[go: up one dir, main page]

JPH02119266A - Solid-state image sensing device of vertical type overflow drain structure - Google Patents

Solid-state image sensing device of vertical type overflow drain structure

Info

Publication number
JPH02119266A
JPH02119266A JP63273602A JP27360288A JPH02119266A JP H02119266 A JPH02119266 A JP H02119266A JP 63273602 A JP63273602 A JP 63273602A JP 27360288 A JP27360288 A JP 27360288A JP H02119266 A JPH02119266 A JP H02119266A
Authority
JP
Japan
Prior art keywords
region
conductivity type
photoelectric conversion
epitaxial layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63273602A
Other languages
Japanese (ja)
Inventor
Yasuo Ishihara
石原 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63273602A priority Critical patent/JPH02119266A/en
Publication of JPH02119266A publication Critical patent/JPH02119266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To set a reverse bias voltage actuating an operation of an electronic shutter to a low voltage by a method wherein a low-concentration epitaxial layer of a first conductivity type is formed on a semiconductor substrate of the first conductivity type and a well, of a second conductivity type, composed of a first region whose bottom is shallow and of a second region whose bottom is deep is formed on the epitaxial layer. CONSTITUTION:A well, of a second conductivity type, composed of a first region 16 whose bottom is shallow and a second region 17 whose bottom is deep is formed on a low- concentration epitaxial layer 30, of a first conductivity type, of a semiconductor chip where the epitaxial layer 30 of the first conductivity type has been formed on a semiconductor substrate 15 of the first conductivity type. A photoelectric conversion region 18 is formed on a main face of the first region 16; a signal readout means receiving an electric charge from the photoelectric conversion region 18 is formed on a main face of the second region 17. For example, it is desirable that an impurity concentration in the epitaxial layer 30 is by one digit lower than the impurity concentration of at least the substrate 15. Thereby, when a substrate bias to be applied between the first region and the second region 16, 17 and the substrate 15 is changed while optical information is stored in the photoelectric conversion region 18, a shutter can function at a low voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電荷転送装置を用いた縦形オーバフロードレイ
ン構造の撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an imaging device with a vertical overflow drain structure using a charge transfer device.

〔従来の技術〕[Conventional technology]

電荷転送装置を用いた撮像装置は、インクライン転送方
式と呼ばれる方式が急速に発展してきた。特に縦形オー
バフロードレイン構造と呼ばれるブルーミング抑制の画
素構造が提案されてから高密度化が進み、撮像管を超え
る特性が得られるようになった。また縦形オーバフロー
ドレイン構造の特色を生かして電子シャッタ動作も可能
になり、新しい機能を付加した撮像装置が得られるよう
になった。
As an imaging device using a charge transfer device, a method called an incline transfer method has rapidly developed. In particular, since a pixel structure called a vertical overflow drain structure that suppresses blooming was proposed, the density has increased and it has become possible to obtain characteristics that exceed those of image pickup tubes. Furthermore, by taking advantage of the features of the vertical overflow drain structure, electronic shutter operation has become possible, making it possible to obtain an imaging device with new functions.

第5図はインターライン転送方式による縦形オーバフロ
ードレイン構造の撮像装置のブロック図で、同一電荷転
送電極群で駆動する複数列の垂直シフトレジスタ10と
、各垂直シフトレジスタの一側に隣接し、且つ互いに電
気的に分離された光電変換部11と、光電変換部に蓄え
られた信号電荷を垂直シフトレジスタに読み出すトラン
スファゲート領域12と、各垂直シフトレジスタの一端
に設けられた水平シフトレジスタ13、および信号電荷
を検出する装置14がら成っている。
FIG. 5 is a block diagram of an imaging device with a vertical overflow drain structure using an interline transfer method, which includes a plurality of columns of vertical shift registers 10 driven by the same charge transfer electrode group, and adjacent vertical shift registers 10 on one side of each vertical shift register. A photoelectric conversion section 11 electrically isolated from each other, a transfer gate region 12 for reading signal charges stored in the photoelectric conversion section to a vertical shift register, a horizontal shift register 13 provided at one end of each vertical shift register, and It consists of a device 14 for detecting signal charges.

第6図は第5図の撮像装置におけるA−A’縁線上断面
を示す半導体チップの縦断面図である。
FIG. 6 is a longitudinal sectional view of the semiconductor chip, taken along the line AA' in the imaging device of FIG. 5. FIG.

シリコンからなるN型半導体基板15には接合の浅い第
1領域接合が深い第2領域からなるPウェルが形成され
ている。第1領域16にはN型領域が形成され光電変換
領域18として作用する。
A P-well is formed in an N-type semiconductor substrate 15 made of silicon, consisting of a first region with a shallow junction and a second region with a deep junction. An N-type region is formed in the first region 16 and acts as a photoelectric conversion region 18 .

深い第2領域17には埋込みチャネルCCDからなる垂
直シフトレジスタ(埋込みチャネル1つ、転送電極21
>が形成され、その主面はS f 02等の絶縁層20
を介して転送電極21が配置されている。N型領域から
成る光電変換領域18と隣接する垂直シフトレジスタ(
19)は高いP型不純物層からなるチャネルストップ領
域22によって分離されている。また光電変換領域18
と、対応する垂直シフトレジスタ19間にはトランスフ
ァゲート領域23が配置されている。さらに、光電変換
部18以外は例えばA1のような金属層24で遮光され
ている。
In the deep second region 17, there is a vertical shift register (one buried channel, transfer electrode 21) consisting of a buried channel CCD.
> is formed, and its main surface is covered with an insulating layer 20 such as S f 02.
A transfer electrode 21 is arranged via the. A vertical shift register (
19) are separated by a channel stop region 22 made of a highly P-type impurity layer. In addition, the photoelectric conversion area 18
A transfer gate region 23 is arranged between the vertical shift register 19 and the corresponding vertical shift register 19. Further, parts other than the photoelectric conversion section 18 are shielded from light by a metal layer 24 such as A1, for example.

ブルーミングの抑制はN型半導体基板15とPウェル(
16,17)の接合に逆バイアス電圧を印加し光電変換
部18直下のPウェルの浅い部分を完全に空乏化する。
Blooming can be suppressed by connecting the N-type semiconductor substrate 15 and the P-well (
16 and 17) to completely deplete the shallow portion of the P-well directly below the photoelectric conversion section 18.

第7図は第6図に破線で示した深さ方向に於ける電位分
布図を模式的に示している。
FIG. 7 schematically shows a potential distribution diagram in the depth direction indicated by the broken line in FIG.

トランスファゲート領域23がオン状態になると光電変
換部18のN型領域の電圧が曲線25のようにセットさ
れる。この時Pウェルの第1領域は完全に空乏化される
よう基板電圧28を印加する。光電変換領域18で光情
報を蓄積する時はトランスファゲート領域23をオフ状
態にする。光電変換領域18のN領域電位は蓄積される
電子によって曲線26のように浅くなる。しかし強い光
が照射されても曲線27の状態になると光電変換領域1
8(N型)と第1領域16の接合が順方向になり発生し
た信号は全て基板に掃出されブルーミングが抑制される
When the transfer gate region 23 is turned on, the voltage of the N-type region of the photoelectric conversion section 18 is set as shown by a curve 25. At this time, a substrate voltage 28 is applied so that the first region of the P-well is completely depleted. When optical information is stored in the photoelectric conversion region 18, the transfer gate region 23 is turned off. The N region potential of the photoelectric conversion region 18 becomes shallow as shown by a curve 26 due to the accumulated electrons. However, even if strong light is irradiated, if the state of curve 27 is reached, the photoelectric conversion area 1
8 (N type) and the first region 16 are in the forward direction, all the generated signals are swept out to the substrate and blooming is suppressed.

すなわち、縦形オーバフローのセル構造では基板電圧に
よってブルーミングが抑制できる。基板電圧28を更に
大きくすると曲線2つのように発生した電荷を全て基板
に掃き出すことが可能になる。この現象を利用し電気的
に蓄積時間を制御する電子シャッタ機能が可能になる。
That is, in the vertical overflow cell structure, blooming can be suppressed by the substrate voltage. If the substrate voltage 28 is further increased, it becomes possible to sweep out all the generated charges to the substrate as shown in the two curves. Using this phenomenon, an electronic shutter function that electrically controls the storage time becomes possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の縦形オーバフロードレイン構造の固体撮
像装置において、電子シャッタ機能をもたせるにはPウ
ェルと基板に印加する逆バイアス電圧が30V〜100
V程度の高電圧を必要とし、駆動回路および撮像装置の
高耐圧化が必要となり、ひいては信頼性が悪くなる欠点
がある。
In the conventional solid-state imaging device with the vertical overflow drain structure described above, in order to provide an electronic shutter function, the reverse bias voltage applied to the P well and the substrate must be 30V to 100V.
This requires a high voltage on the order of V, which requires the drive circuit and the imaging device to have high voltage resistance, which has the drawback of poor reliability.

本発明の目的は、縦形オーバフロードレイン構造の固体
撮像装置における電子シャッタ動作を可能とする逆バイ
アス電圧の低電圧化にある。
An object of the present invention is to reduce the reverse bias voltage to enable electronic shutter operation in a solid-state imaging device having a vertical overflow drain structure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の縦形オーパフロード−レイン構造の固体撮像装
置は、第1導電型半導体基板上に低濃度の第1導電型エ
ピタキシャル層を形成してなる半導体チップの前記第1
導電型エピタキシャル層に設けられた、底の浅い第1領
域及び底の深い第2領域からなる第2導電型ウェルを有
し、前記第1領域の主面に設けられた光電変換領域と前
記第2領域の主面に設けられ前記光電変換領域から電荷
を受けとる信号読み出し手段とを含むというものである
A solid-state imaging device having a vertical overflow drain-drain structure according to the present invention includes a semiconductor chip having a first conductivity type epitaxial layer formed on a first conductivity type semiconductor substrate.
It has a second conductivity type well formed in a conductivity type epitaxial layer and consisting of a first region with a shallow bottom and a second region with a deep bottom, and a photoelectric conversion region provided on the main surface of the first region and the second region with a deep bottom. and signal readout means provided on the main surfaces of the two regions and receiving charges from the photoelectric conversion region.

〔実施例〕〔Example〕

次に本発明について図面を用いて説明する。 Next, the present invention will be explained using the drawings.

以後本発明の実施例のNチャネル固体撮像装置について
記述する。
Hereinafter, an N-channel solid-state imaging device according to an embodiment of the present invention will be described.

第1図は本発明の一実施例を示す半導体チップの縦断面
図で、従来例で説明した第6図と同様に第5図で示した
インターライン転送型電荷転送撮像装置のA−A’縁線
上断面を示したものである。
FIG. 1 is a longitudinal cross-sectional view of a semiconductor chip showing an embodiment of the present invention, and similar to FIG. 6 described in the conventional example, the interline transfer type charge transfer imaging device shown in FIG. It shows a cross section above the edge line.

第1図において第6図と同一機能をもつ領域は同一記号
で示しである。第6図に示した従来例と本発明の違いは
N型半導体基板15上に、不純物濃度が低いN型エピタ
キシャルW30が形成されていることにある。
In FIG. 1, areas having the same functions as those in FIG. 6 are indicated by the same symbols. The difference between the conventional example shown in FIG. 6 and the present invention is that an N-type epitaxial layer W30 with a low impurity concentration is formed on an N-type semiconductor substrate 15.

第2図は第1図に破線で示した深さ方向の不純物濃度分
布を模式的に示したものである。濃度は第2図の上部に
記入した記号の領域と対応してぃる。また第2図の濃度
は相対的なものである。
FIG. 2 schematically shows the impurity concentration distribution in the depth direction indicated by the broken line in FIG. The density corresponds to the area marked with the symbol at the top of Figure 2. Also, the concentrations in FIG. 2 are relative.

実際の装置ではN型半導体基板15の不順物濃度(曲線
31)は1015〜1018/吊が望ましい。エピタキ
シャル層30の不純物濃度(曲線32)は少くとも基板
濃度より1桁低いのが望ましい。実際の値は1014〜
1016/−が適当である。第1領域16および光電変
換領域のN領域18の濃度(曲線33.34)はブルー
ミング抑制電圧および飽和信号量に見合う値にすればよ
い。
In an actual device, the concentration of impurities (curve 31) in the N-type semiconductor substrate 15 is preferably 1015 to 1018/h. It is desirable that the impurity concentration of the epitaxial layer 30 (curve 32) is at least an order of magnitude lower than the substrate concentration. The actual value is 1014 ~
1016/- is appropriate. The density (curves 33 and 34) of the first region 16 and the N region 18 of the photoelectric conversion region may be set to a value commensurate with the blooming suppression voltage and the saturation signal amount.

第3図は、第1図、第2図に破線で示した深さ方向の電
位分布を示す。曲線35..36.37は基板電圧を上
昇した時に電位分布を模式的に示したもので、基板バイ
アスによって第1領域16とN型エピタキシャル713
0の空乏層が広がり、不純物濃度が高いN型半導体基板
15に到達すると、空乏層幅はほとんど広がらず基板バ
イアスはほぼ第1領域の電位を深めるのに費される。従
ってN型エピタキシャル層の幅および基板濃度の選び方
で曲線36のように光電変換部で発生した信号電荷を低
い基板バイアスで基板に掃きだすことができる。従って
光電変換部で光情報を蓄積している期間に基板バイアス
を曲線37から曲線35または36に戻す時間比を任意
に選ぶことにより低電圧で電子シャッタ機能をもたせる
ことができる。
FIG. 3 shows the potential distribution in the depth direction indicated by the broken line in FIGS. 1 and 2. FIG. Curve 35. .. 36.37 schematically shows the potential distribution when the substrate voltage is increased, and the first region 16 and the N-type epitaxial layer 713 are
When the depletion layer of 0 expands and reaches the N-type semiconductor substrate 15 with a high impurity concentration, the width of the depletion layer hardly increases and the substrate bias is mostly used to deepen the potential of the first region. Therefore, by selecting the width of the N-type epitaxial layer and the substrate concentration, the signal charges generated in the photoelectric conversion section can be swept out to the substrate with a low substrate bias as shown by the curve 36. Therefore, by arbitrarily selecting the time ratio for returning the substrate bias from curve 37 to curve 35 or 36 during the period when optical information is accumulated in the photoelectric conversion section, it is possible to provide an electronic shutter function with a low voltage.

第4図は本発明の第2の実施例を示す半導体チップの縦
断面図で、従来例の第6図、および第1の実施例の第1
図と対応している。
FIG. 4 is a vertical cross-sectional view of a semiconductor chip showing a second embodiment of the present invention, FIG.
It corresponds to the figure.

第4図で第1図と異る点は光電変換部18のN型領域主
面がチャネルストップ領域22と同様P型不純物濃度が
高いP“層38で被れているので、光電変換部の容量が
増大し、小さい基板バイアスで沢山の信号電荷を基板に
掃き出すことができる。
The difference between FIG. 4 and FIG. 1 is that the main surface of the N-type region of the photoelectric conversion section 18 is covered with a P" layer 38 having a high concentration of P-type impurities, similar to the channel stop region 22, so that the photoelectric conversion section The capacitance increases, and a large amount of signal charge can be swept out to the substrate with a small substrate bias.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は半導体基板の主面にこの
基板と同一の導電型をもち不純物濃度が低いエピタキシ
ャル層を形成し、前記エピタキシャル層の主面に基板と
反対の導電型を持ち接合の浅い第1領域と、深い第2領
域からなる逆導電型ウェルを設は第1領域主面に光電変
換領域を形成し、第2領域に前記光電変換領域から電荷
を受けとる信号読み出し手段を設けたことにより、前記
光電変換領域で光情報を蓄積している期間に前記第1.
第2領域と基板間に印加する基板バイアスを変化させる
ことにより低電圧でシャッタ機能ができる効果がある。
As explained above, the present invention forms an epitaxial layer having the same conductivity type as that of the substrate and having a low impurity concentration on the main surface of a semiconductor substrate, and forms a bonding epitaxial layer having a conductivity type opposite to that of the substrate on the main surface of the epitaxial layer. A well of opposite conductivity type consisting of a shallow first region and a deep second region is provided, a photoelectric conversion region is formed on the main surface of the first region, and a signal readout means for receiving charges from the photoelectric conversion region is provided in the second region. Therefore, during the period when optical information is being accumulated in the photoelectric conversion region, the first.
By changing the substrate bias applied between the second region and the substrate, a shutter function can be achieved with a low voltage.

尚、本発明ではNチャネル撮像装置について説明したが
Pチャネルでも同様な考えで実現可能である。またp−
n接合を光電変換領域とする他の固体撮像装置に適用で
きることは言うまでもない。
In the present invention, an N-channel imaging device has been described, but a P-channel imaging device can also be implemented using the same idea. Also p-
It goes without saying that the present invention can be applied to other solid-state imaging devices that use n-junctions as photoelectric conversion regions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す固体撮像装置の半
導体チップのセル部断面図、第2図は第1図に破線で示
した深さ方向の不純物濃度分布図、第3図は第2図に対
応する電位分布図、第4図は本発明の第2の実施例を示
す半導体チップのセル部断面図、第5図は従来のインタ
ーライン電荷転送撮像装置を示すブロック図、第6図は
第5図のA−A’線相当部で切断した半導体チップの断
面図、第7図は第6図に破線で示した深さ方向不純物濃
度分布図である。 15・・・N型半導体基板、16・・・第1領域、17
・・・第2領域、18・・・光電変換領域、19・・・
埋込みチャネル、20・・・絶縁層、21・・・転送電
極、22・・・チャネルストップ領域、23・・・トラ
ンスファゲート領域、24・・・金属層、25,26.
27・・・電位分布曲線、28・・・基板電圧、2つ・
・・電位分布の曲線、30・・・N型エピタキシャル層
、31〜34・・・不純物濃度分布の曲線、35−37
・・・電位分布の曲線。 第1図 第2図 第5図 箭乙図 M3図 第7凹
FIG. 1 is a cross-sectional view of a cell portion of a semiconductor chip of a solid-state imaging device showing a first embodiment of the present invention, FIG. 2 is an impurity concentration distribution diagram in the depth direction indicated by the broken line in FIG. 1, and FIG. is a potential distribution diagram corresponding to FIG. 2, FIG. 4 is a sectional view of a cell portion of a semiconductor chip showing a second embodiment of the present invention, and FIG. 5 is a block diagram showing a conventional interline charge transfer imaging device. FIG. 6 is a cross-sectional view of the semiconductor chip taken along the line AA' in FIG. 5, and FIG. 7 is a depthwise impurity concentration distribution diagram indicated by the broken line in FIG. 6. 15... N-type semiconductor substrate, 16... first region, 17
...Second region, 18...Photoelectric conversion region, 19...
Buried channel, 20... Insulating layer, 21... Transfer electrode, 22... Channel stop region, 23... Transfer gate region, 24... Metal layer, 25, 26.
27... Potential distribution curve, 28... Substrate voltage, two...
...Curve of potential distribution, 30...N-type epitaxial layer, 31-34...Curve of impurity concentration distribution, 35-37
...Potential distribution curve. Figure 1 Figure 2 Figure 5 M3 Figure 7 Concave

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板上に低濃度の第1導電型エピタキ
シャル層を形成してなる半導体チップの前記第1導電型
エピタキシャル層に設けられた、底の浅い第1領域及び
底の深い第2領域からなる第2導電型ウェルを有し、前
記第1領域の主面に設けられた光電変換領域と前記第2
領域の主面に設けられ前記光電変換領域から電荷を受け
とる信号読み出し手段とを含むことを特徴とする縦形オ
ーバフロードレイン構造の固体撮像装置。
A shallow first region and a deep second region provided in the first conductivity type epitaxial layer of a semiconductor chip formed by forming a first conductivity type epitaxial layer with a low concentration on a first conductivity type semiconductor substrate. a photoelectric conversion region provided on the main surface of the first region;
What is claimed is: 1. A solid-state imaging device having a vertical overflow drain structure, comprising signal readout means provided on a main surface of a region and receiving charges from the photoelectric conversion region.
JP63273602A 1988-10-28 1988-10-28 Solid-state image sensing device of vertical type overflow drain structure Pending JPH02119266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63273602A JPH02119266A (en) 1988-10-28 1988-10-28 Solid-state image sensing device of vertical type overflow drain structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63273602A JPH02119266A (en) 1988-10-28 1988-10-28 Solid-state image sensing device of vertical type overflow drain structure

Publications (1)

Publication Number Publication Date
JPH02119266A true JPH02119266A (en) 1990-05-07

Family

ID=17530051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63273602A Pending JPH02119266A (en) 1988-10-28 1988-10-28 Solid-state image sensing device of vertical type overflow drain structure

Country Status (1)

Country Link
JP (1) JPH02119266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915520A1 (en) * 1990-06-25 1999-05-12 Matsushita Electronics Corporation Solid-state image pickup device, process for its manufacture, and method of driving the device
JP2006179592A (en) * 2004-12-21 2006-07-06 Fuji Film Microdevices Co Ltd Substrate for forming a solid-state image sensor, solid-state image sensor using the same, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915520A1 (en) * 1990-06-25 1999-05-12 Matsushita Electronics Corporation Solid-state image pickup device, process for its manufacture, and method of driving the device
JP2006179592A (en) * 2004-12-21 2006-07-06 Fuji Film Microdevices Co Ltd Substrate for forming a solid-state image sensor, solid-state image sensor using the same, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4173765A (en) V-MOS imaging array
KR100262774B1 (en) Top bus virtual phase frame interline transfer ccd image sensor
US5051797A (en) Charge-coupled device (CCD) imager and method of operation
US4527182A (en) Semiconductor photoelectric converter making excessive charges flow vertically
RU2376678C2 (en) Semiconductor radiation detector with modified internal gate structure
JPS62265759A (en) Solid state image pickup element
KR100266417B1 (en) Amplfying type solid state imaging device and amplfying type solid state imaging apparatus
KR0174257B1 (en) Ccd image
US4980735A (en) Solid state imaging element
US5402459A (en) Frame transfer image sensor with electronic shutter
JPS6216599B2 (en)
US4974043A (en) Solid-state image sensor
US5774182A (en) Solid-state image sensor device with pixel array structure of interline transfer CCD image sensor
JPS58125970A (en) Solid-state image pickup device
JPH02119266A (en) Solid-state image sensing device of vertical type overflow drain structure
US6891243B2 (en) Solid-state image pick-up device
US5155362A (en) Infra-red radiation imaging device arrangements
JPH0789581B2 (en) Solid-state imaging device and manufacturing method thereof
KR100236070B1 (en) Solid state image sensing device
JP2020080377A (en) Solid-state imaging device
JPH031871B2 (en)
JPH0421351B2 (en)
JPS58125976A (en) solid-state image sensor
JPS60244068A (en) embedded channel charge coupled device
JPS5850874A (en) Solid-state imaging device and its driving method