JPH02111834A - High conductive copper alloy for wiring of electrical and electronic parts having excellent migration resistance - Google Patents
High conductive copper alloy for wiring of electrical and electronic parts having excellent migration resistanceInfo
- Publication number
- JPH02111834A JPH02111834A JP26293988A JP26293988A JPH02111834A JP H02111834 A JPH02111834 A JP H02111834A JP 26293988 A JP26293988 A JP 26293988A JP 26293988 A JP26293988 A JP 26293988A JP H02111834 A JPH02111834 A JP H02111834A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- electrical
- migration resistance
- copper alloy
- excellent migration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は耐マイグレーション性に優れた高導電性電気・
電子部品配線用銅合金に関し、さらに詳しくは、半導体
部品(例えばリードフレーム)、機構部品(例えば開閉
器部品、ブスバー、端子、コネクター等)およびプリン
ト配線、電極等の電気・電子部品配線用の耐マイグレー
ション性に優れた高導電性銅合金に関する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a highly conductive electric wire with excellent migration resistance.
Regarding copper alloys for electronic component wiring, more specifically, they are used for electrical and electronic component wiring such as semiconductor components (e.g. lead frames), mechanical components (e.g. switch parts, busbars, terminals, connectors, etc.), printed wiring, electrodes, etc. This invention relates to a highly conductive copper alloy with excellent migration properties.
[従来の技術]
(背景技術)
近年、クーラー、TV、VTR等の家庭電化製品、産業
用電子機器および自動車等に搭載される電気・電子部品
は急速に小型化、および高密度実装化が進んできている
。上記の電気・電子部品の小型化、高密度実装化に伴な
い電気・電子部品を実公するための配!3(すなわち電
気・電子部品相互を接続して回路を構成する導線等の導
体)もその影響を受けて、配線間距離の短縮化による高
密度化或は多層化等が進みつつある。[Conventional technology] (Background technology) In recent years, electrical and electronic components installed in home appliances such as coolers, TVs, and VTRs, industrial electronic equipment, and automobiles have rapidly become smaller and more densely packaged. is made of. Due to the miniaturization and high-density mounting of electrical and electronic components mentioned above, the layout for putting them into practical use! 3 (that is, conductors such as conductive wires that connect electrical and electronic components to each other to form a circuit) are also being influenced by this trend, and are becoming more densely packed or multilayered by shortening the distance between wires.
しかも、配線自体の微細化等に対応すべく配線を流れる
電流容ユの向上が試みられている。Furthermore, attempts have been made to improve the current capacity flowing through the wiring in order to respond to the miniaturization of the wiring itself.
(従来技術)
ところで、従来電気・電子部品配線用材料としてはCu
、Cu−PあるいはCu−Znが用いられている。(Prior art) By the way, the conventional material for electrical/electronic component wiring is Cu.
, Cu-P or Cu-Zn are used.
しかし、Cu、Cu−Pを用いて前記した配置線の高密
度化、多層化を図ろうとすると、金属の電気化学化なマ
イグレーションが生し、配線間の絶縁性が低下してしま
うということが見い出された。その結果、配線の高密度
化、多層化か困難となり、ひいては、電気・電子部品の
小型化および高密度実装に困難が生ずるという課題があ
った。However, when attempting to increase the density and multilayer the wiring using Cu or Cu-P, electrochemical migration of the metal occurs and the insulation between the wiring deteriorates. Found out. As a result, it becomes difficult to increase the density and multilayer wiring, which in turn makes it difficult to miniaturize and high-density packaging electrical and electronic components.
上記のマイグレーションとは、次のような現象である。The above migration is the following phenomenon.
すなわち、配線間に結露あるいは水分の吸着をまねく塵
埃が付着すると、電界の彫りを受けて、配線を構成する
金属原子がイオン化し、このイオン化した金属原子がク
ーロンフォースにより陰栖に析出しくこの析出物を電析
物という)、この電析物がさらにめっき(電析)と同じ
ように陰極から樹・枝状に成長し陽朽側までに達し、配
線間が短絡する現象である。これは、乾燥、結露等の環
境に応じて金属結晶中および表面に酸化物を伴なうこと
が多く、配線を構成する物質が配線同士を絶縁している
プラスチック、ガラスおよびセラミック等の絶縁物の表
面上をきわめて薄膜状で走り、先端では複数本となるこ
とが多い。また、このマイグレーションは印加電圧が数
ボルトから数十ボルト、電流が数アンペアから数十アン
ペアで発生し、−成約には銀が起こり易いといわれてき
たが、最近の電気・電子部品の配線回路の高密度実装化
、多層化の進展につれて銅および銅合金にも生じる恐れ
があることを見い出した。In other words, when dust that causes dew condensation or moisture adsorption adheres between wires, the metal atoms that make up the wires are ionized by the electric field, and these ionized metal atoms are deposited in the shadows by Coulomb force. Similar to plating (electrodeposition), these deposits grow in the form of trees and branches from the cathode and reach the exposed side, causing a short circuit between wires. This is often accompanied by oxides in the metal crystal and on the surface depending on the environment such as dryness and dew condensation, and the material that makes up the wiring is an insulating material such as plastic, glass, and ceramic that insulates the wiring. They run on the surface in an extremely thin film, and often form multiple strands at the tip. Furthermore, this migration occurs when the applied voltage is from several volts to several tens of volts and the current is from several amperes to several tens of amperes. It has been discovered that copper and copper alloys may also be affected by the development of high-density packaging and multilayer technology.
また、開閉器(例えばマイクロスイッチ)等においては
頻繁な開閉に耐えつるために機械的強度が必要とされる
が、Cu−Pを用いた場合にはその要請に答えることが
困難であった。In addition, mechanical strength is required for switches (for example, microswitches) to withstand frequent opening and closing, but it has been difficult to meet this requirement when Cu-P is used.
一方、黄銅は耐マイグレーション性には優れているが、
導電率が低く、上述した電気・電子部品配線の電流容量
の向上に対応することができない。On the other hand, brass has excellent migration resistance, but
It has low conductivity and cannot respond to the above-mentioned improvement in current capacity of electrical/electronic component wiring.
[本発明が解決しようとする課題]
本発明は上記に説明したような従来における種々の問題
点に鑑みなされたものであって半導体部品、開閉機部品
、ブスバー、端子、コネクター等の機構部品、プリント
配線、電極などの電気・電子部品配線高密度化し、高密
度て実装化されることにより配線間の紙材距離およびT
L極間距だが例えば2.54mmから0.635〜1.
27mmと近接したり、あるいは結露したとしても、電
析物の成長を抑制しマイグレーションを起こし跨くする
とともに、さらに電流容量の向上の目的にも対応できる
ように少なくとも55%I AC5以上の導電率を有し
、かつ純銅よりも機械的性質と耐熱性を向上させた耐マ
イグレーション性に優れた高導電性電気・電子部品配線
用銅合金を提供することを目的とするものである。[Problems to be Solved by the Present Invention] The present invention has been made in view of the various problems in the conventional art as explained above. Due to the increasing density of printed wiring, electrodes, and other electrical/electronic component wiring, and high-density mounting, the distance between paper materials and T
The distance between the L poles is, for example, 2.54 mm to 0.635 to 1.
27 mm, or even if there is dew condensation, the conductivity is at least 55% I AC5 to suppress the growth of deposits, cause migration, and further improve the current capacity. The object of the present invention is to provide a highly conductive copper alloy for electrical/electronic component wiring, which has improved mechanical properties and heat resistance than pure copper, and has excellent migration resistance.
[課題を解決するための手段]
本発明は、Mg:0.2〜1.5%を含有し、残部が実
質的にCuからなることを特徴とする耐マイグレーショ
ン性に優れた高導電性電気・電子部品配線用銅合金に第
1の要旨が存在し、また、Mg:0.2〜1.5%、Z
n : 0. 5〜2. 0%を含有し、残部が実質的
にCuからなることを特徴とする耐マイグレーション性
に優れた高導電性電気・電子部品配線用銅合金に第2の
要旨が存在する。[Means for Solving the Problems] The present invention provides a highly conductive electrical device with excellent migration resistance, which contains Mg: 0.2 to 1.5%, and the remainder is substantially Cu.・The first gist exists in copper alloys for electronic component wiring, and Mg: 0.2 to 1.5%, Z
n: 0. 5-2. The second feature lies in a highly conductive copper alloy for electrical/electronic component wiring which has excellent migration resistance and is characterized by containing 0% Cu and the remainder substantially consisting of Cu.
[作 用]
本発明に係る耐マイグレーション性に優れた高導電性電
気・電子部品配線高密度化について、以下詳細に説明す
る。[Function] The densification of highly conductive electric/electronic component wiring with excellent migration resistance according to the present invention will be described in detail below.
先ず、本発明に係る耐マイグレーション性に優れた高導
電性電気・電子部品配線用銅合金の含有成分および成分
割合について説明する。First, the components and component ratios of the highly conductive copper alloy for electrical/electronic component wiring having excellent migration resistance according to the present invention will be explained.
Mgは、電圧が印加された電気・電子部品の配線間に水
の浸入や、結露等が生じた場合のCuのマイグレーショ
ンの発生を防止し、4 ?”j、 電流を抑制するため
の必須元素であり、0.2%未満では黄銅と同程度の抑
制効果が得られず、又1.5%を越えて含有された場合
は、Cuのマイグレーションの生成を抑え、漏洩電流の
抑制効果はあるが、M gの酸化物が急激に増加し、溶
湯の流動性が悪くなり造塊性が低下する。また、導電性
も低下する。従って、Mgの含有量は0,2〜1.5%
とする。Mg prevents the migration of Cu when water infiltrates or condensation occurs between the wiring of electric/electronic components to which voltage is applied, and 4? "j" is an essential element for suppressing current; if it is less than 0.2%, the same suppressing effect as brass cannot be obtained, and if it is contained in more than 1.5%, it may inhibit the migration of Cu. Although it has the effect of suppressing Mg formation and suppressing leakage current, the amount of Mg oxide increases rapidly, which deteriorates the fluidity of the molten metal and reduces the agglomeration properties.The conductivity also decreases. Content is 0.2-1.5%
shall be.
ZnはMgと共添されることにより導電性をより一層向
上させる。0.5%未満では、Mgと共添されてもCu
のマイグレーション形成の抑制効果は少なく、2.0%
を越えると耐マイグレーション性は向上するが、導電性
のより一層の向上は望めない。従って、Znの含有量は
05〜2.0%とする。Zn further improves conductivity by being co-added with Mg. If it is less than 0.5%, even if it is co-added with Mg, Cu
The effect of suppressing migration formation is small, at 2.0%.
If it exceeds 100%, migration resistance improves, but further improvement in conductivity cannot be expected. Therefore, the Zn content is set to 05 to 2.0%.
なお、B、Ai、Si、Ti、Cr、Mn。Note that B, Ai, Si, Ti, Cr, and Mn.
Ni、Co、Zr、Ag、Inおよびsbは1種また2
種以上で導電性55%I AC3を満足し得る範囲で適
宜含有しても、本発明の耐マイグレーション性が失なわ
れるものではない。Ni, Co, Zr, Ag, In and sb are one or two types.
Even if it is appropriately contained in a range that satisfies the conductivity of 55% IAC3 in more than 100%, the migration resistance of the present invention will not be lost.
[実施例]
本発明に係る耐マイグレーション性に優れた高導電性電
気・電子部品配線用銅合金の実施例を説明する。[Example] Examples of the highly conductive copper alloy for electrical/electronic component wiring having excellent migration resistance according to the present invention will be described.
第1表に示す組成の銅合金を小型電気炉で大気中にて木
炭被覆下で溶解し、厚さ50mm、幅80mm、長さ1
80mmの鋳塊を溶製した。A copper alloy having the composition shown in Table 1 was melted in the air in a small electric furnace under charcoal coating, and a thickness of 50 mm, a width of 80 mm, and a length of 1 mm was obtained.
An 80 mm ingot was melted.
上記鋳塊の表面および裏面を各々2mm面削し、No1
4の黄銅は740℃、黄銅以外は820℃の温度により
熱間圧延を行ない、厚さ15mmの板材とした。熱間圧
延材の表面の酸化スケールを20vo1%硫酸水にて除
去後、冷間圧延にて途中、黄銅以外は500℃X2hr
、黄銅は430℃x2hrで焼鈍し、厚さ0.32mm
に調整し板材とした。The front and back sides of the above ingot were milled by 2mm each, and No.1
Brass No. 4 was hot-rolled at 740° C., and the other brasses were hot-rolled at 820° C. to form a plate material with a thickness of 15 mm. After removing the oxidized scale on the surface of the hot-rolled material with 20vol 1% sulfuric acid water, it was cold-rolled at 500℃ for 2 hours except for brass.
, Brass is annealed at 430℃ x 2hr, thickness 0.32mm
It was adjusted to be a board material.
(耐マイグレーション性)
上記板材から、厚さ0.32mm、幅3.0mm、長さ
80mmの試験片を採取した。この試験片を2枚1組と
し、第1図(a)、(b)に示すように、1mm厚のA
BS樹脂板(絶縁物)2を2枚の試験片1.1の間に介
在させるとともに、試験片1.1の両端部を上下から押
え板33で挟持し、押え板3.3を表面絶縁性のクリッ
プ4で押圧しすることによりセットし、2枚の試験片1
.1間に直流電流14Vを印加しつつ、[(水道水中に
5分間浸漬)−(10分間乾燥)]の乾湿繰り返し試験
を50サイクル行った。なお、水道水への浸漬は上方の
試験片の上面(aで示す而)が浸漬するように行った。(Migration resistance) A test piece with a thickness of 0.32 mm, a width of 3.0 mm, and a length of 80 mm was taken from the above plate material. These test pieces were made into a set of two, and as shown in Figure 1 (a) and (b), a 1 mm thick A
A BS resin plate (insulator) 2 is interposed between the two test pieces 1.1, and both ends of the test piece 1.1 are held between top and bottom by holding plates 33, and the holding plates 3.3 are insulated on the surface. Set the two test pieces 1 by pressing them with the plastic clip 4.
.. A dry/wet cycle test of [(immersion in tap water for 5 minutes)-(drying for 10 minutes)] was performed for 50 cycles while applying a direct current of 14 V for 1 hour. Note that the immersion in tap water was performed so that the upper surface (indicated by a) of the upper test piece was immersed.
その間の最大Kn ?”L電流値を高感度レコーダーで
測定した。Maximum Kn during that time? ``The L current value was measured with a high-sensitivity recorder.
なお、最大漏洩電流が小さいほど耐マイグレーション性
は優れていることを意味する。Note that the smaller the maximum leakage current, the better the migration resistance.
(機械的強度)
引張強さ、伸びは、試験片の長手方向を圧延方向に平行
とした、JIS13号B試験片にて測定した。(Mechanical strength) Tensile strength and elongation were measured using a JIS No. 13 B test piece with the longitudinal direction of the test piece parallel to the rolling direction.
(電流容量) 電流容量は導電率を測定することにより評価した。(current capacity) Current capacity was evaluated by measuring conductivity.
導電率はJISHO505に基づいて測定した。The conductivity was measured based on JISHO505.
上記の実験から第2表の結果を得た。The results shown in Table 2 were obtained from the above experiment.
第2表から明らかなように、本発明合金No、1〜11
は、比較合金No、12に比して最大漏洩電流が0.4
〜0.6Aと小さく、No、14の黄銅並であり、耐マ
イグレーション性に優れていることがわかる。As is clear from Table 2, the invention alloy Nos. 1 to 11
has a maximum leakage current of 0.4 compared to comparative alloy No. 12.
It can be seen that it is as small as ~0.6A, comparable to No. 14 brass, and has excellent migration resistance.
さらに、本発明合金の導電率は、黄銅(No114)の
2倍以上を有し、この点でも優れていることが判る。Furthermore, the electrical conductivity of the alloy of the present invention is more than twice that of brass (No. 114), indicating that it is excellent in this respect as well.
本試験では漏洩電流の試験時の印加電圧を自動車用の1
4Vとしたが、一般的には24Vあるいは100Vの交
流回路にも銅合金は使用され、より一層放電しやすい状
況下にあるので、本発明は民生用および産業用にも適用
し得ることは言うまでもない。In this test, the applied voltage during the leakage current test was set to 1 for automobiles.
Although 4V is used, copper alloys are generally used in 24V or 100V AC circuits, which are more susceptible to electrical discharge, so it goes without saying that the present invention can also be applied to consumer and industrial applications. stomach.
また、本発明合金はCu−P合金(No、15)と比較
して、はるかに高い引張強度を示しており、強度を必要
とする配線にも好適に使用しうることがわかる。Furthermore, the alloy of the present invention exhibits much higher tensile strength than the Cu-P alloy (No. 15), indicating that it can be suitably used for wiring that requires strength.
[発明の効果コ
以上説明したように、本発明に係る電気・電子部品配線
用銅合金はCuのマイグレーション現象を抑制すること
により、配線間距離を小さくしても短絡するという不具
合いがなくなり、しかもa重塁の大きな材料が得られる
ため、電流容量の増大による発熱、焼損等も少なくなる
。[Effects of the Invention] As explained above, the copper alloy for electrical/electronic component wiring according to the present invention suppresses the migration phenomenon of Cu, thereby eliminating the problem of short circuits even when the distance between the wires is reduced. Furthermore, since a material with a large a-layer is obtained, heat generation, burnout, etc. due to increased current capacity are reduced.
第1表Table 1
第1図は耐マイグレーション性を評価するための実験方
法を示すための平面図及び側面図である。
1・・・試験片、2・・・ABS樹脂板、3・・・押え
板、4・・・クリップ、5・・・電線、6バツテーリー
第2表FIG. 1 is a plan view and a side view showing an experimental method for evaluating migration resistance. 1... Test piece, 2... ABS resin plate, 3... Holding plate, 4... Clip, 5... Electric wire, 6 Battley Table 2
Claims (2)
る)を含有し、残部が実質的にCuからなることを特徴
とする耐マイグレーション性に優れた高導電性電気・電
子部品配線用銅合金。(1) Highly conductive electric wire with excellent migration resistance, containing Mg: 0.2 to 1.5% (weight %, hereinafter the same), with the remainder consisting essentially of Cu. Copper alloy for electronic component wiring.
%を含有し、残部が実質的にCuからなることを特徴と
する耐マイグレーション性に優れた高導電性電気・電子
部品配線用銅合金。(2) Mg: 0.2-1.5%, Zn: 0.5-2.0
%, and the remainder substantially consists of Cu.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63262939A JP2722401B2 (en) | 1988-10-20 | 1988-10-20 | Highly conductive copper alloy for electrical and electronic component wiring with excellent migration resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63262939A JP2722401B2 (en) | 1988-10-20 | 1988-10-20 | Highly conductive copper alloy for electrical and electronic component wiring with excellent migration resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02111834A true JPH02111834A (en) | 1990-04-24 |
JP2722401B2 JP2722401B2 (en) | 1998-03-04 |
Family
ID=17382670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63262939A Expired - Fee Related JP2722401B2 (en) | 1988-10-20 | 1988-10-20 | Highly conductive copper alloy for electrical and electronic component wiring with excellent migration resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2722401B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004203A1 (en) * | 1998-07-14 | 2000-01-27 | Japan Energy Corporation | Sputtering target and part for thin film-forming apparatus |
WO2011142450A1 (en) * | 2010-05-14 | 2011-11-17 | 三菱マテリアル株式会社 | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
JP2011241412A (en) * | 2010-05-14 | 2011-12-01 | Mitsubishi Materials Corp | Copper alloy for electronic device, method for producing copper alloy for electronic device and copper alloy rolled material for electronic device |
WO2013062091A1 (en) * | 2011-10-28 | 2013-05-02 | 三菱マテリアル株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
CN103890205A (en) * | 2011-11-14 | 2014-06-25 | 三菱综合材料株式会社 | Copper alloy and copper alloy forming material |
US10153063B2 (en) | 2011-11-07 | 2018-12-11 | Mitsubishi Materials Corporation | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236734A (en) * | 1975-09-18 | 1977-03-22 | Sawafuji Electric Co Ltd | Power source device for vehicles |
JPS62146231A (en) * | 1985-12-20 | 1987-06-30 | Kobe Steel Ltd | High conductivity copper alloy superior in migration resistance |
JPS6452034A (en) * | 1987-08-19 | 1989-02-28 | Mitsubishi Electric Corp | Copper alloy for terminal and connector |
-
1988
- 1988-10-20 JP JP63262939A patent/JP2722401B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236734A (en) * | 1975-09-18 | 1977-03-22 | Sawafuji Electric Co Ltd | Power source device for vehicles |
JPS62146231A (en) * | 1985-12-20 | 1987-06-30 | Kobe Steel Ltd | High conductivity copper alloy superior in migration resistance |
JPS6452034A (en) * | 1987-08-19 | 1989-02-28 | Mitsubishi Electric Corp | Copper alloy for terminal and connector |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004203A1 (en) * | 1998-07-14 | 2000-01-27 | Japan Energy Corporation | Sputtering target and part for thin film-forming apparatus |
EP3009523A3 (en) * | 2010-05-14 | 2016-11-02 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing it, and rolled material from it |
WO2011142450A1 (en) * | 2010-05-14 | 2011-11-17 | 三菱マテリアル株式会社 | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
JP2011241412A (en) * | 2010-05-14 | 2011-12-01 | Mitsubishi Materials Corp | Copper alloy for electronic device, method for producing copper alloy for electronic device and copper alloy rolled material for electronic device |
CN102822363A (en) * | 2010-05-14 | 2012-12-12 | 三菱综合材料株式会社 | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US20130048162A1 (en) * | 2010-05-14 | 2013-02-28 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US10056165B2 (en) | 2010-05-14 | 2018-08-21 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
KR101369693B1 (en) * | 2010-05-14 | 2014-03-04 | 미쓰비시 마테리알 가부시키가이샤 | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US10032536B2 (en) | 2010-05-14 | 2018-07-24 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US20140271339A1 (en) * | 2010-05-14 | 2014-09-18 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
EP2772560A1 (en) * | 2011-10-28 | 2014-09-03 | Mitsubishi Materials Corporation | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
EP2772560A4 (en) * | 2011-10-28 | 2015-05-20 | Mitsubishi Materials Corp | COPPER ALLOY FOR ELECTRONIC EQUIPMENT, PROCESS FOR PRODUCING COPPER ALLOY FOR ELECTRONIC EQUIPMENT, LAMINATED COPPER ALLOY MATERIAL FOR ELECTRONIC EQUIPMENT, AND PART FOR ELECTRONIC EQUIPMENT |
US9587299B2 (en) | 2011-10-28 | 2017-03-07 | Mitsubishi Materials Corporation | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
WO2013062091A1 (en) * | 2011-10-28 | 2013-05-02 | 三菱マテリアル株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
US10153063B2 (en) | 2011-11-07 | 2018-12-11 | Mitsubishi Materials Corporation | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
EP2781611A4 (en) * | 2011-11-14 | 2015-05-20 | Mitsubishi Materials Corp | COPPER ALLOY AND MATERIAL FORMING COPPER ALLOY |
EP2781611A1 (en) * | 2011-11-14 | 2014-09-24 | Mitsubishi Materials Corporation | Copper alloy and copper alloy forming material |
CN103890205A (en) * | 2011-11-14 | 2014-06-25 | 三菱综合材料株式会社 | Copper alloy and copper alloy forming material |
US10458003B2 (en) | 2011-11-14 | 2019-10-29 | Mitsubishi Materials Corporation | Copper alloy and copper alloy forming material |
Also Published As
Publication number | Publication date |
---|---|
JP2722401B2 (en) | 1998-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4822562A (en) | Copper alloy excellent in migration resistance | |
JPH0673474A (en) | Copper alloy excellent in strength, electric conductivity and migration resistance | |
US20050124233A1 (en) | Contact terminal with doped coating | |
JPH02111834A (en) | High conductive copper alloy for wiring of electrical and electronic parts having excellent migration resistance | |
EP0318831B1 (en) | Electric power connectors | |
JPS62146231A (en) | High conductivity copper alloy superior in migration resistance | |
JPS63310935A (en) | High electroconductive copper alloy having excellent migration resistance | |
JPH04231432A (en) | Electrifying material | |
JPH04231430A (en) | Electrifying material | |
JPS6332855B2 (en) | ||
JPS62199741A (en) | Copper alloy for terminal and connector having superior migration resistance | |
JPS64451B2 (en) | ||
JP2977839B2 (en) | Highly conductive copper alloy for electrical and electronic components with excellent migration resistance | |
JPH04231433A (en) | Electrifying material | |
JPH04231447A (en) | Conductive material | |
JPH0499839A (en) | Conductive material | |
JPH0499838A (en) | Conductive material | |
CN112423465A (en) | Heat-conducting substrate | |
JPS62116744A (en) | Phosphor bronze excellent in migration resistance | |
JPH04231446A (en) | Conductive material | |
JPH0499837A (en) | Conductive material | |
JPH03285035A (en) | High strength copper alloy excellent in migration resistance | |
JPS5914212A (en) | Electric contact material | |
JPH01168830A (en) | Electric conductive material | |
JPS62250137A (en) | Copper alloy for terminal and connector having superior migration resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |