JPH02108442A - Block type moving mold - Google Patents
Block type moving moldInfo
- Publication number
- JPH02108442A JPH02108442A JP63261463A JP26146388A JPH02108442A JP H02108442 A JPH02108442 A JP H02108442A JP 63261463 A JP63261463 A JP 63261463A JP 26146388 A JP26146388 A JP 26146388A JP H02108442 A JPH02108442 A JP H02108442A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- block
- casting
- molten metal
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C11/00—Moulding machines characterised by the relative arrangement of the parts of same
- B22C11/12—Moulding machines able to travel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0648—Casting surfaces
- B22D11/0657—Caterpillars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0608—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by caterpillars
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、ブロック鋳型を移動させて薄肉鋳片を連続
鋳造するブロック式移動鋳型に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a block-type moving mold that continuously casts thin slabs by moving the block mold.
[従来の技術]
近時、薄肉鋳片を高速連続鋳造する目的からブロック鋳
型を無限軌道状に連結し、ブロック鋳型を鋳造方向に移
動しつつ連続鋳造する所謂ブロックキャスティング技術
が開発され、次世代の連続鋳造技術として注目されてい
る。従来の連続鋳造では固定鋳型から凝固殻鋳片を強制
的に引抜くために所謂拘束性ブレイクアウトが発生する
が、ブロックキャスティングによれば鋳型を凝固殻成長
速度に応じて移動させるので、拘束性ブレイクアウトの
発生を有効に回避することができる。従って、ブロック
キャスティングによれば鋳造速度を従来の10倍以上に
することができる。[Prior art] Recently, for the purpose of high-speed continuous casting of thin-walled slabs, a so-called block casting technology has been developed in which block molds are connected in an endless track and the block molds are continuously cast while moving in the casting direction. It is attracting attention as a continuous casting technology. In conventional continuous casting, a so-called restraint breakout occurs because the solidified shell slab is forcibly pulled out from a fixed mold, but with block casting, the mold is moved according to the growth rate of the solidified shell, so the restraint breakout occurs. The occurrence of breakouts can be effectively avoided. Therefore, according to block casting, the casting speed can be increased by more than 10 times compared to the conventional method.
従来のブロック式移動鋳型は、断面り字形のブロック鋳
型部材を無限軌道状に多数並べ、これと同様の部材をこ
れに対面させ、断面が細長矩形のキャビティ(鋳造領域
)を形成する。In a conventional block-type moving mold, a large number of block mold members each having a rectangular cross-section are arranged in an endless track, and similar members are faced to form a cavity (casting area) having an elongated rectangular cross-section.
[発明が解決しようとする課題]
しかしながら、従来のブロック式移動鋳型においては、
第8図に示すように、溶湯4が鋳型に接触し、凝固殻5
がほぼ一定速度で成長するようになると、ブロック鋳型
部材2の相互継目3のところで溶湯の冷却不足が起こり
、継目3に沿って凝固遅れが生じる。このため、この凝
固遅れ領域に収縮応力が集中し、デンドライト主軸に沿
って鋳片表面が割れる所謂横割れが発生する。この横割
れは、通常の固定鋳型においても発生するものであって
、主に鋳片の広面に発生し、著しい場合には鋳片の幅方
向の端部から端部まで伝幡する。[Problems to be solved by the invention] However, in the conventional block type moving mold,
As shown in FIG. 8, the molten metal 4 comes into contact with the mold, and the solidified shell 5
When the molten metal grows at a substantially constant rate, insufficient cooling of the molten metal occurs at the mutual seam 3 of the block mold member 2, and a delay in solidification occurs along the seam 3. Therefore, shrinkage stress concentrates in this solidification-delayed region, and so-called transverse cracking occurs in which the surface of the slab breaks along the main axis of the dendrite. This transverse cracking occurs even in a normal fixed mold, and mainly occurs on the wide surface of the slab, and in severe cases, it propagates from end to end in the width direction of the slab.
また、鋳型内壁に鋳造方向の縦疵が存在すると、縦疵の
ところで局部的に冷却不足となり、凝固遅れが生じ、鋳
片°幅方向の歪みと、相まって鋳片表面に所謂縦割れが
発生する。In addition, if there are vertical flaws in the casting direction on the inner wall of the mold, there will be insufficient cooling locally at the vertical flaw, causing a delay in solidification, which, combined with distortion in the width direction of the slab, will cause so-called vertical cracks on the surface of the slab. .
これら横割れ及び縦割れは、鋳型以後の二次冷却帯にて
鋳片冷却速度を制御することである程度は軽減すること
ができるが、これを完全に無くすことはできず、後工程
の圧延にて溶剤等により表面手入れを要し、歩留りが低
下すると共にコスト高となる。These horizontal and vertical cracks can be reduced to some extent by controlling the cooling rate of the slab in the secondary cooling zone after the mold, but they cannot be completely eliminated, and The surface must be cleaned with a solvent or the like, which lowers the yield and increases costs.
この発明は、かかる事情に鑑みてなされたものであって
、鋳片表面疵の発生を防止することができるブロック式
移動鋳型を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a block-type movable mold that can prevent the occurrence of surface flaws in the slab.
[課題を解決するための手段]
この発明に係るブロック式移動鋳型は、長辺面及び短辺
面の鋳型を有する複数対のブロック状鋳型部材を無限軌
道状に且つ相対向面が同一方向に移動するように設けて
なるブロック式移動鋳型において、前記ブロック状鋳型
部材の鋳型の少なくとも一部にそれぞれ格子状の溝が形
成され、これらの格子溝が鋳造方向及びこれに直交する
方向に設けられていることを特徴とする。この場合に、
前記溝の格子間隔が5乃至10IIIIllであること
が好ましい。また、この場合に、格子溝を必ずしも鋳型
全面に形成する必要はなく、鋳型部材の長辺面のみに形
成してもよい。[Means for Solving the Problems] A block-type movable mold according to the present invention includes a plurality of pairs of block-shaped mold members each having a mold having a long side surface and a short side surface in an endless track shape, with opposing surfaces facing in the same direction. In a block-type mobile mold provided to be movable, at least a portion of the mold of the block-shaped mold member is formed with a lattice-like groove, and these lattice grooves are provided in a casting direction and a direction perpendicular thereto. It is characterized by In this case,
Preferably, the lattice spacing of the grooves is 5 to 10IIIll. Furthermore, in this case, the lattice grooves do not necessarily need to be formed on the entire surface of the mold, but may be formed only on the long side surfaces of the mold member.
[作用コ
この発明に係るブロック式移動鋳型においては、凝固殻
が鋳型に沿って成長形成されると、ブロック鋳型部材相
互の継目にて溶湯の冷却不足が生じ、凝固遅れ領域が局
部的に形成され、この領域に凝固収縮応力が集中して横
割れが発生しようとする。[Operation] In the block-type moving mold according to the present invention, when a solidified shell grows and forms along the mold, insufficient cooling of the molten metal occurs at the joints between the block mold members, and solidification delayed regions are locally formed. The solidification shrinkage stress concentrates in this area, and transverse cracking tends to occur.
また、鋳型の縦疵に沿っても同様の凝固遅れが生じ、縦
割れが発生しようとする。ところで、鋳型には鋳造方向
及びこれに直交する方向に格子状の溝が形成されており
、これらの溝においても凝固遅れが生じるので、鋳型部
材継目及び縦疵にのみ応力集中することなく、凝固遅れ
による収縮応力が鋳型全体に分散され、局所への応力集
中が緩和される。Further, a similar solidification delay occurs along the vertical flaws of the mold, and vertical cracks tend to occur. By the way, the mold has lattice-like grooves formed in the casting direction and in the direction perpendicular to this, and solidification delays also occur in these grooves, so solidification can be achieved without stress concentration only at the mold member joints and vertical flaws. Shrinkage stress due to the delay is dispersed throughout the mold, reducing local stress concentration.
[実施例]
以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
第2図に示すように、タンデイツシュ10内の溶湯12
がノズル14を介してブロックキャスター20のキャビ
ティ(溶湯注入領域)27に注入されると、水冷鋳型に
溶湯が接触して凝固殻26が形成され、凝固殻が所定厚
さに成長した鋳片31がキャスター20から連続的に引
抜かれるようになっている。As shown in FIG.
When the molten metal is injected into the cavity (molten metal injection region) 27 of the block caster 20 through the nozzle 14, the molten metal contacts the water-cooled mold to form a solidified shell 26, and a slab 31 with the solidified shell grown to a predetermined thickness. is adapted to be continuously pulled out from the caster 20.
ブロックキャスター20は、所定の角度に傾斜して設け
られ、そのキャビティ上端側にタンデイツシュノズル1
4が挿入され、溶湯が注入されるようになっている。キ
ャスター20は、1対の鋳型ユニット22を相互に対面
組合わせて構成されている。各ユニット22は、同形の
多数のブロック鋳型部材23を無限軌道状に並べて形成
され、それぞれの部材23が1対の歯車28.29によ
り上流側から下流側へ又は下流側から上流側へ向かって
無限駆動するようになっている。なお、上下ユニット2
2の鋳型部材23の送り速度a、 b並びに鋳片引抜
き速度Cは、溶湯注入量及びキャビティ内湯面の変動に
応じて適宜コンピュータ制御されるようになっている。The block caster 20 is provided to be inclined at a predetermined angle, and the tandate nozzle 1 is installed on the upper end side of the cavity.
4 is inserted, and molten metal is injected. The caster 20 is constructed by combining a pair of mold units 22 facing each other. Each unit 22 is formed by arranging a large number of block mold members 23 of the same shape in an endless track, and each member 23 is moved from the upstream side to the downstream side or from the downstream side to the upstream side by a pair of gears 28 and 29. It is designed to run infinitely. In addition, the upper and lower units 2
The feeding speeds a and b of the second mold member 23 and the slab withdrawal speed C are controlled by a computer as appropriate in accordance with the amount of molten metal injected and the fluctuation of the molten metal level in the cavity.
第1図に示すように、ブロック鋳型部材23は、鋳造方
向に直交する断面がL字形をなし、その内壁の長辺面2
4に格子状の溝25が形成されている。すなわち、満2
5は、鋳型部材相互の継目3に沿って長辺面24の幅方
向端部から端部まで延びると共に、これに直交する方向
にも延びている。As shown in FIG. 1, the block mold member 23 has an L-shaped cross section perpendicular to the casting direction, and has a long side surface 2 of its inner wall.
A lattice-shaped groove 25 is formed in 4. That is, full 2
5 extends along the joint 3 between the mold members from one end to the other in the width direction of the long side surface 24, and also extends in a direction perpendicular thereto.
第3図に示すように、溝25は、その溝幅に対して溝深
さが浅いV字形をなし、例えば、その溝幅が0.5〜1
.0 ■、その溝深さが約0.5 mm以下、その溝ピ
ッチが5〜10IIIIllに形成されている。As shown in FIG. 3, the groove 25 has a V-shape in which the groove depth is shallow relative to the groove width, for example, the groove width is 0.5 to 1.
.. 0, the groove depth is approximately 0.5 mm or less, and the groove pitch is 5 to 10IIIll.
次に、この発明の実施例に係るブロック式移動鋳型を用
いて炭素含を量が約0.05重量%の低炭素アルミギル
ド鋼を連続鋳造する場合について説明する。Next, a case will be described in which a low carbon aluminum guild steel having a carbon content of about 0.05% by weight is continuously cast using a block moving mold according to an embodiment of the present invention.
所定成分及び所定温度に調整された溶湯を取鍋(図示せ
ず)からタンデイツシュ10に装入し、ノズル14を介
してタンデイツシュ内溶湯12をダミーバー(図示せず
)が挿入されたキャビティ25に注入する。このとき、
鋳造領域を予め不活性ガス雰囲気にしておき、ダミーバ
ーを引抜きつつ溶湯を注入し、ノズル14の先端を鋳型
内湯面から離した状態で鋳造する。このように所謂オー
ブン鋳造を実施してもよいし、この代わりとして、ノズ
ル先端を鋳型内溶湯に浸漬した状態で鋳造する所謂クロ
ーズド鋳造を実施してもよい。また、溶湯注入量をタン
デイツシュ側のセンサ及び制御装置(図示せず)により
精密に調整しつつ各鋳型ユニット22の無限軌道駆動及
び鋳片引抜き速度をそれぞれ最適制御する。鋳造速度は
、例えば、毎分20m以上とする。溶湯が鋳型に接触す
ると、初期凝固殻26が形成され、これが鋳型の移動に
追従するように鋳片を高速で引抜く。The molten metal adjusted to a predetermined composition and temperature is charged from a ladle (not shown) into the tundish canister 10, and the molten metal 12 inside the tundish canister is injected through the nozzle 14 into the cavity 25 into which a dummy bar (not shown) is inserted. do. At this time,
The casting area is previously set to an inert gas atmosphere, the molten metal is injected while the dummy bar is pulled out, and casting is performed with the tip of the nozzle 14 separated from the molten metal surface in the mold. So-called oven casting may be carried out in this manner, or alternatively, so-called closed casting may be carried out in which casting is performed with the nozzle tip immersed in the molten metal in the mold. Further, while accurately adjusting the amount of molten metal injected using a sensor and a control device (not shown) on the tundish side, the endless track drive and slab drawing speed of each mold unit 22 are optimally controlled. The casting speed is, for example, 20 m/min or more. When the molten metal contacts the mold, an initially solidified shell 26 is formed, and the slab is pulled out at high speed so as to follow the movement of the mold.
鋳型内溶湯の凝固過程においては、継目3及び溝25の
ところで冷却不足が起こり、これにより凝固遅れが生じ
、これらの特定領域に凝固収縮時の引張り応力が発生す
るが、鋳片の表面全体としては応力が分散されるので、
応力集中の程度が緩和される。また、万一、割れが発生
したとしても、割れに直交する方向に溝25が設けであ
るので、割れの伝播が停止して大きな割れに成長しなく
なる。During the solidification process of the molten metal in the mold, insufficient cooling occurs at the joints 3 and grooves 25, which causes a delay in solidification, and tensile stress occurs in these specific areas during solidification contraction, but the overall surface of the slab Since the stress is dispersed,
The degree of stress concentration is alleviated. Moreover, even if a crack should occur, since the groove 25 is provided in the direction perpendicular to the crack, the crack will stop propagating and will not grow into a large crack.
鋳型出口においては、凝固殻26が十分な厚さに成長し
て所定の強度を有するようになり、これを引抜きつつ鋳
片31をスプレィ冷却により凝固コントロールする。こ
のようにして、厚さ50a+mX幅1000a+rAの
薄肉鋳片が製造される。At the exit of the mold, the solidified shell 26 grows to a sufficient thickness and has a predetermined strength, and while it is pulled out, the slab 31 is solidified by spray cooling. In this way, a thin slab having a thickness of 50a+m and a width of 1000a+rA is manufactured.
次に、第4図を参照しつつ種々の溝を有する鋳型を使用
して製造された鋳片の品質について説明する。Next, with reference to FIG. 4, the quality of slabs manufactured using molds having various grooves will be explained.
第4図は、横軸にV溝の相互間隔(ピッチ)をとり、縦
軸に割れ発生頻度及びブレークアウト発生指数をとって
、鋳型の溝ピッチを種々変更し、その他は実質的に同一
条件で鋳造された鋳片について品質調査した結果を示す
図である。図中、黒丸は横割れ、白丸は縦割れ、三角は
ブレークアウトの発生をそれぞれプロットしたものであ
る。なお、この場合に、ブレークアウト発生指数とはブ
レークアウトの発生頻度を指数化したものを表わす。こ
の図から明らかなように、溝ピッチが1011II11
を越えると、横割れ及び縦割れの発生頻度が急激に増大
する。一方、溝ピッチが5■未満の場合は、溶湯と鋳型
との相互接触が不十分になり、溶湯が冷却不良となるの
で、ブレークアウト発生指数が増大する。従って、低炭
素アルミキルド鋼を鋳造する場合は、溝ピッチを5〜1
0IIIIIlの範囲にすることが好ましい。なお、鋳
片表面割れが生じやすいとされる中炭素鋼(炭素含a量
が0.1〜0.2重量%)を鋳造する場合は、上記実施
例よりも溝ピッチを小さくすることが望ましい。Figure 4 shows the mutual spacing (pitch) of V-grooves on the horizontal axis, and the crack occurrence frequency and breakout occurrence index on the vertical axis, with the groove pitch of the mold being variously changed, and other conditions being substantially the same. FIG. In the figure, black circles plot horizontal cracks, white circles plot vertical cracks, and triangles plot the occurrence of breakouts. Note that in this case, the breakout occurrence index represents an index of the breakout occurrence frequency. As is clear from this figure, the groove pitch is 1011II11
When this value is exceeded, the frequency of occurrence of horizontal and vertical cracks increases rapidly. On the other hand, when the groove pitch is less than 5 squares, the mutual contact between the molten metal and the mold becomes insufficient, resulting in insufficient cooling of the molten metal, resulting in an increase in the breakout occurrence index. Therefore, when casting low carbon aluminum killed steel, the groove pitch should be 5 to 1.
It is preferable to set it in the range of 0IIIIIIl. In addition, when casting medium carbon steel (carbon content 0.1 to 0.2% by weight), which is said to be prone to surface cracking of slabs, it is desirable to make the groove pitch smaller than in the above example. .
なお、上記実施例では鋳型内壁に形成する格子溝をV字
形断面にしたが、第5図乃至第7図に示すように、これ
を鋸歯形溝34.U字形溝35゜矩形溝36のように種
々変更することも可能である。In the above embodiment, the lattice grooves formed on the inner wall of the mold had a V-shaped cross section, but as shown in FIGS. Various modifications such as a U-shaped groove 35 and a rectangular groove 36 are also possible.
また、上記実施例では鋳型の長辺面のみに格子溝を形成
したが、これに限られることなく、格子溝を短辺面にも
形成してもよく、また長辺面の一部領域、例えば、部材
相互の継目の周辺領域にのみ形成してもよい。Further, in the above embodiment, the lattice grooves were formed only on the long sides of the mold, but the lattice grooves are not limited to this, and the lattice grooves may also be formed on the short sides. For example, it may be formed only in the peripheral area of the joint between the members.
[発明の効果]
この発明によれば、横割れ及び縦割れの発生をを効に防
止することができるので、後工程における鋳片表面の手
入れ率を大幅に低減することができる。このため、鋳片
歩留りを向上することができると共に、製造コストを低
減することができる。[Effects of the Invention] According to the present invention, the generation of horizontal cracks and vertical cracks can be effectively prevented, so that the maintenance rate of the slab surface in subsequent steps can be significantly reduced. Therefore, it is possible to improve the slab yield and reduce manufacturing costs.
第1図はこの発明の実施例に係るブロック式移動鋳型の
一部を示す斜視図、第2図はこの発明の実施例に係るブ
ロック式移動鋳型が使用されたブロックキャスターを示
す模式図、第3図は鋳型の一部拡大図、第4図はこの発
明の詳細な説明するための図、第5図乃至第7図は鋳型
に形成される格子溝の変形例をそれぞれ示す断面模式図
、第8図は鋳造中における従来の鋳型の一部を示す断面
模式図である。
14;タンデイツシュノズル、20.ブロックキャスタ
ー 23;ブロック鋳型部材、24;長辺面、25;溝
、26;凝固殻、27:キャビティ、28.29.歯車
、31;鋳片
出願人代理人 弁理士 鈴江武彦
トu−4P−◇五
摩H!!薯
iq岬緊癩(9沁、ε)FIG. 1 is a perspective view showing a part of a block-type moving mold according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing a block caster in which the block-type moving mold according to an embodiment of the present invention is used, and FIG. 3 is a partially enlarged view of the mold, FIG. 4 is a diagram for explaining the invention in detail, and FIGS. 5 to 7 are schematic cross-sectional views showing modifications of the lattice grooves formed in the mold, respectively. FIG. 8 is a schematic cross-sectional view showing a part of a conventional mold during casting. 14; tandate nozzle, 20. Block caster 23; Block mold member, 24; Long side surface, 25; Groove, 26; Solidified shell, 27: Cavity, 28.29. Gear, 31; Patent attorney and agent for slab applicant Takehiko Suzue u-4P-◇Goma H! ! Cape leprosy (9 months, ε)
Claims (3)
ク状鋳型部材を無限軌道状に且つ相対向面が同一方向に
移動するように設けてなるブロック式移動鋳型において
、前記ブロック状鋳型部材の鋳型の少なくとも一部にそ
れぞれ格子状の溝が形成され、これらの格子溝が鋳造方
向及びこれに直交する方向に設けられていることを特徴
とするブロック式移動鋳型。(1) In a block-type movable mold in which a plurality of pairs of block-shaped mold members each having a long-side surface and a short-side mold are arranged in an endless track shape so that their opposing surfaces move in the same direction, the block-shaped A block-type movable mold characterized in that lattice-shaped grooves are formed in at least a portion of the mold of the mold member, and these lattice grooves are provided in the casting direction and in a direction orthogonal thereto.
とする請求項1記載のブロック式移動鋳型。(2) The block-type movable mold according to claim 1, characterized in that the lattice spacing of the grooves is 5 to 10 mm.
徴とする請求項1記載のブロック式移動鋳型。(3) The block-type movable mold according to claim 1, wherein the groove is formed on the long side surface of the mold member.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63261463A JPH02108442A (en) | 1988-10-19 | 1988-10-19 | Block type moving mold |
KR1019890014654A KR900006043A (en) | 1988-10-19 | 1989-10-13 | Block moving mold |
CA002000618A CA2000618A1 (en) | 1988-10-19 | 1989-10-13 | Casting machine having a travelling block mold assembly |
BR898905304A BR8905304A (en) | 1988-10-19 | 1989-10-18 | FOUNDRY MACHINE |
EP19890119431 EP0369184A3 (en) | 1988-10-19 | 1989-10-19 | Casting machine having a travelling block mold assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63261463A JPH02108442A (en) | 1988-10-19 | 1988-10-19 | Block type moving mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02108442A true JPH02108442A (en) | 1990-04-20 |
JPH0470107B2 JPH0470107B2 (en) | 1992-11-10 |
Family
ID=17362247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63261463A Granted JPH02108442A (en) | 1988-10-19 | 1988-10-19 | Block type moving mold |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0369184A3 (en) |
JP (1) | JPH02108442A (en) |
KR (1) | KR900006043A (en) |
BR (1) | BR8905304A (en) |
CA (1) | CA2000618A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132751A (en) * | 1986-11-25 | 1988-06-04 | Nkk Corp | Mold for continuous casting equipment |
JPS63174762A (en) * | 1987-01-12 | 1988-07-19 | Nkk Corp | Shifting type mold for continuous casting |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH633206A5 (en) * | 1978-11-03 | 1982-11-30 | Alusuisse | CHOCOLATE WITH Roughened Surface For Casting Metals. |
JPH0415402Y2 (en) * | 1986-03-10 | 1992-04-07 | ||
JPH06254556A (en) * | 1993-03-01 | 1994-09-13 | Brother Ind Ltd | Producing device for ionized water |
-
1988
- 1988-10-19 JP JP63261463A patent/JPH02108442A/en active Granted
-
1989
- 1989-10-13 KR KR1019890014654A patent/KR900006043A/en not_active Application Discontinuation
- 1989-10-13 CA CA002000618A patent/CA2000618A1/en not_active Abandoned
- 1989-10-18 BR BR898905304A patent/BR8905304A/en not_active Application Discontinuation
- 1989-10-19 EP EP19890119431 patent/EP0369184A3/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132751A (en) * | 1986-11-25 | 1988-06-04 | Nkk Corp | Mold for continuous casting equipment |
JPS63174762A (en) * | 1987-01-12 | 1988-07-19 | Nkk Corp | Shifting type mold for continuous casting |
Also Published As
Publication number | Publication date |
---|---|
BR8905304A (en) | 1990-05-22 |
EP0369184A3 (en) | 1991-11-21 |
CA2000618A1 (en) | 1990-04-19 |
JPH0470107B2 (en) | 1992-11-10 |
EP0369184A2 (en) | 1990-05-23 |
KR900006043A (en) | 1990-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02108442A (en) | Block type moving mold | |
JP3089608B2 (en) | Continuous casting method of beam blank | |
JPH09276994A (en) | Continuous casting mold | |
JP3380412B2 (en) | Mold for continuous casting of molten steel | |
JPH0245534B2 (en) | ||
JPH0819842A (en) | Continuous casting method and device | |
JPH01118346A (en) | Casting method and device by twin belt caster of steel | |
JP3390606B2 (en) | Steel continuous casting method | |
KR100928768B1 (en) | Sheet metal manufacturing method of non-ferrous metal in twin roll type sheet casting machine | |
JPS61162256A (en) | Improvement of surface characteristic of continuous casting steel ingot | |
JPH0810905A (en) | Continuous casting mold for slabs | |
JPH06339754A (en) | Continuous casting method for thin plates | |
JPH0573506B2 (en) | ||
JPS63126651A (en) | Belt type continuous casting method | |
JPS61189850A (en) | Continuous casting method for steel slabs | |
JPH07124712A (en) | Mold for continuous casting | |
JPS63132751A (en) | Mold for continuous casting equipment | |
JPS633729Y2 (en) | ||
JPS61180649A (en) | Slow cooling mold for continuous casting | |
JPH08206794A (en) | Continuous casting method of slab of large section and continuous casting equipment | |
KR100920638B1 (en) | Sheet metal manufacturing method of non-ferrous metal in twin roll type sheet casting machine | |
JP2825988B2 (en) | Method of preventing longitudinal cracks in continuous casting of thin cast slab | |
JPH0433757A (en) | Light reduction method for continuously cast slabs | |
EP1934004B1 (en) | Ingot mold for casting slabs | |
JPH0519165Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |