[go: up one dir, main page]

JPH02126145A - Thermal resistance measuring method - Google Patents

Thermal resistance measuring method

Info

Publication number
JPH02126145A
JPH02126145A JP27732488A JP27732488A JPH02126145A JP H02126145 A JPH02126145 A JP H02126145A JP 27732488 A JP27732488 A JP 27732488A JP 27732488 A JP27732488 A JP 27732488A JP H02126145 A JPH02126145 A JP H02126145A
Authority
JP
Japan
Prior art keywords
thermal resistance
temperature
heat
heating
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27732488A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
毅 高橋
Teruhide Hamamatsu
浜松 照秀
Hiroshi Ishikawa
浩 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP27732488A priority Critical patent/JPH02126145A/en
Publication of JPH02126145A publication Critical patent/JPH02126145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To safely measure the thermal resistance by locally heating the face opposite to the face to which a thermal-resistance material is stuck of a heating wall and comparing the temperature at this time with the temperature which is obtained by giving the same thermal flux at the time of non-sticking of the thermal-resistance material. CONSTITUTION:The outside surface of a heating tube 3 is locally heated by a heating laser 1 until reaching a prescribed temperature. The temperature of the heated surface is measured by a contactless thermometer 2 simultaneously with heating. The surface temperature of the heating tube 3 rises with its own thermal resistance by heating. The temperature rise of the tube surface at the time of sticking of a scale 4 on the internal surface of the tube is greater than that of the absence of the scale 4. That is, the temperature rise is proportional to the extent of thermal resistance. Consequently, the difference between the extent of temperature rise of the surface of the heating tube 3 at the time of applying a certain quantity of thermal flux and that for non-sticking of the scale is obtained to obtain the extent of thermal resistance due to the thermal-resistance material 4 like the scale.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、伝熱面に付着して成長する水垢(スケール)
等が原因となる熱抵抗(汚れ係数)を測定する方法に関
する。更に詳述すると、本発明は、伝熱面を破壊するこ
となく、非接触で熱抵抗を求める熱抵抗測定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to the prevention of limescale (scale) that adheres to and grows on heat transfer surfaces.
The present invention relates to a method for measuring thermal resistance (fouling coefficient) caused by such factors. More specifically, the present invention relates to a thermal resistance measuring method for determining thermal resistance in a non-contact manner without destroying a heat transfer surface.

(従来の技術) 熱抵抗測定は、熱交換器を有する全ての熱利用設備に共
通した保守管理技術の1つである。特に、スケールやス
ライム等の熱抵抗物質は、設備の運転時間の増加に伴い
、熱交換器伝熱面に付着して成長する。これは、単に熱
効率の低下による運転コストの上昇につながるだけでな
く、時には熱交換器に過熱陣害を引き起こし、経済性、
安全性の而から大きな問題となることさえある。このた
め、これら熱利用設備では、これらスケールやスライム
等の熱抵抗を定期的に除去する方策がとられているが、
その判断根拠は一般には経験によるものが多く、熱抵抗
そのもののの実測値を基準とした熱抵抗除去の判定はほ
とんど行なわれていない。
(Prior Art) Thermal resistance measurement is one of the maintenance management techniques common to all heat utilization equipment having a heat exchanger. In particular, heat-resistant substances such as scale and slime adhere to and grow on the heat transfer surface of the heat exchanger as the operating time of the equipment increases. This not only leads to an increase in operating costs due to a decrease in thermal efficiency, but also sometimes causes overheating damage to the heat exchanger, reducing economic efficiency.
It may even become a big problem from a safety standpoint. For this reason, in these heat utilization facilities, measures are taken to regularly remove thermal resistance such as scale and slime.
The basis for this judgment is generally based on experience, and the removal of thermal resistance is rarely judged based on the actual measured value of the thermal resistance itself.

これは、熱抵抗測定がきわめて鉗しく、現状では、実用
化された技術がほとんどないためである。
This is because measuring thermal resistance is extremely difficult, and there are currently few techniques that have been put to practical use.

従来提案されている伝熱面熱抵抗の測定方法としては、
伝熱壁に熱電対を埋め込み、熱交換器が稼働中の熱電対
指示値の時間変化から熱抵抗を求めようとするものがほ
とんどであった。
Conventionally proposed methods for measuring heat transfer surface thermal resistance include:
Most of the methods involved embedding a thermocouple in the heat transfer wall and determining the thermal resistance from the time change in the thermocouple reading while the heat exchanger is in operation.

また、伝熱壁の熱流方向に2本の熱な対を埋め込み、熱
抵抗並びに熱流の両者を同時測定する方法も提案されて
いる(特開昭51−107400号)、ボイラチューブ
の管壁内部に熱電対用挿入孔を2ケ所、その挿入孔の先
端部がボイラチューブの半径方向に間隔をあけて位置す
るように穿ち、各六に熱な対を挿入して2ケ所の点の温
度を測定し、基本温度勾配を求めるようにしている。即
ち、稼動中機器のチューブの温度検出位置の温度を測定
してその温度勾配を求め、両者の温度勾配を対比してス
ケールの付着量を検出するようにしている。
In addition, a method has been proposed in which two thermal pairs are embedded in the heat flow direction of the heat transfer wall and both thermal resistance and heat flow are measured simultaneously (Japanese Patent Application Laid-Open No. 107400/1983), inside the tube wall of a boiler tube. Drill two insertion holes for thermocouples in the hole so that the tips of the insertion holes are spaced apart in the radial direction of the boiler tube, and insert a thermocouple into each hole to measure the temperature at two points. Measurements are taken to determine the basic temperature gradient. That is, the temperature at the temperature detection position of the tube of the operating device is measured, the temperature gradient is determined, and the amount of scale adhesion is detected by comparing the two temperature gradients.

(発明が解決しようとする課題) しかしながら、前者の方法では、熱交換器に生じる経時
的な熱流変化をもとらえてしまうため、温度指示値と熱
抵抗値との間に相関が得られない問題が生じる。また、
後者の方法では熱電対指示値の不安定性、あるいは加工
の複雑さ等から実験室レベルで終わっており実用化には
至っていない。
(Problem to be solved by the invention) However, the former method also captures changes in heat flow that occur in the heat exchanger over time, so there is a problem that no correlation can be obtained between the temperature indication value and the thermal resistance value. occurs. Also,
The latter method has been limited to the laboratory level and has not been put to practical use due to the instability of the thermocouple reading or the complexity of processing.

従って、現在実用化されている熱抵抗測定法は、伝熱壁
を切り取り、スケールの厚さや付着量の形で熱抵抗物質
の熱抵抗量を求めているのが、唯一の方法である。例え
ば、巨大な熱交換器であるボイラを存する火力発電所に
おいては、ボイラの伝熱面管理に必要な信頼できる熱抵
抗値を求めるため、定期検査時に伝熱管を抜管している
。実際には、この抜管検査は、かなり高額となるため広
い伝熱面に対して十分な検査が行なわれているとはいい
難いのが実状である。
Therefore, the only method of measuring thermal resistance currently in practical use is to cut out the heat transfer wall and determine the thermal resistance of the thermal resistance material in the form of scale thickness and adhesion amount. For example, in thermal power plants that have boilers that are huge heat exchangers, heat transfer tubes are removed during periodic inspections in order to obtain reliable thermal resistance values necessary for managing the heat transfer surface of the boiler. In reality, this extubation inspection is quite expensive, and the reality is that it is difficult to say that a sufficient inspection is carried out on a wide heat transfer surface.

このように、従来の熱抵抗測定技術は、温度計測による
熱抵抗測定方法では、外乱要因に対する配慮、計測の簡
便性あるいは加工の複雑さ等に対する配慮がなされてお
らず、また伝熱壁を切り取る直接的な方法では、検査費
用の増大、作業の煩雑性あるいは復旧後の安全性等の問
題を有している。
As described above, conventional thermal resistance measurement techniques do not take into account external disturbance factors, simplicity of measurement, or complexity of processing, etc., and do not take into account factors such as the simplicity of measurement or the complexity of processing. Direct methods have problems such as increased testing costs, complicated work, and post-recovery safety.

本発明は、外乱に影響されず、伝熱壁を破壊することな
く安全かつ簡便に、しかも低廉に熱抵抗を測定する方法
を提供することを目的とする。
An object of the present invention is to provide a method for safely, easily, and inexpensively measuring thermal resistance without being affected by disturbances and without destroying the heat transfer wall.

(課題を解決するための手段) かかる目的を達成するため、本発明の熱抵抗測定方法は
、伝熱壁の熱抵抗物質が付着した面とは反対側の面を一
定熱流束で局所的に加熱し、所定量加熱した後、前記伝
熱壁の加熱面の定常温度を測定し、熱抵抗物質が付着し
ていないときに同じ熱流束を与えた場合の定常温度と比
較して前記熱抵抗物質の熱抵抗による温度上昇分を求め
、これと相関関係にある他面の熱抵抗物質の熱抵、抗量
を測定するようにしている。
(Means for Solving the Problems) In order to achieve the above object, the thermal resistance measuring method of the present invention locally measures the surface of the heat transfer wall opposite to the surface to which the heat resistance material is attached with a constant heat flux. After heating to a predetermined amount, the steady temperature of the heating surface of the heat transfer wall is measured, and the heat resistance is compared with the steady temperature when the same heat flux is applied when no heat resistance material is attached. The temperature rise due to the thermal resistance of the material is determined, and the thermal resistance and resistance of the other thermally resistant material are measured, which correlates with this.

また、本発明の熱抵抗測定方法は、伝熱壁の熱抵抗物質
が付着した面とは反対側の面を一定熱流束で局所的に加
熱し、所定量加熱した後加熱を停止して冷却し、前記伝
熱壁の加熱面の温度と冷却時間を測定L、熱抵抗物質が
付着していないときに同じ熱流束を与えかつ同じ条件で
冷却することによって生ずる温度変化と比較し、その冷
却時間の差からこれと相関関係にある曲面の熱抵抗物質
の熱抵抗量を測定するようにしている。
In addition, the thermal resistance measurement method of the present invention locally heats the surface of the heat transfer wall opposite to the surface to which the heat resistance material is attached with a constant heat flux, and after heating by a predetermined amount, the heating is stopped and the surface is cooled. Then, measure the temperature and cooling time of the heating surface of the heat transfer wall, and compare it with the temperature change that would occur by applying the same heat flux and cooling under the same conditions when no heat resistance material was attached. Based on the time difference, the thermal resistance of the curved thermal resistance material, which is correlated with this, is measured.

(作用) 伝熱壁は、加熱面側と熱抵抗物質の付着する作動流体側
とが管状あるいは平板状の金属で仕切られている。この
加熱面側の局所を熱源で加熱すると、伝熱壁では、伝熱
壁そのものの持つ熱抵抗により温度上昇dT1が生じる
。さらに、伝熱壁の作動流体側に熱抵抗物質が付着ずれ
ば、この熱抵抗Rsによる温度上昇dT2か新たに生じ
、この場合の伝熱壁の加熱面側の温度は、両者を含んだ
状態即ちdTl十dT2となる。従って、dTl とd
Tl−dT2との両者を測定すればdT2のみは計算で
容易に求めることができ、さらに、dT2 を求めるこ
とによって熱抵抗量を求めることが可能となる。また、
加熱後作動流体を流して冷却すれば、熱抵抗物質が付着
している場合とそうでない場合とでは、更にその付着量
に応じて冷却時間に差が生じ、しかもこの差が温度との
関係において熱抵抗と相関関係を有するのでこれを利用
して熱抵抗を求めることができる。
(Function) In the heat transfer wall, the heating surface side and the working fluid side to which the heat resistance substance is attached are partitioned by a tubular or flat metal plate. When this heating surface side is locally heated by a heat source, a temperature rise dT1 occurs in the heat transfer wall due to the thermal resistance of the heat transfer wall itself. Furthermore, if a thermal resistance substance adheres to the working fluid side of the heat transfer wall, a new temperature increase dT2 occurs due to this thermal resistance Rs, and in this case, the temperature on the heating surface side of the heat transfer wall is a state that includes both. That is, dTl + dT2. Therefore, dTl and d
By measuring both Tl and dT2, only dT2 can be easily determined by calculation, and furthermore, by determining dT2, it is possible to determine the amount of thermal resistance. Also,
If the working fluid is cooled after heating, there will be a difference in the cooling time depending on the amount of heat resistance material attached or not, and this difference will also affect the relationship with the temperature. Since it has a correlation with thermal resistance, thermal resistance can be determined using this.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明の熱抵抗測定方法の原理を示す。FIG. 1 shows the principle of the thermal resistance measuring method of the present invention.

鎖国において、1は加熱源、2は非接触温度計、3は伝
熱壁に相当する熱交換器の管(伝熱管)、4はスケール
などの熱抵抗物質、5はシャッタ駆動用モータ、6は加
熱源と被加熱物とを遮断するシャッタである。尚、伝熱
管3内には測定時に一定温度の水が流され、加熱によっ
て伝熱管3が破壊ないし劣化するのを防ぐため冷却する
ように設けられている。
In national isolation, 1 is a heating source, 2 is a non-contact thermometer, 3 is a heat exchanger tube (heat transfer tube) corresponding to a heat transfer wall, 4 is a heat resistance material such as a scale, 5 is a shutter drive motor, 6 is a shutter that shuts off the heating source and the object to be heated. Note that water at a constant temperature is flowed into the heat exchanger tube 3 at the time of measurement, and is provided to cool the heat exchanger tube 3 to prevent it from being destroyed or deteriorated due to heating.

加熱源1としては、測定に十分でかつ管を破壊しない程
度の熱量例えば20万Kcal/h、熱流束換算で40
万Kcal/ cdh程度の熱流束をビンポイントで安
定的に加えて局所的な加熱を実現するため、レーザ、X
口0ロラング、赤外線あるいは電磁波のような非接触の
熱源が採用される。
The heat source 1 has a heat amount sufficient for measurement and does not destroy the tube, for example, 200,000 Kcal/h, or 40 kcal/h in terms of heat flux.
Laser, X
Non-contact heat sources such as infrared radiation or electromagnetic waves are employed.

温度計2としては、熱源の影響を避けるため、離れた箇
所から非接触で選択波長による放射温度測定を行なうも
の、例えばアンチモン素子と色フィルタの併用方式等が
採用されている。
As the thermometer 2, in order to avoid the influence of a heat source, one that measures radiation temperature using a selected wavelength from a remote location without contact is adopted, for example, a method that uses an antimony element and a color filter in combination.

このような非接触での加熱、測温は伝熱湯を乱さないた
め精度よい熱抵抗測定を行なう上で不可欠のものである
Such non-contact heating and temperature measurement does not disturb the hot water and is essential for accurate thermal resistance measurements.

以上のような構成において、まず伝熱管3の表面の汚れ
、スラツジ等を落としてから、管厚を超音波測定器等を
使ってあらかじめ測定する0次いで、伝熱管3の外表面
が所定温度に達するまで、加熱レーザ1によって加熱す
る。加熱は直径5〜10叩φのビンポイントの局所的範
囲で行なわれる。また、このときの加熱量は少なくとも
20万Kca l/h程度であれば足りる。加熱と同時
に非接触式温度計2によって加熱面の温度が測定される
In the above configuration, first remove dirt, sludge, etc. from the surface of the heat exchanger tube 3, and then measure the tube thickness in advance using an ultrasonic measuring device.Next, the outer surface of the heat exchanger tube 3 is heated to a predetermined temperature. Heating is performed by the heating laser 1 until the temperature is reached. Heating is carried out in a local area of bin points with a diameter of 5 to 10 taps. Further, it is sufficient that the amount of heating at this time is at least about 200,000 Kcal/h. At the same time as heating, the temperature of the heated surface is measured by the non-contact thermometer 2.

加熱によって、伝熱管3はそれ自体の熱抵抗によって表
面温度が一■−昇する。この管表面の温度上昇は、管内
面にスケール4が付着したときの方が無いときよりも大
きい。即ち、温度上昇は熱抵抗1に比例する。
By heating, the surface temperature of the heat exchanger tube 3 increases by one inch due to its own thermal resistance. This temperature rise on the tube surface is greater when the scale 4 is attached to the tube inner surface than when it is not present. That is, the temperature rise is proportional to the thermal resistance 1.

したがって、ある量の熱流束を加えるときの伝熱管3の
表面の温度上昇量とスケールが付着していない時の温度
上昇量との差を求められれば、スケール等の熱抵抗物質
4に因る熱抵抗量を求めることができる。
Therefore, if you can find the difference between the amount of temperature rise on the surface of the heat transfer tube 3 when a certain amount of heat flux is applied and the amount of temperature rise when no scale is attached, it is possible to determine the difference between the amount of temperature rise on the surface of the heat transfer tube 3 and the amount of temperature rise when no scale is attached. The amount of thermal resistance can be determined.

その後、加熱を停止し、加熱部分の定常状態における温
度を測定ずろ。加熱の停止はシャッタ6をモータ5を駆
動さ片てレーザ1の前に回転させることによって瞬時に
行なわれる。これによって、管表面の温度は、第2図に
示すように、定常状態を経た後、管内を流れる水によっ
て冷却され降下し始める。
Then, stop heating and measure the steady state temperature of the heated part. The heating is stopped instantaneously by rotating the shutter 6 in front of the laser 1 by driving the motor 5. As a result, as shown in FIG. 2, the temperature of the tube surface reaches a steady state and then begins to drop as it is cooled by the water flowing inside the tube.

そこで、定常状態の温度を測定し、熱抵抗物質4に因る
管表面での温度上昇分dT2を求める。
Therefore, the steady state temperature is measured and the temperature increase dT2 on the tube surface due to the thermal resistance material 4 is determined.

ここで、定常状態とは加熱源を遮断した直後の温度かバ
ランスして動きがない落着いた状態であり、温度降下直
前の僅かな時間に存在する。
Here, the steady state is a stable state where the temperature is balanced and there is no movement immediately after the heating source is shut off, and exists for a short period of time just before the temperature drops.

この定常状態の温度は熱抵抗物質4に因る温度上昇分d
T2の曲、伝熱管3自体の熱抵抗に因る温度上昇分dT
1を含んでいるため、スケールのない条件での温度上昇
分d’T’1を差し引いてdT2を求める。
The temperature in this steady state is the temperature increase d due to the thermal resistance material 4.
T2 song, temperature rise dT due to thermal resistance of heat exchanger tube 3 itself
1, so dT2 is obtained by subtracting the temperature rise d'T'1 under conditions without scale.

スケールのない条件での温度上昇分dT1は計算によっ
て求められる。加熱しないときの温度を測定すると、管
内の温度と管外の温度は同じになるから、管外表面の温
度自体が流体湯境(管内を流れる水の温度)となる。こ
の永め温度は一定であり、管内壁面を一様に冷却する。
The temperature increase dT1 under conditions without scale is determined by calculation. If you measure the temperature when not heating, the temperature inside the tube is the same as the temperature outside the tube, so the temperature on the outside surface of the tube itself becomes the fluid temperature (the temperature of the water flowing inside the tube). This aging temperature is constant and uniformly cools the inner wall surface of the tube.

また、管厚はあらかじめ測定されており、伝熱管の熱伝
導率も既知である。このことから、スケールのない場合
のある熱流束における管外表面の温度dT1はq”=l
(■LニエL し より計算によって求められる。
Further, the tube thickness has been measured in advance, and the thermal conductivity of the heat exchanger tube is also known. From this, the temperature dT1 of the outer surface of the tube at a heat flux without scale is q''=l
(■L nie L is determined by Shiyori calculation.

但し、  4・・・ 熱流束、 k・・・ 熱伝導率、 T1・・・管外表面温度、 T2・・・管内表面温度、 し・・・ 管厚 そこで、非接触式温度計2によって測定された前述の加
熱源1から与えられる一定の熱流束における管表面温度
から上述のdTl を差し引けば、熱抵抗物質4に因る
管表面での温度上昇分dT2を求めることができる。そ
して、管内面熱抵抗と管表面温度dT2との関係より、
該当加熱熱流束における管内面熱抵抗を求めることがで
きる。例えば低合金鋼製、直径31゜8市、管厚5.5
開の伝熱管3に直径5.0間でビンポイント加熱した場
合の実験結果を第3図に示す。該グラフより明らかなよ
うに、例えば温度]−昇dT2が0.8°Cで加熱熱流
束か20 x 104 Kcal/ rrfhの場合、
1.33xfOX10″ih’c/kcalの熱抵抗が
管内面に存在することがわかる。
However, 4... Heat flux, k... Thermal conductivity, T1... Tube outer surface temperature, T2... Tube inner surface temperature, and... Pipe thickness. By subtracting the above-mentioned dTl from the tube surface temperature at a constant heat flux given by the heating source 1 described above, the temperature increase dT2 on the tube surface due to the heat resistance material 4 can be determined. From the relationship between the tube inner surface thermal resistance and the tube surface temperature dT2,
The tube inner surface thermal resistance at the corresponding heating heat flux can be determined. For example, made of low-alloy steel, diameter 31°8, pipe thickness 5.5
FIG. 3 shows the experimental results when the open heat exchanger tube 3 was subjected to bin point heating with a diameter of 5.0 mm. As is clear from the graph, for example, when the temperature]-rise dT2 is 0.8°C and the heating heat flux is 20 x 104 Kcal/rrfh,
It can be seen that a thermal resistance of 1.33xfOX10''ih'c/kcal exists on the inner surface of the tube.

以上の方法で熱抵抗が求められないときには、冷却時間
の差即ちスゲールがあるときと無いときのある温度に冷
却するまでに要する時間の差を利用して抵抗を求めるこ
とらできる。この場合、冷却時間の差Δtと温度を同時
に測定しその比を求める。即ち、ある基準温度までの冷
却時間の差Δしと熱抵抗量との間には第4図に示すよう
に一定の関係があり、熱抵抗物質4に起因する冷却時間
のずれから熱抵抗量を求めることができる。
When the thermal resistance cannot be determined by the above method, the resistance can be determined by using the difference in cooling time, that is, the difference in the time required to cool down to a certain temperature with and without Sgale. In this case, the difference Δt in cooling time and the temperature are simultaneously measured and their ratio is determined. In other words, there is a certain relationship between the difference Δ in the cooling time to a certain reference temperature and the amount of thermal resistance as shown in FIG. can be found.

例えば、基準温度60゛C1加熱熱流束25×104に
cal/ rrfhにおける基準温度までの冷却時間と
管内面熱抵抗との関係を示す第4図において、冷却時間
が3301secのとき管内面熱抵抗は20x 105
rrIlhC/にcalである。
For example, in Figure 4, which shows the relationship between the cooling time to the reference temperature and the tube inner surface thermal resistance at a reference temperature of 60゛C1 heating heat flux of 25 x 104 cal/rrfh, when the cooling time is 3301 seconds, the tube inner surface thermal resistance is 20x 105
Cal to rrIlhC/.

(発明の効果) 以上の説明より明らかなように、本発明の熱抵抗測定方
法は、伝熱壁の熱抵抗物質が付着した面とは反対側の面
を一定熱流束で局所的に加熱し、熱抵抗物質に因る温度
上昇を起させた後、これを熱抵抗物質が付着していない
ときに同じ熱流束を与えることによって生じる温度と比
較して、加熱面の定常温度での温度差として求めること
によっであるいは冷却時間の差として捉えることによっ
て、これと相関関係にある他面の熱抵抗物質の熱抵抗量
を測定するようにしているので、非破壊によって管表面
側から管内面の熱抵抗が測定できる。
(Effects of the Invention) As is clear from the above explanation, the thermal resistance measurement method of the present invention locally heats the surface of the heat transfer wall opposite to the surface to which the heat resistance material is attached with a constant heat flux. , after causing a temperature rise due to the heat resistance material, compare this with the temperature that would occur by giving the same heat flux when no heat resistance material is attached, and calculate the temperature difference at the steady temperature of the heating surface. The thermal resistance of the thermal resistance material on the other side, which has a correlation with this, can be measured by determining the difference in cooling time or by determining the difference in cooling time. Thermal resistance of can be measured.

また、本発明方法によると、伝熱壁を破壊せずに内部の
熱抵抗を測定するなめ、測定対象たる1云熱管などを抜
管する必要がないので熱抵抗検査費用を大「11に削減
できる。しがも、非接触により伝熱面の温度場を乱すこ
となく測定できるなめ測定精度か良い。更に、本発明の
熱抵抗測定方法は、局所的に加熱しかつ加熱停止後の管
表面温度を測定するたけなので、短時間で測定できる。
In addition, according to the method of the present invention, the internal thermal resistance is measured without destroying the heat transfer wall, and there is no need to remove the heat pipes to be measured, so the cost of thermal resistance testing can be reduced to 11 times. However, the accuracy of the measurement is good because it can be measured without disturbing the temperature field on the heat transfer surface due to non-contact.Furthermore, the thermal resistance measurement method of the present invention is capable of locally heating and measuring the tube surface temperature after heating is stopped. Because it only measures , it can be measured in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定方法の原理図、第2図は冷却速度
と管内熱抵抗との関係を示すグラフ、第3図は管内面熱
抵抗と管表面温度との関係を示すグラフ、第4図は基準
温度までの冷却時間と管内面p!!、抵抗との関係を示
すグラフである。 1・・・加熱源、2・・・非接触式a度計、3・・・熱
交換器管(伝熱管)、4・・・熱抵抗物質、6・・・シ
ャッタ。 熱ll(杭による管表面での温庇十4 dTz 藷 〜 囚 装 因
Fig. 1 is a diagram showing the principle of the measurement method of the present invention, Fig. 2 is a graph showing the relationship between cooling rate and tube internal thermal resistance, Fig. 3 is a graph showing the relationship between tube internal thermal resistance and tube surface temperature, Figure 4 shows the cooling time to the reference temperature and the tube inner surface p! ! , is a graph showing the relationship with resistance. DESCRIPTION OF SYMBOLS 1...Heating source, 2...Non-contact type a degree meter, 3...Heat exchange tube (heat exchanger tube), 4...Heat resistance material, 6...Shutter. Heat (warm eaves on the pipe surface by piles)

Claims (2)

【特許請求の範囲】[Claims] (1)伝熱壁の熱抵抗物質が付着した面とは反対側の面
を一定熱流束で局所的に加熱し、所定量加熱した後、前
記伝熱壁の加熱面の定常温度を測定し、熱抵抗物質が付
着していないときに同じ熱流束を与えた場合の定常温度
と比較して前記熱抵抗物質の熱抵抗による温度上昇分を
求め、これと相関関係にある他面の熱抵抗物質の熱抵抗
量を測定することを特徴とする熱抵抗測定方法。
(1) Locally heat the surface of the heat transfer wall opposite to the surface to which the heat resistance material is attached with a constant heat flux, and after heating by a predetermined amount, measure the steady temperature of the heated surface of the heat transfer wall. , calculate the temperature rise due to the thermal resistance of the thermal resistance material compared to the steady temperature when the same heat flux is applied when no thermal resistance material is attached, and calculate the thermal resistance of the other side that is correlated with this. A thermal resistance measuring method characterized by measuring the thermal resistance of a substance.
(2)伝熱壁の熱抵抗物質が付着した面とは反対側の面
を一定熱流束で局所的に加熱し、所定量加熱した後加熱
を停止して冷却し、前記伝熱壁の加熱面の温度と冷却時
間を測定し、熱抵抗物質が付着していないときに同じ熱
流束を与えかつ同じ条件で冷却することによって生ずる
温度変化と比較し、その冷却時間の差からこれと相関関
係にある他面の熱抵抗物質の熱抵抗量を測定することを
特徴とする熱抵抗測定方法。
(2) Locally heat the surface of the heat transfer wall opposite to the surface to which the heat resistance substance is attached, with a constant heat flux, and after heating by a predetermined amount, stop heating and cool the heat transfer wall. Measure the temperature and cooling time of the surface, compare it with the temperature change that would occur by applying the same heat flux and cooling under the same conditions when no heat resistance material was attached, and find a correlation from the difference in cooling time. A thermal resistance measurement method characterized by measuring the thermal resistance of a thermal resistance material on the other side.
JP27732488A 1988-11-04 1988-11-04 Thermal resistance measuring method Pending JPH02126145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27732488A JPH02126145A (en) 1988-11-04 1988-11-04 Thermal resistance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27732488A JPH02126145A (en) 1988-11-04 1988-11-04 Thermal resistance measuring method

Publications (1)

Publication Number Publication Date
JPH02126145A true JPH02126145A (en) 1990-05-15

Family

ID=17581946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27732488A Pending JPH02126145A (en) 1988-11-04 1988-11-04 Thermal resistance measuring method

Country Status (1)

Country Link
JP (1) JPH02126145A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185786A (en) * 2009-02-12 2010-08-26 Chugoku Electric Power Co Inc:The Method for calculating coefficient of thermal expansion of piping
JP2013204982A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Method of monitoring contamination of cooling water line and method of controlling chemical feed
CN109682621A (en) * 2018-12-13 2019-04-26 北京金风科创风电设备有限公司 Fault detection method, device and system for cooling device for power module
JP2022047346A (en) * 2020-09-11 2022-03-24 東芝プラントシステム株式会社 Residual liquid volume detection device, detection system, and detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126809A (en) * 1984-07-16 1986-02-06 Showa Denko Kk Method and instrument for detecting state of sticking body in fluid pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126809A (en) * 1984-07-16 1986-02-06 Showa Denko Kk Method and instrument for detecting state of sticking body in fluid pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185786A (en) * 2009-02-12 2010-08-26 Chugoku Electric Power Co Inc:The Method for calculating coefficient of thermal expansion of piping
JP2013204982A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Method of monitoring contamination of cooling water line and method of controlling chemical feed
CN109682621A (en) * 2018-12-13 2019-04-26 北京金风科创风电设备有限公司 Fault detection method, device and system for cooling device for power module
JP2022047346A (en) * 2020-09-11 2022-03-24 東芝プラントシステム株式会社 Residual liquid volume detection device, detection system, and detection method

Similar Documents

Publication Publication Date Title
US6678628B2 (en) Apparatus and methods for monitoring and testing coolant recirculation systems
CA1070515A (en) Apparatus for determining heat transfer efficiency
US5248198A (en) Method and apparatus for evaluating heat exchanger efficiency
CN104749211B (en) Heat-transfer pipe life estimate device
US3724267A (en) Heat flux sensing device
CN101311684A (en) Thermal mass flow meter and method for its operation
US4764024A (en) Steam trap monitor
JP6836927B2 (en) High-risk site prediction method and high-risk site prediction device
JPS6126809A (en) Method and instrument for detecting state of sticking body in fluid pipe
JPH02126145A (en) Thermal resistance measuring method
JPS5915800A (en) Fouling preventing apparatus
JP2002022686A (en) High-temperature heat transfer section damage / dirt evaluation method
JPH0293315A (en) Method for testing the thickness of metal pipe walls, etc.
JP4579749B2 (en) Pipe thinning prediction apparatus and pipe thinning prediction method
CN212513394U (en) Pipeline temperature monitoring system
JP3872587B2 (en) Boiler thermal conductivity decreasing substance adhesion judgment device
JPH04369470A (en) Measurement of thermal resistance
Taler et al. Experimental verification of space marching methods for solving inverse heat conduction problems
RU2631007C1 (en) Heat meter based on overhead sensors
JP2012154855A (en) Physical quantity measuring device and physical quantity measuring method
SU1260633A1 (en) Method of determining moment and location of leakage in pipeline
JPS63175738A (en) leak detector
JPS5471679A (en) Thermal resistance measuring device
SU932292A1 (en) Method of measuring heat consumption
KR100544237B1 (en) Howling measuring device of thermal power boiler