[go: up one dir, main page]

JPH02118086A - Hot-dip galvanized alloyed steel sheet excellent in workability and coating property and production thereof - Google Patents

Hot-dip galvanized alloyed steel sheet excellent in workability and coating property and production thereof

Info

Publication number
JPH02118086A
JPH02118086A JP27043488A JP27043488A JPH02118086A JP H02118086 A JPH02118086 A JP H02118086A JP 27043488 A JP27043488 A JP 27043488A JP 27043488 A JP27043488 A JP 27043488A JP H02118086 A JPH02118086 A JP H02118086A
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
plating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27043488A
Other languages
Japanese (ja)
Other versions
JP2727597B2 (en
Inventor
Yasuhisa Tajiri
田尻 泰久
Soichi Shimada
島田 聰一
Michitaka Sakurai
理孝 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27043488A priority Critical patent/JP2727597B2/en
Publication of JPH02118086A publication Critical patent/JPH02118086A/en
Application granted granted Critical
Publication of JP2727597B2 publication Critical patent/JP2727597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To simply and easily produce the title steel sheet excellent in corrosion resistance, powdering resistance and cratering resistance by hot-dip galvanizing the steel sheet and smoothening the surface and thereafter performing Fe-B alloy plating thereon and then heat-treating this plated steel sheet. CONSTITUTION:A steel sheet on which ordinary pretreatment has been performed is immersed in a hot-dip galvanizing bath contg. 0.05-0.3wt.% Al and <=0.2wt.% Pb to perform galvanizing of 30-90g/m<2>. Spangle is made fine by mist spray while the galvanized film is kept in a molten state. After the film is solidified, the surface of the film is smoothened by skin pass treatment. Fe-B alloy plating which consists of Fe not less than 97.0% and less than 100% and B not less than 0.001% and less than 3% is performed at 0. 5-10g/m<2> on the single face or double faces of this steel sheet by an electroplating method. Then the above-mentioned plated steel sheet is produced by heating this steel sheet at the temp. not lower than 320 deg.C and not higher than m.p. of Zn for 10min-50 hours in an open-coil state in a batch type annealing furnace of the nonoxidative or reductive atmosphere. The internal layer is constituted of delta1 phase and xsi phase excepting the boundary phase for the basis material having 0.5mum thickness and Fe is uniformly distributed in the facial direction.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、自動車や家電機器或は建材等に使用される
Fe−Zn合金めっき鋼板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Fe-Zn alloy plated steel sheet used for automobiles, home appliances, building materials, etc.

[従来技術] 亜鉛めっき鋼板は安価で耐含性や強度に優れた材料とし
て広く使われており、ながでも自動車の内外板には耐食
性に加えて、加工性や塗装性を考慮したものが多量に使
われている。亜鉛めっき鋼板の量産法として一般には電
気めっき法と溶融めっき法とがあるが、電気めっき法で
は、低温で処理するので熱影響による相変化が無くめっ
き皮膜の成分コントロールも容易であるが、めっき付着
量を多くするには処理時間を増さねばならない、これに
対して、溶融めっき法では処理時間を増すことなく簡単
に付着量を増すことが出来、めっき峡熱処理を施すこと
により容易にFe−Z r+合金を作ることが出来る。
[Prior art] Galvanized steel sheets are widely used as materials that are inexpensive and have excellent corrosion resistance and strength.In addition to corrosion resistance, galvanized steel sheets are also used for the interior and exterior panels of automobiles. Used in large quantities. Generally speaking, there are two methods for mass production of galvanized steel sheets: electroplating and hot-dip plating.Since electroplating is processed at low temperatures, there is no phase change due to heat effects, and it is easy to control the composition of the plating film. In order to increase the amount of deposited metal, it is necessary to increase the processing time.On the other hand, with the hot-dip plating method, the amount of deposited material can be easily increased without increasing the processing time. −Z r+ alloy can be made.

しかし、めっき皮膜組成と生成される相のコントロール
に工夫を要−3°る。近年自動重用の5!−1数では、
塩害への対処等らj)ってより高度の耐兵性が要求され
、これに呼応して、1寸着量が容易に確保出来、且つ経
済的な溶融亜鉛めっき分主体に、めっき組成や相コント
1つ−ルを上手に行い、高い耐食性を確保しながらその
上で加工性や塗装性を会わせ持っためっき鋼板が求めら
れている。
However, the control of the plating film composition and the generated phases requires -3 degrees. 5 of the most used automatic machines in recent years! -1 number,
A higher degree of military resistance is required due to measures such as dealing with salt damage, etc., and in response to this, we are developing coating compositions mainly based on hot-dip galvanizing, which can easily secure 1-inch coverage and is economical. There is a need for a plated steel sheet that has excellent phase control, high corrosion resistance, and has good workability and paintability.

加工性で最も問題になるのが耐パウダリング性てあり、
塗装性で問題になるのが耐クレータリンク性である。パ
ウダリングとは、プレス成形の際にめっき皮膜が粉状に
なって脱落する現象であり、クレータリングとは、めっ
き皮膜に化成処理を施した浚行う電着塗装処理において
塗膜に目視できる凹凸(クレータ)が発生する現象であ
る。
The most important issue in processability is powdering resistance.
An issue with paintability is crater link resistance. Powdering is a phenomenon in which a plating film becomes powdery and falls off during press molding, and cratering is a phenomenon in which the plating film becomes powdery and falls off. Cratering is a phenomenon in which the plating film is subjected to a chemical conversion treatment and then visually visible in the electro-deposition coating process. (crater) is a phenomenon that occurs.

前行はめっき皮膜中に、鉄含有率の高い「相(Fe3 
Zn、o、Fe2O〜28wt%)が生成され、これが
硬くて脆いために起こり、後者はめっき皮膜表面の不均
一さ(表面形状、酸化膜、めっき皮膜相構造等)に起因
して発生する。
The previous row shows a phase with a high iron content (Fe3) in the plating film.
Zn, o, Fe2O ~ 28 wt%) is generated, which occurs because it is hard and brittle, and the latter occurs due to non-uniformity of the plating film surface (surface shape, oxide film, plating film phase structure, etc.).

従来、自動車用に使用されている合金化溶量1亜鉛めっ
き鋼板は、溶融めっき後金めっき皮膜平均の鉄含有率が
10wt%前後に達するまで合金化処理を施し、めっき
表面までFeを拡散させて生食性、特に塗装後耐食性を
向上させたものである。
Conventionally, the alloying mass 1 galvanized steel sheets used for automobiles are alloyed after hot dipping until the average iron content of the gold plating film reaches around 10 wt%, and the Fe is diffused to the plating surface. It has improved raw corrosion resistance, especially corrosion resistance after painting.

即ち、鋼板に連続的に前処理(熱処理を含む)な施して
素材を調整した後、亜鉛を溶融しためっき浴に浸漬して
めっきし、後続してこのめっき鋼板を合金化”炉内で5
00℃から700℃の温度に急速に昇温させ短時間(1
0〜30秒)保持して、めっき皮膜の鉄含有率を10%
前後に合金化させたものである。しかし、このようにし
て作られる合金化溶融亜鉛めっき鋼板は急速な昇温によ
って高温に加熱されるので、めっき皮膜中の鉄含有量が
場所により異なりがちで、めっき皮膜の面方向及び深さ
方向共に合金化が不均一になること、これに加えてめっ
き皮膜内での鉄濃度勾配が大きくなり、表層の鉄含有量
を確保するため鋼素地との界面の鉄含有率が高まりr相
の生成が避けられないこと、更に高温処理と急速冷却に
よりめっき皮膜に熱応力が発生すること等の問題を抱え
ている。
That is, after pre-treating the steel plate (including heat treatment) continuously to adjust the material, it is plated by immersing it in a plating bath containing molten zinc, and then this plated steel plate is alloyed in a furnace for 5 minutes.
Rapidly raise the temperature from 00℃ to 700℃ for a short period of time (1
0 to 30 seconds) to reduce the iron content of the plating film to 10%.
The front and back are alloyed. However, since the alloyed hot-dip galvanized steel sheets produced in this way are heated to high temperatures due to rapid temperature rise, the iron content in the plating film tends to vary depending on the location, and the iron content in the plating film tends to vary in the surface direction and depth direction. In addition to this, the iron concentration gradient within the plating film increases, and in order to secure the iron content in the surface layer, the iron content at the interface with the steel base increases and the r-phase is formed. Furthermore, high temperature treatment and rapid cooling generate thermal stress in the plating film.

一方、合金化処理を一次二次の二工程に分けて処理する
方法が提案されている。例えば、特公昭59−1454
1号では、−次加熱において、めっき皮膜の平滑性を得
るためにZnめっき皮膜を再溶融させる急速昇温高温加
熱を行う。この加熱では鉄含有率を2.2〜5.5wt
%の低い範囲に留まるので、この−次加熱の結果に応じ
て、二次加熱を亜鉛の融点以下の低温で時間をかけて行
い、鉄含有率を6〜13wt%の範囲に納めるものであ
る。そしてこの方法によって、表面が平滑で外観が優れ
、且つ加工の際に剥離やパウダリングのない合金化溶融
亜鉛めっき皮膜が得られることを開示している。
On the other hand, a method has been proposed in which the alloying treatment is divided into two steps, primary and secondary. For example, Tokuko Sho 59-1454
In No. 1, in the secondary heating, rapid temperature rise and high temperature heating is performed to remelt the Zn plating film in order to obtain smoothness of the plating film. In this heating, the iron content is 2.2 to 5.5 wt.
Therefore, depending on the result of this secondary heating, secondary heating is performed over a period of time at a low temperature below the melting point of zinc, and the iron content is kept within a range of 6 to 13 wt%. . It is also disclosed that by this method, it is possible to obtain an alloyed hot-dip galvanized film with a smooth surface, excellent appearance, and no peeling or powdering during processing.

他方、めっき皮膜表層のみの鉄含有率を高めて耐クレー
タリング性を改善したものも提案されている。例えば、
特公昭58−15554号の提案は、耐食性金属層を内
層とし、その上に鉄含有率の高いFe−Zn合金被覆層
を付してカチオン電着塗装性を向上させためっき鋼板で
ある。この提案では、内層である前記耐食性金属層とし
て溶融亜鉛めっき後に熱処理によりFe−Zn合金化し
た合金化溶融亜鉛めっき層が開示されている。
On the other hand, it has also been proposed to improve cratering resistance by increasing the iron content only in the surface layer of the plating film. for example,
The proposal of Japanese Patent Publication No. 58-15554 is a plated steel sheet with a corrosion-resistant metal layer as an inner layer and a Fe--Zn alloy coating layer with a high iron content attached thereon to improve cationic electrodeposition coating properties. This proposal discloses an alloyed hot-dip galvanized layer that is formed into an Fe-Zn alloy by heat treatment after hot-dip galvanizing as the corrosion-resistant metal layer that is the inner layer.

[発明が解決しようとする課題] しかしながら、上述した特公昭59−14541号では
、耐クレータリング性を満足するものではない。耐クレ
ータリング性に関しては、表面の鉄含有率は不十分であ
り、又、耐パウダリング性に関しても、溶融亜鉛めっき
後急速昇温高温加熱によって合金化処理を行うので合金
化反応が不均一に進むことが避けられず、その結果、加
工性に劣る1層が成長してしまう。又、場合によっては
、合金化されない部分と合金化の進んだ部分とが混在し
ていわゆる焼けむらの現象を呈したりする。
[Problems to be Solved by the Invention] However, the above-mentioned Japanese Patent Publication No. 59-14541 does not satisfy the cratering resistance. Regarding cratering resistance, the iron content on the surface is insufficient, and regarding powdering resistance, the alloying reaction is uneven because the alloying treatment is performed by rapid heating at high temperature after hot-dip galvanizing. As a result, a single layer with poor processability grows. Further, in some cases, unalloyed portions and highly alloyed portions coexist, resulting in a so-called uneven burning phenomenon.

このように、−次加熱が不均一になり易いので、−次加
熱の結果を基にした二次加熱条件が極めて複雑になり実
操業ではその実施に大きな困難を伴う。
As described above, secondary heating tends to be non-uniform, so secondary heating conditions based on the results of secondary heating become extremely complicated, and implementation thereof is very difficult in actual operation.

特公昭58−15554号では、めっき表面の鉄;3度
を飛躍的に高めたので、耐クレータリング性は改善され
るが、溶融亜鉛めっき後の熱処理によって合金化を完結
させているので、特公昭5914541号と同様に合金
化の不均一さの問題があり、加えてめっき皮膜内での鉄
濃度勾配が大きくなり、鉄濃度の高くなる鋼素地との界
面では「相が成長してしまう、又、急熱急冷による熱応
力も耐パウダリング性にとっては好ましくない。
In Japanese Patent Publication No. 58-15554, the iron content of the plating surface was dramatically increased to 3 degrees, improving the cratering resistance, but since the alloying was completed by heat treatment after hot-dip galvanizing, As with Publication No. 5914541, there is the problem of non-uniform alloying, and in addition, the iron concentration gradient within the plating film becomes large, and at the interface with the steel base where the iron concentration becomes high, "phases grow." Further, thermal stress caused by rapid heating and cooling is also unfavorable for powdering resistance.

このように、耐パウダリング性、耐クレータリング性を
満たすべく工夫がなされてきたが、未だ両特性を共に満
足させる溶融亜鉛めっき鋼板は得られていない。
As described above, efforts have been made to satisfy powdering resistance and cratering resistance, but a hot-dip galvanized steel sheet that satisfies both properties has not yet been obtained.

この問題を解決するために、この発明はなされたもので
2耐食性に加えて耐パウダリング性と耐クレータリング
性とを共に満たすめっき鋼板とその製造法を提供するこ
とを目的とするものである。
In order to solve this problem, the present invention was made, and an object thereof is to provide a plated steel sheet that satisfies not only corrosion resistance but also powdering resistance and cratering resistance, and a method for manufacturing the same. .

[課題を解決するための手段及び作用]この目的を達成
するための手段は、鋼板の少なくとも片面に、溶融亜鉛
めっきによる第一層とその上のFeが97.Owt%以
上1以上10亢を熱処理して形成しためつき皮膜を有し
、該めっき皮膜は、表層が前記第二層のFe含有率であ
るFe−B合金めっきで内層が厚さ0.5μmの鋼素地
との境界層を除いてδ1相とζ相からなる合金化亜鉛め
っきであって、面方向に鉄含有率が均一に分布している
加工性、塗装性に優れたき余生溶融亜鉛めっき鋼板であ
る。
[Means and effects for solving the problem] The means for achieving this object is to coat at least one side of the steel plate with a first layer formed by hot-dip galvanizing and a Fe layer of 97% on top of the first layer. It has a plating film formed by heat treatment of 1 to 10% Owt%, and the surface layer is Fe-B alloy plating having the Fe content of the second layer, and the inner layer has a thickness of 0.5 μm. An alloyed galvanized coating consisting of a δ1 phase and a ζ phase, excluding the boundary layer with the steel substrate, which has excellent workability and paintability, with iron content uniformly distributed in the surface direction. It is a steel plate.

上記合金化溶融亜鉛めっき鋼板をW造する方法としては
、次のものがある。
The following methods are available for forming the above-mentioned alloyed hot-dip galvanized steel sheet.

一つの方法は、 (イ)通常の前処理を施した鋼板をAft.05wt%
以上0.3wt.%以下且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して30g7m2以上9
0g/m”以下の第一層のめっきを施す工程、(口)め
っき皮膜が溶融状態であるうちにスパングルの微細化処
理を施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理と行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程、 (二〉この溶融亜鉛めっき鋼板の片面又は両面に0 、
5 g/m”以上Log/m”以下のFeが97.Ol
、11t%以上1’ OOwt%未満、BがO,001
wt%以上3wt%未満の第二層のFe−B合金めっき
を施す工程、 (ホ)前記工程でめっきを施した鋼板を非酸化性又は還
元性雰囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の温度範囲で1
0分から50時間加熱する工程を含む方法である。
One method is as follows: (a) A steel plate subjected to normal pretreatment is subjected to Aft. 05wt%
More than 0.3wt. % or less and Pb0.2wt% or less by immersion in a hot dip galvanizing bath containing 30g7m2 or more9
A step of applying a first layer plating of 0 g/m" or less, (1) a step of applying spangle refinement treatment while the plating film is in a molten state, (c) a skin pass treatment after the plating film has solidified,
A step of smoothing the surface of the hot-dip galvanized film, (2) applying zero,
Fe of 5 g/m" or more and Log/m" or less is 97. Ol
, 11t% or more and less than 1' OOwt%, B is O,001
A step of applying a second layer of Fe-B alloy plating with a content of not less than 3 wt%; 1 in the temperature range of 320℃ or higher and lower than the melting point of zinc.
This method includes a step of heating from 0 minutes to 50 hours.

他の方法は、 前記(イ)の溶融亜鉛めっき工程の後、めっき皮膜が溶
融状態であるうちに鋼板の片面又は両面にFcが97.
0w4%以上100wt%未満、Bが0.001wt%
以上3wt%未満のFe−B合金パウダーを吹き付けて
0.5g/rn2以上10g/m2以下の第二層のめっ
きを施す工程を含み、その後前記(ハ)、(ニ)、(ホ
)の工程を含む方法である。
Another method is to coat one or both sides of the steel plate with an Fc of 97% after the hot-dip galvanizing step (a) above, while the plating film is still in a molten state.
0w4% or more and less than 100wt%, B is 0.001wt%
It includes a step of spraying less than 3 wt% of Fe-B alloy powder to apply a second layer plating of 0.5 g/rn2 or more and 10 g/m2 or less, and then the steps (c), (d), and (e) above. This is a method that includes

以上の手段について、以下にその作用も含め、詳しく述
べる。
The above means will be described in detail below, including their effects.

先ず、めっき用の鋼板は冷延鋼板でも熱延鋼板でもよく
、通常の前処理として表面調整とともに焼鈍処理を施し
てもよい。
First, the steel plate for plating may be a cold-rolled steel plate or a hot-rolled steel plate, and may be subjected to surface conditioning and annealing treatment as a normal pretreatment.

めっき皮膜表層の鉄含有率を97Wし%以上とすると、
電着塗装時のクレータ発生が防止される。
When the iron content of the surface layer of the plating film is 97W% or more,
Prevents cratering from occurring during electrodeposition coating.

即ち、合金化溶融亜鉛めっき鋼板は、めっき面に燐酸塩
処理を施した後カチオン電着塗装が施されるが、この化
成処理によって生成される燐酸塩結晶に、Feを含むホ
スホフィライト [Zn2 Fe (PO4)2 ・4)(20]と称す
る粒状で緻密な結晶と、Feを倉まないホパイト’ [
Z n3(P 04)2 ・4 H20]と称する粗大
な針状結晶とがある。
In other words, alloyed hot-dip galvanized steel sheets are subjected to cationic electrodeposition coating after phosphate treatment on the plated surface, but phosphophyllite [Zn2] containing Fe is added to the phosphate crystals produced by this chemical conversion treatment. Granular and dense crystals called Fe (PO4)2 ・4)(20] and hopite' [
There are coarse needle-like crystals called Z n3(P 04)2 .4 H20].

クレータ発生原因の一つに化成処理皮膜欠陥部への局所
的な電流集中が考えられるが、ホスホフィライトで形成
さる皮膜はホパイトのそれより緻密で欠陥部が少ない、
したがって、ホスホフィライトが生成し易いようにめっ
き面上で十分なFeを供給してやれば、クレータは生じ
にくくなる。また、めっき皮膜表層に硼素が含まれてい
ると、化成処理時のFeの溶解が促進され、前記ホスホ
フィライト・の生成がしやすくなる。この際、めっき皮
膜中のB含有量がO,001wt、%未満ではFeの溶
解を促進する作用を発揮するに至らず、3wt、%を超
えるとその溶解促進効果は飽和する。この発明の合金化
溶融亜鉛めっき鋼板のめっき皮膜表層は鉄含有率がFe
97.0wt%以上100wt、%未満、B含有率が0
.001wt%以上3w11%であるので、Feの供給
が順調に行われ、緻密で均一な化成処理皮膜が形成され
る。このため、クレータグ)発生は著しく減少する。
One of the causes of crater formation is thought to be localized current concentration in the defective areas of the chemical conversion coating, but the coating formed with phosphophyllite is denser than that of hopite and has fewer defects.
Therefore, if enough Fe is supplied on the plating surface to facilitate the formation of phosphophyllite, craters will be less likely to occur. Further, if the surface layer of the plating film contains boron, the dissolution of Fe during the chemical conversion treatment is promoted, and the formation of the phosphophyllite is facilitated. At this time, if the B content in the plating film is less than 0.001 wt.%, the effect of promoting dissolution of Fe will not be exhibited, and if it exceeds 3 wt.%, the dissolution promoting effect will be saturated. The surface layer of the plating film of the alloyed hot-dip galvanized steel sheet of this invention has an iron content of Fe.
97.0wt% or more 100wt, less than %, B content is 0
.. 001wt% or more and 3w11%, Fe is smoothly supplied and a dense and uniform chemical conversion film is formed. As a result, the occurrence of clay tag) is significantly reduced.

合金化溶融亜鉛めっき鋼板の場合、めっき付着量と皮膜
中の鉄含有率によって耐食性の殆どが決定される。した
がって、内層においても合金化されている必要があるが
、表層のように高い鉄含有率は必要でなく、5wt%か
ら20wt%程度で充分である。また、この内層の加工
特性は極めて重要である。「相は内層と鋼素地との境界
に生成するが、この「相が検出されないめっき皮膜は耐
パウダリング性が良好である。そしてF相が0.5μm
以上の厚さに成長していないと検出することは困難であ
る。この発明の合金化溶融亜鉛めっき鋼板のめっき皮膜
の大半を占める内層は、厚さ0.5μmの鋼素地との境
界層を除いて、硬くて脆い「相を含ますδ1相とζ相と
がらなっており、加工に際して、欠陥部がなく、パウダ
リングを非常に起こしにくい、また、鉄含有率の分布が
面方向に均一であることも加工性向上に非常によい影響
をもたらしている。そして、内層と・鋼素地との境界が
相互に熱拡散されて一体構造に形成されており、熱拡散
されて一体構造となっためっき皮膜は鉄濃度が連続して
変化した状態となっている。このような内層の構造によ
って、めっき皮膜は機械的性質や電気化学的性質が隣接
した部分で極端に異なることが無く、加工性及び耐食性
において優れたものとなる。
In the case of alloyed hot-dip galvanized steel sheets, the corrosion resistance is mostly determined by the coating weight and the iron content in the coating. Therefore, the inner layer also needs to be alloyed, but it does not need to have a high iron content like the surface layer, and about 5 wt% to 20 wt% is sufficient. Furthermore, the processing characteristics of this inner layer are extremely important. The "phase" is formed at the boundary between the inner layer and the steel base, but the plating film in which no phase is detected has good powdering resistance.
It is difficult to detect unless it has grown to a thickness greater than that. The inner layer, which accounts for most of the plating film of the alloyed hot-dip galvanized steel sheet of this invention, contains a hard and brittle "δ1 phase and a ζ phase, which are distinct from each other, except for the 0.5 μm thick boundary layer with the steel substrate. During processing, there are no defects and powdering is extremely unlikely to occur, and the distribution of iron content is uniform in the surface direction, which has a very positive effect on improving workability. The boundary between the inner layer and the steel base is formed into an integral structure by mutual thermal diffusion, and the plating film, which is formed into an integral structure by thermal diffusion, has a state in which the iron concentration changes continuously. Due to the structure of the inner layer, the mechanical properties and electrochemical properties of the plating film do not differ significantly between adjacent parts, and the plating film has excellent workability and corrosion resistance.

この発明の合金化溶融亜鉛めっき鋼板は用途によっては
耐食性、加工性、塗装性、外観、平滑性等を同時に両面
に要求されないこともあり、このような場合、他面には
めっき皮膜がなくても或は他のめつき皮膜を付してもよ
い。
Depending on the application, the alloyed hot-dip galvanized steel sheet of this invention may not require corrosion resistance, workability, paintability, appearance, smoothness, etc. on both sides at the same time, and in such cases, the other side may not have a plating film. Alternatively, other plating films may be applied.

以下に、この発明による合金化溶融亜鉛めっき鋼板の製
造方法について述べる。
Below, a method for manufacturing an alloyed hot-dip galvanized steel sheet according to the present invention will be described.

溶融亜鉛めっき浴には通常、Fe−Zn合金反応の抑制
やめっき面の平滑化等のためAfが0.2%前後添加さ
れており、スパングル調整のためpbが含まれている。
A hot-dip galvanizing bath usually contains around 0.2% Af to suppress the Fe-Zn alloy reaction and smooth the plated surface, and also contains PB to adjust the spangle.

このうちAρは合金化抑制効果を持つので、0.05w
t%以上添加し、溶融亜鉛めっき浴浸漬後のF、e −
Z n合金が部分的且つ不均一に生成することを防ぐ。
Among these, Aρ has the effect of suppressing alloying, so 0.05w
F, e − after adding t% or more and immersing in a hot-dip galvanizing bath
Prevents partial and non-uniform formation of Zn alloy.

この工程で不均一にFe−Zn合金を生成させないこと
は重要なことであり、−旦不拘−化すると後の工程で修
正することが出来ない。AfIの添加量が多過ぎて0.
3wt%を超えると合金化の抑制効果が過剰となり、後
の合金化処理に時間が掛かり過ぎ工業的には不適切にな
る。pbは合金1ヒ反応には直接関与しないが、多量の
pbは耐パウダリング性を低下させるので、0.2wt
%以下に制限しなければならない。
It is important not to produce a Fe-Zn alloy non-uniformly in this process, and once it becomes unrestricted, it cannot be corrected in a later process. The amount of AfI added was too large and 0.
If it exceeds 3 wt%, the effect of suppressing alloying becomes excessive, and the subsequent alloying treatment takes too much time, making it unsuitable for industrial use. Although PB does not directly participate in the Alloy 1 reaction, a large amount of PB reduces powdering resistance, so 0.2wt.
Must be limited to no more than %.

第一層は30g/m”から90 g/m”の付着量が高
耐食化のために適当である。
For the first layer, a coating weight of 30 g/m'' to 90 g/m'' is suitable for high corrosion resistance.

なお、90g/m2を超えた場合には過剰品質となるば
かりか、後の工程の低温で行う合金化処理において長時
間を要し生産性を低下させる。又、般にめっき皮膜が厚
くなると加工時に皮膜の破壊や剥離が起こることがあり
、合金化溶融亜鉛めっき鋼板の場合ではパウダリングが
起こり易くなる。
In addition, if it exceeds 90 g/m2, not only will the quality be excessive, but also a long time will be required in the alloying treatment performed at a low temperature in the subsequent process, resulting in a decrease in productivity. Additionally, when the plating film becomes thick, the film may break or peel during processing, and powdering is likely to occur in the case of alloyed hot-dip galvanized steel sheets.

この第一層の溶融亜鉛めっき皮膜が溶融状態であるうち
にスパングルを微細化し、更にめっき皮膜が固化した後
スキンパス処理を行うことによって平滑なめつき面が得
られ、この後に施す第二層のFe−Bめっきの被覆率が
向上する。その結果、耐クレータリング性を効率的に向
上させることができると共に、塗装後の鮮映性を向上さ
せることもできる。スキンバスは伸長率03%以上で行
うとめっき面は平滑となるが、伸長率が大き過ぎて5%
を超えると、−殻内薄板用鋼板では加工性に影響するお
それがある。
While the first layer of hot-dip galvanized film is in a molten state, the spangles are made finer, and after the plating film has solidified, a skin pass treatment is performed to obtain a smooth galvanized surface. - The coverage of B plating is improved. As a result, the cratering resistance can be efficiently improved, and the image clarity after painting can also be improved. If the skin bath is performed at an elongation rate of 03% or more, the plated surface will be smooth, but if the elongation rate is too high, it will be 5%.
If it exceeds -, there is a possibility that the workability of the steel plate for inner-shell thin plates will be affected.

第二層の鉄含有率97wし%以上のFe−n合金めっき
は、耐クレータリング性を確保すると共に、この後の加
熱処理において、先に施した第一層の溶融亜鉛めっき層
へ鋼素地とは反対面からFeを拡散させその結果めっき
皮膜内層部の鉄濃度勾配を小さく押さえることになる。
The Fe-n alloy plating with an iron content of 97w% or more in the second layer ensures cratering resistance, and in the subsequent heat treatment, the first hot-dip galvanized layer is applied to the steel substrate. As a result, the iron concentration gradient in the inner layer of the plating film is kept small.

上記合金めっきの処理方法は、亜鉛の融点より高い温度
で処理する方法でなければ、電気めっき、蒸着めっき、
ン容射等どのような方法でもよい この合金めっき処理
を合金パウダー吹き付けで行うときは、先の溶融亜鉛め
っき層が溶融状態のうちに行うとスパングルの微細化も
同時に行われ、工程を一つ省くことが出来る。
The processing method for the above alloy plating is electroplating, vapor deposition plating, unless processing at a temperature higher than the melting point of zinc.
When performing this alloy plating treatment by spraying alloy powder, spangles will be made finer at the same time if the previous hot-dip galvanized layer is in a molten state. It can be omitted.

第二層は付着量が0.5g/m”から10 g/rlで
あることが必要である。0.5g/m”未満ではめっき
面全体にわたって十分にFeを供給することが出来ない
、またLog/m2を超えて付着した場合にはその効果
が飽和し、コスト的に不利になるばかりでなく、塗装後
耐食性においても赤錆が発生し易くなる。
The second layer needs to have a coating weight of 0.5 g/m" to 10 g/rl. If it is less than 0.5 g/m", Fe cannot be sufficiently supplied over the entire plating surface, and If it adheres in excess of Log/m2, the effect will be saturated, which will not only be disadvantageous in terms of cost, but also increase the likelihood of red rust occurring in terms of corrosion resistance after painting.

上記した二度のめっき工程を経ためっき鋼板を加熱処理
するが、これは第一層の亜鉛をFe合金化することによ
って塗装後の高耐食性を実現するものであって、この加
熱処理によって形成される内層の鉄含有率は表層のよう
に高くする必要はなく5wt%〜20wt%の範囲で良
好な塗装後耐食性が得られる。
The plated steel sheet that has gone through the two plating processes described above is heat treated, and this is to achieve high corrosion resistance after painting by alloying the first layer of zinc with Fe. The iron content of the inner layer does not need to be as high as that of the surface layer, and good post-painting corrosion resistance can be obtained within the range of 5 wt% to 20 wt%.

非酸化性又は還元性雰囲気で行うのは表面の酸化を防ぎ
、塗装前の化成処理において化成皮膜結晶が不均一にな
ることを避けるためであり、バッチ式焼鈍炉内で行うの
は低温で時間を掛けて処理するからである。オーブンコ
イルの状態で加熱するのは、均一に加熱することによっ
て合金化にむらが生ずることを防止すると同時にめっき
面同士が付着して欠陥が発生することを防ぐためである
。タイトコイルの状態では、温度分布が不均一となり、
部分的に合金化速度の大きい部分と小さい部分とができ
てしまう。特に、鋼板長手方向にこの不均一が生じ、高
品質製品は得られ難い。加熱は低温で行うが、320℃
以上の温度は必要である。320℃未満では塗装後耐食
性を確保するに足る合金化度を得るのに時間が掛かり過
ぎる。
The purpose of performing the annealing in a non-oxidizing or reducing atmosphere is to prevent surface oxidation and to prevent the chemical conversion coating crystals from becoming non-uniform during the chemical conversion treatment before painting. This is because it is processed by multiplying. The purpose of heating with an oven coil is to prevent unevenness in alloying by uniformly heating, and at the same time to prevent the plating surfaces from adhering to each other and causing defects. In a tight coil state, the temperature distribution becomes uneven,
There will be parts where the alloying rate is high and parts where the alloying rate is low. In particular, this non-uniformity occurs in the longitudinal direction of the steel plate, making it difficult to obtain a high quality product. Heating is done at low temperature, 320℃
A temperature higher than that is necessary. If the temperature is lower than 320°C, it takes too much time to obtain a degree of alloying sufficient to ensure corrosion resistance after painting.

温度を亜鉛の融点(419,5℃)よりも高くすると、
合金化が急速に進む箇所が現れ又F相の生成も無視でき
なくなる。更にオープンコイルの鋼板間に挿入するスペ
ーサーがめつき面に痕跡を残すおそれも出てくる。第1
図は上記の温度範囲で、パウダリングとクレータの両者
が共に発生しない条件を調べたもので、横軸は加熱時間
縦軸は加熱温度である0図で、点a、b、c、dを結ぶ
線で囲まれた範囲が、パウダリング及びクレータを発生
させない実操業上好ましい条件範囲で、加熱時間につい
ては、a点の時間座標から0点の時間座標まで、即ち1
0分以上50時間以下となる。以上の加熱条件で熱処理
を行うと、Feは鋼素地側からと第二層のめつき側とか
ら拡散するので、鋼素地側に大きなFe濃度勾配が出来
ずに適正な合金化が達成される。このため、「相は実質
的に生成せずδ1相とζ相とのみからなるめっき皮膜が
得られる。そして、このめっき皮膜は、急速な高温加熱
を避けているので、面に沿っても均一となる。又、鉄含
有率も5wt%から20wt%の範囲に収まる。しかし
、実操業時に起こりがちな条件のバラツキ等を考えると
特に好ましいのは、加熱温度が320℃から380℃ま
で、加熱時間が30分から10時間までである。この場
合めっき皮膜の鉄含有率は5vt%から14wt%の範
囲に収まる。更に、この熱処理によって、第一層と第二
層はFeの熱拡散によって一体構造となる。
When the temperature is made higher than the melting point of zinc (419.5℃),
There appears a point where alloying progresses rapidly, and the formation of F phase cannot be ignored. Furthermore, there is a risk that the spacer inserted between the steel plates of the open coil may leave marks on the plating surface. 1st
The figure shows the conditions under which both powdering and cratering do not occur within the above temperature range.The horizontal axis is the heating time, and the vertical axis is the heating temperature. The range surrounded by the connecting line is the preferred range of conditions for actual operation that does not cause powdering or cratering, and the heating time is from the time coordinate of point a to the time coordinate of point 0, that is, 1
0 minutes or more and 50 hours or less. When heat treatment is performed under the above heating conditions, Fe diffuses from the steel base side and from the second layer plating side, so proper alloying is achieved without creating a large Fe concentration gradient on the steel base side. . As a result, a plating film consisting only of the δ1 phase and ζ phase is obtained, with virtually no phase formation.And since rapid high-temperature heating is avoided, this plating film is uniform even along the surface. In addition, the iron content falls within the range of 5wt% to 20wt%.However, considering the variations in conditions that tend to occur during actual operation, it is particularly preferable to increase the heating temperature from 320°C to 380°C. The time is from 30 minutes to 10 hours.In this case, the iron content of the plating film falls within the range of 5vt% to 14wt%.Furthermore, by this heat treatment, the first layer and the second layer are formed into an integral structure by thermal diffusion of Fe. becomes.

[実施例] 二種類の鋼板を使用し、溶融亜鉛めっき条件、第二層の
めっき条件及び合金化処理条件を変えて処理した17例
(実施例)の合金化溶融亜鉛めっき鋼板について、めっ
き皮膜中の鉄含有率を調べ、パウダリング試験及びクレ
ータリング試験を行って評価した。なお比較のために、
この発明の範囲外の条件で処理した6例(比較例)及び
従来技術による3例(従来例)についても同様に調べた
0条件の詳細は以下の通りである。
[Example] Two types of steel sheets were used and the galvannealed steel sheets of 17 examples (Examples) were treated with different hot-dip galvanizing conditions, second layer plating conditions, and alloying treatment conditions. The iron content inside was investigated and evaluated by performing a powdering test and a cratering test. For comparison,
Details of the 0 condition, which was similarly investigated for six cases (comparative examples) processed under conditions outside the scope of this invention and three cases according to the prior art (conventional examples), are as follows.

用いた鋼板は板厚0.81の冷延鋼板で、汎用されてい
る薄板用低炭素A1キルト(素材A)及び高加工用でパ
ウダリングを起こし易いと言われている超低炭チタン含
有!1(素材B)とである。
The steel plate used is a cold-rolled steel plate with a thickness of 0.81, and it contains low carbon A1 quilt (material A) for thin sheets, which is commonly used, and ultra-low carbon titanium, which is said to easily cause powdering for high processing purposes! 1 (Material B).

各々の成分を第1表に示す。Table 1 shows each component.

第1表       (重量%) 溶融亜鉛めっきは、無酸化炉、還元加熱炉を備えた連続
式めっき設備で行い、めっき浴面後に設けられた気体絞
り装置によって付着量の調整を行い、つづいてミストス
プレィによりスパングルを@細化し、めっき層が冷却後
伸長率1.5%でスキンパスを行い表面を平滑にした。
Table 1 (% by weight) Hot-dip galvanizing is carried out in a continuous plating facility equipped with a non-oxidizing furnace and a reduction heating furnace. The spangles were thinned by spraying, and after the plating layer was cooled, a skin pass was performed at an elongation rate of 1.5% to smooth the surface.

Fe−B合金めっきには、電気めっき、プラズマ溶射又
はパウダースプレィの方法を用いたが、各々次の条件で
処理した。なお、パウダースプレィめつきの場合は、ス
プレィめっきによってスパングルの微細化を行い、ミス
トスプレィは行わなかった。
Electroplating, plasma spraying, or powder spraying was used for Fe-B alloy plating, and each treatment was performed under the following conditions. In the case of powder spray plating, spangles were made finer by spray plating, and mist spraying was not performed.

(1)電気めっき FeSO4+ (NH4)2 S04 ・6H20: 
 350g/、QC406H6(酒石’!!ff)  
:  3.5g/ 、Q(NF(4) 2 B4O7・
4 H20: 1〜100g/Ωp)l :2.5゜ 浴温:60℃。
(1) Electroplating FeSO4+ (NH4)2 S04 ・6H20:
350g/, QC406H6 (Starstone'!!ff)
: 3.5g/ , Q(NF(4) 2 B4O7・
4 H20: 1 to 100 g/Ωp)l: 2.5° Bath temperature: 60°C.

陰8i!電流密度+1OA/dm”。Yin 8i! Current density +1OA/dm".

f21フ“ラズマ溶射 プラズマガス:Ar。f21 flame spraying Plasma gas: Ar.

溶射入熱  :20KW。Thermal spraying heat input: 20KW.

溶射距離  、100關 平均粉末粒径:約5μm 粉末供給遠度: 5 g/miO・d m”。Thermal spraying distance: 100 degrees Average powder particle size: approximately 5μm Powder feeding distance: 5 g/miO・dm”.

(3)パウダースプレィ 平均粉末粒径:約5μm。(3) Powder spray Average powder particle size: approximately 5 μm.

未供給速度:3g/m石・d m” 。Unsupplied speed: 3g/m stone/dm”.

めっき皮膜表層中及びめっき皮膜内層中の鉄含有率は、
それぞれオージェ電子スベクト口メトリー及びグリムグ
ロー放電発光分光分析によって調べた。
The iron content in the surface layer of the plating film and the inner layer of the plating film is
They were investigated by Auger electron spectroscopy and Grimglow discharge emission spectroscopy, respectively.

耐パウダリング性は、曲率半径2開で90度に曲げた後
、曲げの内側に粘着テープを貼り付け、これを剥して、
パウダーがこの粘着テープに付着した状況を目視観察し
、点数付けて評価した。
Powdering resistance is determined by bending the material at 90 degrees with a radius of curvature of 2, applying adhesive tape to the inside of the bend, and peeling it off.
The adhesion of the powder to this adhesive tape was visually observed and evaluated by giving a score.

評点の基準は、 1:全く付着無し、2:極くわずかに付着、3;わずか
に付着、4;少し付着、 5:かなり付着、の三段階である。
The grading criteria are as follows: 1: No adhesion at all, 2: Very little adhesion, 3: Slight adhesion, 4: Slight adhesion, and 5: Considerable adhesion.

耐クレータリング性は、めっき面に化成処理を施し、次
いで電着塗装を行い、このとき発生したクレータの数で
評価した。化成処理には市販されている浸漬型の燐酸塩
系処理剤を用いた。電着塗装にはやはり市販されている
カチオン電着塗料を甫いたが、調合後−週間攪拌し、極
間距離4Ωで電着電圧300vを瞬時に印加して電着し
た。
Cratering resistance was evaluated by applying a chemical conversion treatment to the plated surface, followed by electrodeposition coating, and evaluating the number of craters generated at this time. A commercially available dipping type phosphate treatment agent was used for the chemical conversion treatment. For electrodeposition coating, a commercially available cationic electrodeposition paint was used, but after preparation, it was stirred for one week and electrodeposition was carried out by instantaneously applying an electrodeposition voltage of 300 V with an inter-electrode distance of 4Ω.

これらの例の各々の処理条件と調査結果を第2表に示す
The processing conditions and investigation results for each of these examples are shown in Table 2.

実施例では、素材Bでも耐パウダリング性に劣るものは
なく、限界付着量の実施例No6及び限界加熱時間に近
い実施例N017とで、掻く僅かにパウダリングが認め
られたが、実用上は問題がない、耐クレータリング性で
は、第二層のめつき付着量が下限界の実施例N013で
1内層2個の小さなりが発見されたが、これも実用上は
問題ない。
In the examples, there was no inferiority in powdering resistance even with material B, and slight powdering was observed in Example No. 6 with the limit adhesion amount and Example No. 017 near the limit heating time, but in practical terms In terms of cratering resistance, two small cracks were found in one inner layer in Example No. 013 where the amount of plating on the second layer was at the lower limit, but this also poses no problem in practice.

このように、実施例では全ての合金化溶融亜鉛めっき鋼
板が耐パウダリング性と耐クレータリング性とを兼ね備
えている。又、内層の鉄含有率も6wt%から13wt
%の範囲内にあり、塗装後耐食性を十分に確保するもの
である。
In this way, all the alloyed hot-dip galvanized steel sheets in the examples have both powdering resistance and cratering resistance. In addition, the iron content in the inner layer ranges from 6wt% to 13wt.
%, which ensures sufficient corrosion resistance after painting.

一方、発明の範囲から外れた条件で処理された比較例で
は、浴中AIの無い比較例Na 1 +加熱時間過剰の
比較例N[L2、洛中pbの多い比較例Na 3 、付
着量の多すぎる比較例Na 4 、第二層のめっきを施
さない比較例N[L5、加熱温度の高過ぎる比較例Nα
6等耐パウダリング性か耐クレータリング性の何れかに
問題がある。
On the other hand, in the comparative examples treated under conditions outside the scope of the invention, Comparative Example Na 1 without AI in the bath + Comparative Example N[L2 with excessive heating time, Comparative Example Na 3 with a large amount of PB in the bath, and Comparative Example Na 3 with a large amount of adhesion. Comparative example Na 4 which is too high, Comparative example N [L5 where the second layer is not plated, Comparative example Nα where the heating temperature is too high
There is a problem with either powdering resistance or cratering resistance.

従来例では、従来例NIL1は急速昇温高温加熱のみに
より合金化したもので両特性に問題があり、従来例N[
L 2は急速昇温高温加熱の後低温で合金化調整したも
ので耐クレータリングが劣り、従来例NO,3は急速昇
温高温加熱によって合金化しその上に硼素を含まない鉄
含有率80%のFe−Zn合金めっきをを付したもので
、耐パウダリング性に劣る。このように両特性が同時に
は満足されていない。
In the conventional example, the conventional example NIL1 was alloyed only by rapid heating and high temperature heating, and there were problems in both properties, and the conventional example NIL
L 2 is alloyed at a low temperature after rapid heating at high temperatures and has inferior cratering resistance, while conventional examples No. 3 are alloyed through rapid heating at high temperatures and have an iron content of 80% without boron. It has Fe-Zn alloy plating and has poor powdering resistance. In this way, both characteristics are not satisfied at the same time.

なお、実施例N(L 14では合金化溶融亜鉛めっきコ
イル(’b 1800 mm )の福方向について、2
00韻間隔でめっき内層の鉄含有率を調べた。
In addition, in Example N (L 14), regarding the direction of the alloyed hot dip galvanized coil ('b 1800 mm),
The iron content of the inner plating layer was examined at intervals of 00 rhymes.

この場合従来例No2と比較した。この結果を第2図に
示す0図において横軸はコイル左端からの距離、縦軸は
鉄含有率であり、O印は実施例No、 14をプロット
したものであり、・印は従来例N[L 2をプロットし
たものである0図から明らかなよう仁実層側N[Ll 
4の鉄含有率は平均8.1wt%であり、全ての測定点
が7.9ivj%から8.3wt%の間に分布していた
。これに対して従来例No2の鉄含有率は平−8,3w
t%であり、全ての測定点が8.0wt%から9.0w
t%の間に分布しバラツキが大きいかった。
In this case, comparison was made with conventional example No. 2. This result is shown in Figure 2. In Figure 0, the horizontal axis is the distance from the left end of the coil, the vertical axis is the iron content, the O mark is the plot of Example No. 14, and the mark is the conventional example No. As is clear from Figure 0, which is a plot of [L 2 , N[Ll
The average iron content of No. 4 was 8.1 wt%, and the iron content at all measurement points was distributed between 7.9 ivj% and 8.3 wt%. On the other hand, the iron content of conventional example No. 2 is -8.3w
t%, and all measurement points range from 8.0wt% to 9.0w
It was distributed between t% and had a large variation.

更にめっき皮膜の底部にr相が存在しているか否かにつ
いて、実施例NIL1からNα17迄の合金化溶融亜鉛
めっき処理を施した試料について、めっき皮膜の上層約
三分の二を取り除きX線回折を行った結果、何れの試料
についても「相は検出されなかった。
Furthermore, to determine whether or not the r-phase exists at the bottom of the plating film, approximately two-thirds of the upper layer of the plating film was removed and X-ray diffraction was performed on samples subjected to alloyed hot-dip galvanizing treatments from Examples NIL1 to Nα17. As a result, no phase was detected for any of the samples.

[発明の効果] この発明のめっき鋼板は、めっき皮膜中に「相が実質的
に存在せず、鉄含有率が高く硼素を含む表層と内層とが
一体構造になっており、しかも合金成分の分布が面方向
に均一な皮膜を持っているので、十分な耐食性に加えて
優れた耐パウダリング性と耐クレータリング性とを共に
有している。
[Effects of the Invention] The plated steel sheet of the present invention has substantially no phase in the plating film, has a high iron content, a boron-containing surface layer and an inner layer that have an integral structure, and has a low alloy composition. Since it has a film with uniform distribution in the surface direction, it has not only sufficient corrosion resistance but also excellent powdering resistance and cratering resistance.

また、この発明の方法は上記めっき鋼板を簡単な工程で
容易に製造出来るので産業上効果の大きい発明である。
Furthermore, the method of the present invention allows the above-mentioned plated steel sheet to be easily manufactured through simple steps, and is thus an invention that is highly effective industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するための熱処理条件と
特性適正との関係を示す図、第2図はこの本発明の一実
施例の鉄含有率の分布を示す図である。
FIG. 1 is a diagram showing the relationship between heat treatment conditions and appropriate characteristics for detailed explanation of the present invention, and FIG. 2 is a diagram showing the distribution of iron content in one embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)鋼板の少なくとも片面に、溶融亜鉛めっきによる
第一層とその上のFeが97.0wt%以上100wt
%未満で残りが硼素であるFe−Bめっきによる第二層
とを熱処理で形成しためっき皮膜を有し、該めっき皮膜
は、表層が前記第二層のFe含有率であるFe−B合金
めつきで内層が厚さ0.5μmの鋼素地との境界層を除
いてδ_1相とζ相からなる合金化亜鉛めっきであって
、面方向に鉄含有率が均一に分布していることを特徴と
する加工性、塗装性に優れた合金化溶融亜鉛めっき鋼板
(1) At least one side of the steel plate has a first layer formed by hot-dip galvanizing, and the Fe content on the first layer is 97.0 wt% or more and 100 wt%.
% and the remainder is boron. The inner layer is an alloyed galvanized plating consisting of δ_1 phase and ζ phase except for the boundary layer with the steel substrate with a thickness of 0.5 μm, and is characterized by a uniform distribution of iron content in the surface direction. Alloyed hot-dip galvanized steel sheet with excellent workability and paintability.
(2)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼板をAl0.05wt%
以上0.3wt%以下且つPb0.2wt%以下を含有
する溶融亜鉛めっき浴に浸漬して30g/m^2以上9
0g/m^2以下の第一層のめっきを施す工程、 (ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)この溶融亜鉛めっき鋼板の片面又は両面に0.5
g/m^2以上10g/m^2以下のFeが97.0w
t%以上100wt%未満、Bが0.001wt%以上
3wt%未満の第二層のFe−B合金めっきを施す工程
、 (ホ)前記工程でめっきを施した鋼板を非酸化性又は還
元性雰囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の温度範囲で1
0分から50時間加熱する工程。
(2) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, the method comprising the following steps. (b) Steel plate subjected to normal pretreatment with Al0.05wt%
30g/m^2 or more by immersion in a hot-dip galvanizing bath containing 0.3wt% or less and 0.2wt% or less of Pb9
A step of applying a first layer plating of 0 g/m^2 or less, (b) a step of performing spangle refinement treatment while the plating film is in a molten state, (c) a skin pass treatment after the plating film has solidified. ,
A step of smoothing the surface of the hot-dip galvanized film, (d) applying 0.5% on one or both sides of this hot-dip galvanized steel sheet.
Fe of g/m^2 or more and 10g/m^2 or less is 97.0w
A step of applying a second layer of Fe-B alloy plating containing t% or more and less than 100wt% and B of 0.001wt% or more and less than 3wt%, (e) Placing the plated steel sheet in the above step in a non-oxidizing or reducing atmosphere 1 in a temperature range of 320℃ or higher and lower than the melting point of zinc in an open coil state in a batch type annealing furnace maintained at
A process of heating from 0 minutes to 50 hours.
(3)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼板をAl0.05wt%
以上0.3wt%以下且つPb0.2wt%以下を含有
する溶融亜鉛めっき浴に浸漬して30g/m^2以上9
0g/m^2以下の第一層のめっきを施す工程、 (ロ)めっき皮膜が溶融状態であるうちに鋼板の片面又
は両面にFeが97.0wt%以上100wt%未満、
Bが0.001wt%以上3wt%未満のFe−B合金
パウダーを吹き付けて0.5g/m^2以上10g/m
^2以下の第二層のめっきを施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理を行い溶
融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)前記工程で平滑化しためつき皮膜を有する鋼板を
非酸化性又は還元性雰囲気に維持したバッチ式焼鈍炉内
でオープンコイルの状態で320℃以上亜鉛の融点以下
の温度範囲で10分から50時間加熱する工程。
(3) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, the method comprising the following steps. (b) Steel plate subjected to normal pretreatment with Al0.05wt%
30g/m^2 or more by immersion in a hot-dip galvanizing bath containing 0.3wt% or less and 0.2wt% or less of Pb9
A step of applying a first layer plating of 0 g/m^2 or less, (b) Fe content of 97.0 wt% or more and less than 100 wt% on one or both sides of the steel plate while the plating film is in a molten state;
Spray Fe-B alloy powder with B of 0.001 wt% or more and less than 3 wt% to produce 0.5 g/m^2 or more and 10 g/m
A step of applying a second layer plating of ^2 or less, (c) a step of smoothing the surface of the hot-dip galvanized film by performing skin pass treatment after the plating film has solidified, (d) a step of smoothing the surface of the galvanized film smoothed in the above step. A process of heating a steel plate with an open coil in a batch type annealing furnace maintained in a non-oxidizing or reducing atmosphere at a temperature range of 320° C. or higher and lower than the melting point of zinc for 10 minutes to 50 hours.
JP27043488A 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same Expired - Lifetime JP2727597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27043488A JP2727597B2 (en) 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27043488A JP2727597B2 (en) 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02118086A true JPH02118086A (en) 1990-05-02
JP2727597B2 JP2727597B2 (en) 1998-03-11

Family

ID=17486226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27043488A Expired - Lifetime JP2727597B2 (en) 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Country Status (1)

Country Link
JP (1) JP2727597B2 (en)

Also Published As

Publication number Publication date
JP2727597B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JPH0753901B2 (en) Hot dip galvanizing method
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
JP2004124118A (en) Hot-dip galvanized steel sheet excellent in press formability and appearance and method for producing the same
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPH02118086A (en) Hot-dip galvanized alloyed steel sheet excellent in workability and coating property and production thereof
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02138481A (en) Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability
JP2727596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JPH0128098B2 (en)
JPH02145777A (en) Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating
JPS62256959A (en) Manufacture of alloying-plated steel sheet
JP2783457B2 (en) Manufacturing method of hot-dip Zn-Al plated steel sheet
JPH02122082A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability
JP3654520B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JPH02138482A (en) Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability
JPH04276055A (en) Manufacture of differential galvannealed steel
KR20010018653A (en) A method for manufacturing hot-dip galvanized steel sheets having good coating quality properties
JPH02166261A (en) Manufacture of alloyed hot dip galvanized steel sheet excellent in workability and coating suitability
JPH02166264A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JP3643559B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same