなされかつ
それに対応する機構を有するため、いわゆる着色
材比色法ということもできるが、ここで、まず
本発明を第1図にもとづき具体的に説明する。
The present invention can be called a so-called colored material colorimetric method because it uses a material as described above and measures the intensity of irradiated light on the colored part of the material, and has a corresponding mechanism. The invention will be specifically explained based on FIG.

第1図において、液体試料は、タイマー1の作
動により一定時間駆動する液体試料の採取用ポン
プ2で反応槽3に送られ採取される。また、この
反応槽3には、やはりタイマー1で作動する別の
ポンプ4,5により試薬槽6,7から一定量の発
色試薬が加えられ、同時に、反応槽3に取付けら
れている撹拌器8によつて一定時間のかきまぜが
行なわれる。この間に液体試料中に含まれていた
呈色性化合物は発色試薬と反応して液体試料は全
体的に着色を呈し着色液となる。
In FIG. 1, a liquid sample is sent to a reaction tank 3 and collected by a liquid sample collection pump 2 which is driven for a certain period of time by the operation of a timer 1. Further, a certain amount of coloring reagent is added to this reaction tank 3 from reagent tanks 6 and 7 by another pump 4 and 5 which is also activated by the timer 1, and at the same time, a stirrer 8 attached to the reaction tank 3 is added. Stirring is carried out for a certain period of time. During this time, the coloring compound contained in the liquid sample reacts with the coloring reagent, and the liquid sample becomes colored as a whole, becoming a colored liquid.

次に、この発色液は、タイマー1の指令で開閉
する弁9の操作で自動過機構に送られ呈色化合
物の過が行なわれる。自動過機構は、基本的
には過装置10とこの過装置10に着色液を
供給する一対の液供給装置11,11′とから成
る。これら一対の液供給装置11,11′は相対
する先端部に耐食性ゴムリング12を嵌合した2
本のパイプであつてよく、それらの間に過装置
10がはさまれて位置するように構成されてい
る。更に液供給装置11,11′は、移動装置1
3により上下、前後または回転等で過装置10
から離れ得るようになつている。
Next, this coloring liquid is sent to an automatic filtration mechanism by operating a valve 9 which is opened and closed in response to a command from a timer 1, and the coloring compound is filtrated therein. The automatic filtration mechanism basically consists of a filtration device 10 and a pair of liquid supply devices 11 and 11' for supplying colored liquid to the filtration device 10. These pair of liquid supply devices 11, 11' are provided with corrosion-resistant rubber rings 12 fitted to their opposing tips.
It may be a real pipe, and is configured such that the filter device 10 is sandwiched between them. Further, the liquid supply devices 11, 11' are connected to the moving device 1.
3, the device 10 can be moved up and down, back and forth, or rotated, etc.
It has become possible to move away from it.

また、過装置10は紙等の適当な材14
を備えた過部14,14′,14″を有し、かつ
移動装置13で第1図では左右方向に移動可能に
構成されている。
The filtering device 10 may also be made of a suitable material 14 such as paper.
1, and is configured to be movable in the left-right direction in FIG. 1 by means of a moving device 13.

したがつて、弁9の開閉で送られてきた着色液
は液供給装置11の内を通つて過部14に送ら
れ、タイマー1の指令により吸引ポンプ15が作
動し吸引過が行なわれ、濾材が着色される。
過終了後、液供給装置11,11′は上下にはな
れ、方過装置10は光学検出装置16側に移動
する。即ち、第1図で過部14は過部14′
の位置に移動し、そこで材の着色部に光源17
から一定の光を照射し、その反射光による着色強
度が測定され、シグナルが表示装置18に表示さ
れるとともにプリンター19に打出される。これ
らの操作もタイマー1の指令で行なわれ、更に、
第1図の例では、このように着色強度が測定され
ている間に、過部14の位置に移動した過部
14″において着色液についての新らたな過が
行なわれており、これらの操作が連続的に行なわ
れる。
Therefore, the colored liquid sent by opening and closing the valve 9 passes through the liquid supply device 11 and is sent to the filter section 14, and the suction pump 15 is operated according to the command from the timer 1 to perform suction, and the filter material is is colored.
After the passing, the liquid supply devices 11 and 11' are separated vertically, and the passing device 10 is moved to the optical detection device 16 side. That is, in FIG.
Move to the position where the light source 17 is placed on the colored part of the material.
A certain amount of light is irradiated from the sensor, the coloring intensity of the reflected light is measured, and a signal is displayed on the display device 18 and outputted to the printer 19. These operations are also performed according to instructions from timer 1, and furthermore,
In the example shown in FIG. 1, while the coloring intensity is being measured in this way, a new test for the colored liquid is being carried out in the pass section 14'' which has moved to the position of the pass section 14, and these Operations are performed continuously.

このようにして、本発明では過装置10に複
数の過部14,14′,14″を設ければ、液供
給装置11,11′との相対的移動により、反応
槽3中の同種液体試料について連続的にくり返し
測定が可能である。また、反応槽3を複数とし、
それに対応する液供給装置11,11′を複数に
すれば、異種の液体試料についての連続測定も可
能である。
In this way, in the present invention, if the filter device 10 is provided with a plurality of filter sections 14, 14', 14'', the same kind of liquid sample in the reaction tank 3 can be sampled by the relative movement with the liquid supply devices 11, 11'. It is possible to continuously and repeatedly measure the
If a plurality of corresponding liquid supply devices 11, 11' are provided, continuous measurement of different types of liquid samples is also possible.

本発明の実施において、着色液の生成は、従来
の吸光光度法による方法と同じであつたもよい。
ただし本発明においては、従来の吸光光度法や溶
媒抽出法と同様に、発色試薬の添加によつて液体
試料中の呈色性化合物が着色する場合を対象と
し、沈澱を形成する場合は対象としない。発色試
薬は、呈色性化合物の種類によつて適宜選択さ
れ、それらは実施例において例示される。また、
液体試料は、海水、河川水であつてよく、本発明
では特定されない。濾材としては濾紙やメンブラ
ン・フイルターが好適である。また着色部の光の
強度を測定するには、第1図のように着色部から
の反射光の強度を測定してもよいが、着色部を透
過した光の強度を測定するようにしてもよい。
In the practice of the present invention, the production of the colored liquid may be the same as in conventional spectrophotometric methods.
However, in the present invention, like the conventional spectrophotometric method and solvent extraction method, the target is the case where the color-forming compound in the liquid sample is colored by the addition of a coloring reagent, and the target is not the case where the color forming compound forms a precipitate. do not. Coloring reagents are appropriately selected depending on the type of coloring compound, and are exemplified in Examples. Also,
The liquid sample may be seawater, river water, and is not specified in the present invention. Filter paper and membrane filters are suitable as filter media. In addition, to measure the intensity of light from a colored part, it is possible to measure the intensity of light reflected from the colored part as shown in Figure 1, but it is also possible to measure the intensity of light transmitted through the colored part. good.

本発明によれば、液体試料中の定量目的成分の
濃度がきわめて低く、着色液の吸光度が小さくて
通常の吸光光度法では測定できない場合でも、着
色液を適当な材で過するので発色試薬によつ
て着色した、液体試料中の呈色化合物によつて濾
材が強く着色する。例えば、人間の眼では着色液
の着色がきわめて小さく無色透明に見える場合で
も、これを材で過した場合には、材上に明
瞭な着色を見ることができる。この強く着色した
材の着色の程度を、光源から光を照射して着色
部から反射光の強さを測定したり、または光源か
らの光を着色部に照射しその部分を透過した光の
強さを測定する。したがつて、従来の吸光光度法
では測定できない微量の呈色化合物を含有する場
合でもその定量測定が可能であり、かつ高感度、
高精度となる。
According to the present invention, even when the concentration of the component to be quantified in a liquid sample is extremely low and the absorbance of the colored liquid is too low to be measured by normal spectrophotometry, the colored liquid is passed through an appropriate material, so it can be used as a coloring reagent. The filter media becomes strongly colored due to the colored compounds in the liquid sample. For example, even if the coloring of a colored liquid is extremely small and appears colorless and transparent to the human eye, if the liquid is passed through a piece of wood, clear coloring can be seen on the piece of wood. The degree of coloring of this strongly colored material can be measured by irradiating light from a light source and measuring the intensity of the reflected light from the colored area, or by irradiating light from a light source onto the colored area and measuring the intensity of the light that has passed through that area. Measure the quality. Therefore, even if it contains trace amounts of colored compounds that cannot be measured by conventional spectrophotometry, quantitative measurement is possible, and it also has high sensitivity and
High accuracy.

本発明の感度が飛躍的に向上する理由は、次の
ように考えることができる。即ち、従来法では、
呈色性化合物が着色した着色液そのものを測定す
るので着色の程度が少ないときにはおのずから測
定可能な最低定量目的化合物の濃度が普通は
1ppm程度に限定される。
The reason why the sensitivity of the present invention is dramatically improved can be considered as follows. That is, in the conventional method,
Since the colored liquid itself, which is colored by the color-forming compound, is measured, when the degree of coloring is small, the lowest measurable concentration of the target compound is usually
Limited to around 1ppm.

ところが、本発明では呈色化合物が適当な
材、例えば直径45mm位の紙あるいはメンブラ
ン・フイルター等で過され着色した呈色化合物
によつて濾材が着色するので、液体試料全体に分
散していた呈色化合物が小面積の材表面上に濃
縮されたかたちとなる。したがつて、材上の着
色は飛躍的に強くなりこの強度を測定することに
なるから、測定可能な最低定量目的成分の濃度
は、1ppmの1000分の1、即ち、1ppbあるいはそ
れ以下にもなり得る。なお、着色した呈色化合物
によつて材が着色される理由は、沈澱を含まな
い、着色した呈色性化合物が溶解する液体試料中
の着色した呈色性化合物が濾材に吸着されるため
と考えられる。
However, in the present invention, the filter medium is colored by the coloring compound passed through a suitable material such as paper or membrane filter with a diameter of about 45 mm, so that the coloring compound dispersed throughout the liquid sample is colored. Color compounds are concentrated on a small area of the material surface. Therefore, the coloring on the material becomes dramatically stronger and this intensity is measured, so the lowest measurable concentration of the target component for quantitative determination is 1/1000th of 1ppm, that is, 1ppb or even lower. It can be. The reason why the material is colored by the colored compound is that the colored compound in the liquid sample, which does not contain precipitates and in which the colored compound is dissolved, is adsorbed to the filter medium. Conceivable.

また本発明は着色した液体試料を濾過して濾材
を着色させ、この着色した濾材を光学定量するだ
けなので、操作も極めて簡単である。
In addition, the present invention is extremely simple in operation because it simply involves filtering a colored liquid sample, coloring the filter medium, and optically quantifying the colored filter medium.

本発明は、このようにして、例えば以下実施例
で説明するような、ヘテロポリ酸生成反応ばかり
でなく、強く着色した染料生成反応、金属キレー
ト生成反応、その他あらゆる呈色化合物生成反応
による着色液中の呈色化合物の測定に利用でき
る。
In this way, the present invention can be applied not only to heteropolyacid-forming reactions, but also to strongly colored dye-forming reactions, metal chelate-forming reactions, and all other colored compound-forming reactions in colored liquids, such as those described in the Examples below. It can be used to measure colored compounds.

実施例 1 JIS K―250によつて作成した人工海水に、リ
ン酸カリウムで作成したリン酸標準溶液を加えリ
ン化合物を含む人工海水を作成した。この人工海
水200mlを250ml容量のメスフラスコにとり、海洋
観測針法にしたがつてリン化合物の吸光光度定量
用の発色試薬溶液(モリブテン酸アンモニウム15
gを500mlの蒸留水にとかした液100ml、濃硫酸
140mlを900mlの蒸留水にとかした液250ml、27g
のアスコルビン酸を500mlの蒸留水にとかした液
100ml、酒石酸アンチモニルカリウム0.34gを250
mlの蒸留水にとかした液50mlを混合したもの)25
mlを加えて撹拌し、リンの着色化合物を生成さ
せ、全量を250mlにうすめて着色液とした。
Example 1 A phosphoric acid standard solution prepared from potassium phosphate was added to artificial seawater prepared according to JIS K-250 to prepare artificial seawater containing phosphorus compounds. Pour 200 ml of this artificial seawater into a 250 ml volumetric flask and prepare a coloring reagent solution (ammonium molybutate 15
100ml of a solution of g dissolved in 500ml of distilled water, concentrated sulfuric acid
140ml dissolved in 900ml distilled water, 250ml, 27g
of ascorbic acid dissolved in 500ml of distilled water.
100ml, 0.34g of antimonyl potassium tartrate 250ml
(mixed with 50ml of solution dissolved in ml of distilled water) 25
ml was added and stirred to produce a colored compound of phosphorus, and the total volume was diluted to 250 ml to obtain a colored liquid.

次に、この着色液を直径45mmのメンブラン・フ
イルター(孔径0.3μ)で過し、そのメンブラ
ン・フイルター着色の強度を反射光法で測定し
た。その結果を第2図に示す。反射光法で着色す
る場合、通常フルスケールで100目盛であるので、
第2図のように2.0μg/250mlのリン化合物濃度
の場合の反射強度測定値、約12目盛は十分測定可
能であり、最低定量可能なリン化合物濃度は1目
盛相当の反射強度とすれば約0.1μg/250ml
(0.4ppb)程度になる。
Next, this colored liquid was passed through a membrane filter with a diameter of 45 mm (pore size: 0.3 μm), and the intensity of the coloring on the membrane filter was measured using a reflected light method. The results are shown in FIG. When coloring using the reflected light method, the full scale is usually 100 graduations, so
As shown in Figure 2, when the phosphorus compound concentration is 2.0 μg/250 ml, approximately 12 scales of the measured reflection intensity can be sufficiently measured, and the lowest quantifiable phosphorus compound concentration is approximately 1 scale of reflection intensity. 0.1μg/250ml
(0.4ppb).

なお、比較のために、上記の着色液の吸光度を
光路長10mmの吸収セルを用いた吸光光度法で測定
し、メスフラスコ内のリン化合物の濃度と吸光度
との関係をプロツトして検量線を作成した。その
結果は第3図に示すとおりであり、ここではリン
化合物濃度20μg/250mlの場合の着色液の吸光
度はわずかに0.007である。しかし、通常の吸光
光度法では0.1〜0.6の吸光度を測定するのが普通
なので、0.007の吸光度ではとうてい正確な分析
ができない。
For comparison, the absorbance of the above colored solution was measured by spectrophotometry using an absorption cell with an optical path length of 10 mm, and the relationship between the concentration of the phosphorus compound in the volumetric flask and the absorbance was plotted to create a calibration curve. Created. The results are shown in FIG. 3, where the absorbance of the colored liquid is only 0.007 when the phosphorus compound concentration is 20 μg/250 ml. However, normal spectrophotometric methods usually measure absorbance in the range of 0.1 to 0.6, so an absorbance of 0.007 cannot be used for very accurate analysis.

即ち、海洋観測指針法による吸光光度法では、
2.0μg/250mlのリン化合物濃度の定量は不可能
であるが、本発明によれば0.2μg/250mlでも充
分に測定可能であり、更には0.1μg/250mlでも
可能であることがわかる。
In other words, in the absorption photometry method according to the Marine Observation Guidelines Act,
Although it is impossible to quantify the phosphorus compound concentration at 2.0 μg/250 ml, it is understood that according to the present invention, it is possible to measure the concentration sufficiently at 0.2 μg/250 ml, and even at 0.1 μg/250 ml.

実施例 2 実施例1と同じように作成したリン化合物を含
む人工海水200mlを250ml容量のメスフラスコにと
り、JIS K―0120法にしたがつてモリブテン酸ア
ンモニウム溶液(モリブテン酸アンモニウム15g
を蒸留水150mlとかし、これに濃硫酸180mlに水を
加えて800mlとした液を加えて全量を1とした
もの)25mlと、塩化第一スズ(塩化第一スズ1g
を塩酸5mlにとかし蒸留水で50mlにうすめ、金属
スズの小片を加えたもの)1.25mlを加えて撹拌
し、着色リン化合物を生成せしめ、全量を250ml
にうすめて着色液とした。
Example 2 200 ml of artificial seawater containing a phosphorus compound prepared in the same manner as in Example 1 was placed in a 250 ml volumetric flask, and ammonium molybutate solution (15 g of ammonium molybutate) was added in accordance with JIS K-0120 method.
Dissolve 150 ml of distilled water, add 180 ml of concentrated sulfuric acid and 800 ml of water to make a total volume of 1), and add 25 ml of stannous chloride (1 g of stannous chloride).
(dissolved in 5 ml of hydrochloric acid, diluted to 50 ml with distilled water, added a small piece of metal tin) and stirred to form a colored phosphorus compound, bringing the total volume to 250 ml.
It was diluted to make a colored liquid.

この着色液を用いて実施例1と同様に操作した
ところ、第4図に示す結果が得られた。この例で
は、2.0μg/250mlのリン化合物濃度の場合、反
射強度の測定値は19目盛で、本発明によれば十分
に定量可能である。
When the same procedure as in Example 1 was carried out using this colored liquid, the results shown in FIG. 4 were obtained. In this example, for a phosphorus compound concentration of 2.0 μg/250 ml, the measured value of reflection intensity is on 19 scales, which is fully quantifiable according to the present invention.

なお比較のために行つた。実施例1の比較とし
て示した同じ吸光光度法によれば、第5図のよう
な検量線となり、吸光度が小さく、したがつて
JIS K―0102法では2.0μg/250mlのリン化合物
の定量は困難である。
I did this for comparison. According to the same spectrophotometric method shown as a comparison in Example 1, the calibration curve was as shown in Figure 5, and the absorbance was small, so
It is difficult to quantify phosphorus compounds at 2.0 μg/250 ml using the JIS K-0102 method.

実施例 3 実施例1と同じようにして作成したリン化合物
を含む人工海水800mlを1000ml容量のメスフラス
コにとり、実施例1と同様の操作で測定したとこ
ろ、第6図に示す結果が得られた。この結果か
ら、2.0μg/1000mlのリン化合物濃度の反射強度
の測定値は19目盛で2ppbの測定が充分可能であ
り、反射強度1目盛に相当するリン濃度の0.1ppb
の測定も可能であることがわかる。
Example 3 800 ml of artificial seawater containing a phosphorus compound prepared in the same manner as in Example 1 was placed in a 1000 ml volumetric flask and measured in the same manner as in Example 1, and the results shown in Figure 6 were obtained. . From this result, the measured value of reflection intensity for a phosphorus compound concentration of 2.0 μg/1000 ml is sufficient to measure 2 ppb in 19 scales, and 0.1 ppb of phosphorus concentration corresponding to 1 scale of reflection intensity.
It can be seen that it is also possible to measure

一方、JIS K―0102法による測定では、2.0ppb
の液の吸光度は極めて小さく測定できなかつた。
On the other hand, when measured using the JIS K-0102 method, 2.0ppb
The absorbance of the liquid was so small that it could not be measured.

実施例 4 実施例2と全く同様に操作して、本発明を実施
した。ただし、この実施例では着色した材上に
光を照射し着色部分を透過した光の強度を測定す
る、透過光法で実施した。その結果が第7図に示
される。
Example 4 The present invention was carried out in exactly the same manner as in Example 2. However, in this example, a transmitted light method was used in which the colored material was irradiated with light and the intensity of the light transmitted through the colored part was measured. The results are shown in FIG.

ここで、2.0μg/250mlのリン化合物濃度の場
合の測定値は、フルスケール1000目盛のところ、
600目盛であつた。即ち、この場合は、反射光法
による実施例2の場合より更に高感度であつた。
Here, the measured value in the case of a phosphorus compound concentration of 2.0μg/250ml is at the full scale of 1000,
It was on a 600 scale. That is, in this case, the sensitivity was even higher than in Example 2 using the reflected light method.

実施例 5 実施例2に準じて、フエニルフルオロン法によ
るスズ化合物の定量を行つたところ第8図の結果
が得られた。
Example 5 According to Example 2, tin compounds were determined by the phenylfluorone method, and the results shown in FIG. 8 were obtained.

なお第9図はJIS K―D102の吸光光度法によ
る結果であり、本発明方法ではこの場合でも飛躍
的な感度向上が得られていることが理解される。
Note that FIG. 9 shows the results obtained using the JIS K-D102 absorption photometry method, and it can be seen that the method of the present invention achieves a dramatic improvement in sensitivity even in this case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置を例示しかつその作動内
容を説明するための系統図、第2図はリン化合物
濃度と反射強度目盛との関係を示す図、第3図は
リン化合物濃度と吸光度との関係を示す図(検量
線図)、第4図はリン化合物と反射強度目盛との
関係を示す図、第5図はリン化合物濃度と吸光度
との関係を示す図、第6図はリン化合物濃度と反
射強度目盛との関係を示す図、第7図はリン化合
物濃度と透過強度目盛との関係を示す図、第8図
はスズ化合物濃度と反射強度目盛との関係を示す
図、第9図はスズ化合物濃度と吸光度との関係を
示す図、をそれぞれ示す。 3…反応槽、9…弁、10…過装置、11,
11′…液供給装置、13…移動装置、14,1
4′,14″…過部、16…光度検出装置、18
…表示装置。
Figure 1 is a system diagram illustrating the device of the present invention and explaining its operation, Figure 2 is a diagram showing the relationship between phosphorus compound concentration and reflection intensity scale, and Figure 3 is a diagram showing the relationship between phosphorus compound concentration and absorbance. Figure 4 is a diagram showing the relationship between phosphorus compounds and the reflection intensity scale, Figure 5 is a diagram showing the relationship between phosphorus compound concentration and absorbance, and Figure 6 is a diagram showing the relationship between phosphorus compound concentration and absorbance. Figure 7 is a diagram showing the relationship between compound concentration and reflection intensity scale, Figure 7 is a diagram showing the relationship between phosphorus compound concentration and transmission intensity scale, and Figure 8 is a diagram showing the relationship between tin compound concentration and reflection intensity scale. Figure 9 shows the relationship between tin compound concentration and absorbance, respectively. 3... Reaction tank, 9... Valve, 10... Passage device, 11,
11'...Liquid supply device, 13...Movement device, 14,1
4', 14''... section, 16... light intensity detection device, 18
...Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 呈色性化合物を含む液体試料に発色試薬を添
加して沈澱物を含まない着色した液体試料を形成
し、該着色した液体試料を濾材を用いて濾過し、
前記発色試薬により着色した前記呈色性化合物が
該濾材上に濃縮した状態で該濾材をを着色させ、
該着色した濾材に光を照射して該着色した濾材か
らの反射光または該着色した濾材の透過光の強度
を測定して前記液体試料中の前記呈色性化合物濃
度を求めることを特徴とする液体試料の光学定量
法。
1. Adding a coloring reagent to a liquid sample containing a color-forming compound to form a colored liquid sample free of precipitates, filtering the colored liquid sample using a filter medium,
Coloring the filter medium in a state in which the color-forming compound colored by the color-forming reagent is concentrated on the filter medium,
The method is characterized in that the colored filter material is irradiated with light and the intensity of the reflected light from the colored filter material or the transmitted light of the colored filter material is measured to determine the concentration of the coloring compound in the liquid sample. Optical quantitative method for liquid samples.
JP13789879A 1979-10-24 1979-10-24 Method and apparatus for optical determination of liquid sample Granted JPS5661634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13789879A JPS5661634A (en) 1979-10-24 1979-10-24 Method and apparatus for optical determination of liquid sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13789879A JPS5661634A (en) 1979-10-24 1979-10-24 Method and apparatus for optical determination of liquid sample

Publications (2)

Publication Number Publication Date
JPS5661634A JPS5661634A (en) 1981-05-27
JPH0213261B2 true JPH0213261B2 (en) 1990-04-03

Family

ID=15209248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13789879A Granted JPS5661634A (en) 1979-10-24 1979-10-24 Method and apparatus for optical determination of liquid sample

Country Status (1)

Country Link
JP (1) JPS5661634A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160341U (en) * 1982-04-21 1983-10-25 工業技術院長 Colorimetric measurement device for concentrated samples on filter paper
JPS58160340U (en) * 1982-04-21 1983-10-25 工業技術院長 Trace component quantitative device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219595A (en) * 1975-08-06 1977-02-14 Sumitomo Chem Co Ltd Method and apparatus for automatic arresting of ions in water
JPS5244690A (en) * 1975-10-03 1977-04-07 Sumitomo Chem Co Ltd Method of quickly nalyzing cation contained in liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219595A (en) * 1975-08-06 1977-02-14 Sumitomo Chem Co Ltd Method and apparatus for automatic arresting of ions in water
JPS5244690A (en) * 1975-10-03 1977-04-07 Sumitomo Chem Co Ltd Method of quickly nalyzing cation contained in liquid

Also Published As

Publication number Publication date
JPS5661634A (en) 1981-05-27

Similar Documents

Publication Publication Date Title
Alahmad et al. A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples
Environmental Monitoring Systems Laboratory (Cincinnati Methods for the determination of inorganic substances in environmental samples
Gieskes et al. Chemical methods for interstitial water analysis aboard JOIDES Resolution
EP1447665B1 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
US5386287A (en) Device for automatically evaluating a plurality of probe ingredients by means of chemical sensors
Trinder A rapid method for the determination of sodium in serum
US4125376A (en) Method for detecting water pollutants
CN101782508A (en) Method for measuring contents of ferrous, ferric iron and total iron in seawater
US20120275958A1 (en) Determination method and instruments of hexavalent chromium
Suarez et al. Chitosan-modified cotton thread for the preconcentration and colorimetric trace determination of Co (II)
Růžička et al. Flow injection analyzer for students, teaching and research: Spectrophotometric methods
JPH08505218A (en) Method and apparatus for measuring concentration of carbon dioxide dissolved in seawater
Jain et al. Analysis of alcohol I. A review of chemical and infrared methods
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
US4715710A (en) Pump colorimetric analyzer
Susanto et al. Determination of micro amounts of phosphorus with Malachite Green using a filtration–dissolution preconcentration method and flow injection–spectrophotometric detection
DE69714380T2 (en) DEVICE AND METHOD FOR MEASURING AND CONTROLLING THE VOLUME OF A LIQUID SEGMENT IN A PIPE
JPH0213261B2 (en)
JP3274049B2 (en) Optical measurement of liquids in porous materials.
DE102016208967B4 (en) Photometer with quantitative volume measurement
GB2154737A (en) Test piece for measurement of concentration of chlorides
JPS6118982B2 (en)
Kawabata et al. Flourimetric determination of potassium ion using hexadecyl-acridine orange immobilized on a poly (vinylchloride) membrane attached to a flow-through cell
Chebotarev et al. Indicator Tubes for Sorption-Sectroscopic and Test-Determination of Cr (VI) in Waters
Díaz-García et al. Potassium-selective optrode based on an immobilized fluorogenic crown ether