[go: up one dir, main page]

JPS63126651A - Belt type continuous casting method - Google Patents

Belt type continuous casting method

Info

Publication number
JPS63126651A
JPS63126651A JP27201886A JP27201886A JPS63126651A JP S63126651 A JPS63126651 A JP S63126651A JP 27201886 A JP27201886 A JP 27201886A JP 27201886 A JP27201886 A JP 27201886A JP S63126651 A JPS63126651 A JP S63126651A
Authority
JP
Japan
Prior art keywords
belt
casting
slab
continuous casting
type continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27201886A
Other languages
Japanese (ja)
Inventor
Nagayasu Bessho
別所 永康
Koichi Tozawa
戸沢 宏一
Tetsuya Fujii
徹也 藤井
Tsutomu Nozaki
野崎 努
Kyoji Nakanishi
中西 恭二
Yoshihisa Kitano
嘉久 北野
Hisakazu Mizota
久和 溝田
Tomoaki Kimura
智明 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Ltd
Priority to JP27201886A priority Critical patent/JPS63126651A/en
Publication of JPS63126651A publication Critical patent/JPS63126651A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、絞り込み弐のベルト式薄鋳片連続鋳造機で円
滑に薄鋳片を連続鋳造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for smoothly continuously casting thin slabs using a two-reducing belt type thin slab continuous casting machine.

(従来の技術) 溶融金属から直接シートバーの如き薄鋳片を連続的に製
造する連続鋳造機、即ちベルト式薄鋳片連続鋳造機とし
て種々の形式のものがあるが、そのうちの代表的なもの
が特開昭59−92154号公報に記載されている。
(Prior art) There are various types of continuous casting machines that continuously produce thin slabs such as sheet bars directly from molten metal, that is, belt-type continuous casting machines for thin slabs. This is described in Japanese Patent Application Laid-Open No. 59-92154.

このベルト式薄鋳片連続鋳造機を第1図に示すが、この
ベルト式薄鋳片連続鋳造機は絞り込み方式のもので、所
定の距離にわたって熔融金属や凝固シェルを保持するた
めの間隙を維持しつつ、それぞれ複数個のガイドロール
3a+ 3b+ 3c、  3’ a13” b、 3
’ cを介して輪回移動する対向配置された1対の金属
ベルト1.2で鋳型の長辺面を構成し、これら両金属ベ
ルト相互間にあって金属ベルトの側縁近傍で緊密に接し
ている短辺鋳型で鋳型の短辺面を構成している。特に、
上記短辺鋳型は、厚さ30mm以下の薄鋳片を製造し、
約100mm以上の注入ノズル6の径を考慮して、上部
が広幅で下部に向かうに従って順次先細りとなり、下部
で一定幅となる略逆三角形の形状となっている。
This belt-type continuous thin slab casting machine is shown in Figure 1. This belt-type continuous thin slab casting machine is of a narrowing type and maintains a gap to hold the molten metal and solidified shell over a predetermined distance. At the same time, a plurality of guide rolls 3a+ 3b+ 3c, 3'a13''b, 3
The long sides of the mold are made up of a pair of opposing metal belts 1.2 which move circularly through the metal belts 1.2 and 1.2. The side mold constitutes the short side of the mold. especially,
The above-mentioned short side mold produces a thin slab with a thickness of 30 mm or less,
Considering the diameter of the injection nozzle 6 of about 100 mm or more, it has a substantially inverted triangular shape that is wide at the top, gradually tapers toward the bottom, and has a constant width at the bottom.

(発明が解決しようとする問題点) 上述のベルト式薄鋳片連続鋳造機で鋳造する際、正常な
鋳込み状態にあるときは、第2図に示すようにクレータ
−エンド11が、前面に冷却バッド12を設けた金属ベ
ルトの曲線部が直線部となる変曲点10と冷却バンドの
最下端部との間にある。しかし、金属ベルト1,2と短
辺鋳型4.5とで構成される鋳造空間内への注湯速度と
鋳込速度が適合してないと、第3図に示すようにクレー
タエンド11が、金属ベルトの曲線部が直線部となる変
曲点工0より上部に位置する場合がある。この場合は、
鋳造する薄鋳片の厚み、即ち鋳片の厚みを決定する変曲
点10における鋳型の厚みよりも凝固シェルの厚みが太
き(なる。このため、凝固シェルがアンカーとなり金属
ベルト1,20回転が停止したり、金属ベルト1,2と
冷却バッド12間の水膜が押し潰され金属ベルトが溶損
して鋳造が不可能となる。また、鋳造を続行できたとし
ても薄鋳片内部に割れが発生したり、或いは薄鋳片の表
面性状が悪化するという問題が生じる。また、第4図に
示すようにクレータエンド11が、冷却バッドの最下端
位置よりも下部に位置することもある。この場合、溶融
金属の静圧により薄鋳片7にバルジングが生じる。この
ため、薄鋳片の内部割れの原因となったり、或いはバル
ジング量が太き(なると、ピンチローラがバルジングし
た個所を乗り越えることが不可能となり、鋳造を続行す
ることが不可能となる。
(Problems to be Solved by the Invention) When casting with the above-mentioned belt-type continuous caster, when the casting machine is in a normal casting state, the crater end 11 is cooled to the front as shown in FIG. The curved part of the metal belt provided with the pad 12 is located between the inflection point 10, which becomes the straight part, and the lowest end of the cooling band. However, if the pouring speed and casting speed into the casting space made up of the metal belts 1 and 2 and the short-side mold 4.5 do not match, the crater end 11 will form as shown in FIG. The curved portion of the metal belt may be located above the inflection point 0, which is the straight portion. in this case,
The thickness of the solidified shell is thicker than the thickness of the mold at the inflection point 10, which determines the thickness of the thin slab to be cast, that is, the thickness of the slab.For this reason, the solidified shell becomes an anchor and the metal belt rotates 1 to 20 times. or the water film between the metal belts 1 and 2 and the cooling pad 12 is crushed, causing the metal belt to melt and become impossible to cast.Furthermore, even if casting can be continued, cracks may occur inside the thin slab. or the surface quality of the thin slab may deteriorate.Also, as shown in FIG. 4, the crater end 11 may be located below the lowest end of the cooling pad. In this case, bulging occurs in the thin slab 7 due to the static pressure of the molten metal.This may cause internal cracks in the thin slab, or the amount of bulging may become too large (if the pinch roller overcomes the bulging area). This makes it impossible to continue casting.

本発明の目的は、ヘルド式薄鋳片連続鋳造機で鋳込みを
実施する場合に、常にクレータエンドを金属ベルトの変
曲点と冷却バッドの最下端位置との間に位置させ、円滑
な鋳造を行い、薄鋳片の内部割れや表面割れを防止する
ことにある。
The purpose of the present invention is to always position the crater end between the inflection point of the metal belt and the lowest end position of the cooling pad to ensure smooth casting when performing casting with a heald-type continuous caster. The objective is to prevent internal cracks and surface cracks in thin slabs.

(問題点を解決するための手段) 本発明は、一定の距離にわたって溶融金属及び凝固シェ
ルを保持するための間隙を維持しつつ循環する一対の対
向配置されたベルトと、該ベルトの側縁近傍でベルトと
緊密に接し、上部が広幅で順次先細りとなり下部で一定
幅となる短辺鋳型とで構成されるベルト式連続鋳造機に
より薄鋳片を連続鋳造するに当り、該鋳型空間への溶融
金属メニスカス高さh(t)及び鋳込速度v(t)を調
整することにより先細り先端部での凝固厚みを制御nす
ること特徴とするベルト式連続鋳造方法、とすることで
前述した問題点を解決した。
(Means for Solving the Problems) The present invention includes a pair of opposing belts that circulate while maintaining a gap for holding the molten metal and solidified shell over a certain distance, and a belt near the side edge of the belt. When continuously casting thin slabs using a belt-type continuous casting machine, which consists of a short-sided mold that is wide at the top, gradually tapered to a constant width at the bottom, and is in close contact with the belt, melting into the mold space is carried out. The above-mentioned problems can be solved by using a belt-type continuous casting method characterized by controlling the solidification thickness at the tapered tip by adjusting the metal meniscus height h(t) and the casting speed v(t). solved.

第2図に示した正常な鋳込状態を実現するために必要な
条件を第5図に基き説明する。
The conditions necessary to realize the normal casting condition shown in FIG. 2 will be explained based on FIG. 5.

第5図に於いて、ベルトのR部と直線部との変曲点10
よりメニスカスに至るまでの時刻tに於けるベルトの円
弧長さをIt)ベルトの直線部の長さをm、薄鋳片の厚
みの半分の凝固シェルをベルト上に発達させるための時
間をx、及び鋳込み速度をv(t)とすると、第2図に
示した正常な鋳込み状態を維持するためには下記各式を
満足しなけ上記各条件は正常な鋳込みを実現するための
必須の条件である。上記式中のit)は、ベルトのR部
と直線部との変曲点10からの時刻tにおけるメニスカ
ス高さをh(t) とすると、となるので、前記(1)
及び(2)式は、と表わせるので、時刻tにおけるメニ
スカス高さh(t)と鋳込速度ν(1)が下記の条件に
なればよいことになる。
In Figure 5, the inflection point 10 between the R part and the straight part of the belt
The arc length of the belt at time t until it reaches a meniscus is It) The length of the straight part of the belt is m, and the time required to develop a solidified shell half the thickness of the thin slab on the belt is x. , and the casting speed is v(t). In order to maintain the normal casting condition shown in Fig. 2, the following formulas must be satisfied. The above conditions are essential conditions for achieving normal casting. It is. It) in the above formula is given by h(t), where h(t) is the meniscus height at time t from the inflection point 10 between the R section and the straight section of the belt, so (1)
Since the equation (2) can be expressed as follows, it is sufficient that the meniscus height h(t) and the casting speed ν(1) at time t satisfy the following conditions.

上記(6)式を各時刻tにおいて満足するメニスカス高
さh(t)及び鋳込速度v(t)を設定することにより
、第3図に示したような凝固シェルがアンカーになるこ
と、或いは第4図に示したように鋳片にバルジングが発
生することがなくなる。
By setting the meniscus height h(t) and casting speed v(t) that satisfy the above equation (6) at each time t, the solidified shell as shown in FIG. 3 becomes an anchor, or As shown in FIG. 4, bulging does not occur in the slab.

男新l鉗1 第5図に示すベルト式薄鋳片連続鋳造機を用いて、第1
表に示す鋳造条件で85トンの低炭アルミキルド鋼を厚
さ30mm、幅500mm0薄鋳片に鋳造した。なお、
ベルト式薄鋳片連続鋳造機のR部の半径は、1513m
m、ベルトの直線部の長さmは1150mmであり、上
記連続鋳造機において鋳片厚を完全凝固させるための時
間×1は22秒である。
Otoko Shinl-tori 1 Using the belt-type thin slab continuous casting machine shown in Fig. 5,
85 tons of low carbon aluminum killed steel was cast into a thin slab with a thickness of 30 mm and a width of 500 mm under the casting conditions shown in the table. In addition,
The radius of the R part of the belt-type thin slab continuous casting machine is 1513 m.
m, the length m of the straight portion of the belt is 1150 mm, and the time x 1 for completely solidifying the slab thickness in the continuous casting machine is 22 seconds.

第  1  表 鋳込み中の鋳込速度v(t)及びメニスカス高さh(t
)の経時変化は第6図に示す変化であった。
Table 1: Casting speed v(t) and meniscus height h(t
) changes over time were as shown in Figure 6.

同図に示す各時刻における鋳込み速度■及びメニスカス
高さhは前記(6)式を満足していたので、凝固シェル
がアンカーとなることにより生じる鋳片の内部割れ等が
起らず、また鋳片のバルジングによる鋳片の内部割れが
皆無であり、良好な鋳片を円滑に鋳造できた。
Since the pouring speed ■ and the meniscus height h at each time shown in the same figure satisfied the above equation (6), internal cracks in the slab caused by the solidified shell acting as an anchor did not occur, and There were no internal cracks in the slab due to bulging, and good slabs could be cast smoothly.

また、上記の鋳造条件下で、第7図に示すように鋳込み
速度V(t)及びメニスカス高さh(t)を変化させて
鋳造した。鋳込み開始後即ち注湯開始後、35秒後には
鋳込み速度V及びメニスカス高さhは前記(6)式の条
件を外れたために、凝固シェルがアンカーとなったこと
により生じたと推測される鋳片の内部割れが生じた。
Further, under the above casting conditions, casting was performed while varying the casting speed V(t) and the meniscus height h(t) as shown in FIG. 35 seconds after the start of casting, that is, after the start of pouring, the casting speed V and the meniscus height h deviated from the conditions of equation (6) above, so it is assumed that the slab was created due to the solidified shell acting as an anchor. An internal crack occurred.

更に、前記鋳造条件下で、第8図に示したように鋳込み
速度v(t)及びメニスカス高さh(t)を変化させて
鋳造した。鋳込み開始後即ち注湯開始後30秒後には、
鋳込み速度V及びメニスカス高さhが前記(6)式の条
件を満たさないために生じたバルジングによる鋳片の内
部割れが生じた。
Further, under the above casting conditions, casting was performed while varying the casting speed v(t) and meniscus height h(t) as shown in FIG. After the start of casting, that is, 30 seconds after the start of pouring,
Internal cracking of the slab occurred due to bulging that occurred because the pouring speed V and meniscus height h did not satisfy the conditions of equation (6) above.

去犯五1 実施例1と同じ鋳造条件下で、前記(6)式を満足する
鋳込み速度v(t)とメニスカス高さh(t)を確保し
て鋳造した。ベルトのR部と直線部の変曲点においてベ
ルト上に形成された凝固シェルの厚みd、と、鋳片の厚
みdとの関係を調査した。
Casting was carried out under the same casting conditions as in Example 1, ensuring a casting speed v(t) and a meniscus height h(t) that satisfied the equation (6). The relationship between the thickness d of the solidified shell formed on the belt at the inflection point between the R section and the straight section of the belt and the thickness d of the slab was investigated.

この結果を第9図に示すが、ベルトのR部と直線部の変
曲点での凝固シェルの厚みdlが増加するにつれて、鋳
片の内部割れ発生率が増加し、d+/aの比が0.95
以上では極端に上昇した。この原因は、ベルトのR部か
ら直線部に凝固シェルが移動する際に、ベルトのR部と
直線部との変曲点での凝固シェルの厚みd、が増加する
と、凝固シェルの矯正歪取いは矯正歪速度が増加するも
のと推定される。
The results are shown in Figure 9. As the thickness dl of the solidified shell at the inflection point between the R section and the straight section of the belt increases, the rate of occurrence of internal cracks in the slab increases, and the ratio of d+/a increases. 0.95
The above has increased dramatically. The reason for this is that when the solidified shell moves from the R part of the belt to the straight part, the thickness d of the solidified shell at the inflection point between the R part and the straight part of the belt increases. In other words, it is estimated that the correction strain rate increases.

尖籐炎主 実施例1と同じ鋳造条件下で、前記(6)式を満足する
鋳込み速度v(t)とメニスカス高さh(t)を確保し
て鋳造した。第2図に示すメニスカスよりクレータ−エ
ンド11までの距離12と、メニスカスより冷却パッド
下端までの距離13、即ち有効冷却長!!3との比と、
鋳片の表面割れ指数との関係を調査した結果を第10図
に示す。
Casting was carried out under the same casting conditions as in Example 1, ensuring the casting speed v(t) and meniscus height h(t) that satisfied the above equation (6). The distance 12 from the meniscus to the crater end 11 and the distance 13 from the meniscus to the lower end of the cooling pad shown in FIG. 2, that is, the effective cooling length! ! The ratio of 3 and
Figure 10 shows the results of investigating the relationship with the surface crack index of slabs.

同図からも判るように、12/β、の比が0.7未満で
あると鋳片が適冷されたために鋳片の表面割れ指数が高
く、β2/23の比が0.7以上であると鋳片の温度が
上昇し、鋳片の表面割れ指数が激減した。
As can be seen from the figure, when the ratio of 12/β is less than 0.7, the surface crack index of the slab is high because the slab has been properly cooled, and when the ratio of β2/23 is 0.7 or more, the surface crack index of the slab is high. When this happens, the temperature of the slab increases, and the surface cracking index of the slab drastically decreases.

(発明の効果) 以上説明したように本発明によれば、クレータ−エンド
が金属ベルトの変曲点と冷却パッドの最下端位置との間
にあるので、良好な薄鋳片を円滑に鋳造することが可能
となる。
(Effects of the Invention) As explained above, according to the present invention, since the crater end is located between the inflection point of the metal belt and the lowest position of the cooling pad, a good thin slab can be smoothly cast. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ベルト式薄鋳片連続鋳造機の全体図である。 第2図はベルト式薄鋳片連続鋳造機による正常な鋳込み
状態を示す図であり、 第3図及び第4図はベルト式薄鋳片連続鋳造機による異
常な鋳込み状態を示す図である。 第5図はベルト式薄鋳片連続鋳造機による鋳込み状態を
示す図である。 第6図は正常な鋳込みパターンを示す図であり、第7図
は凝固シェルがアンカーとなる鋳込みパターンを示す図
であり、 第8図はバルジングが発生する鋳込みパターンを示す図
である。 第9図は鋳片の内部割れ指数とd+/dとの関係を示す
図であり、 第10図は鋳片の表面割れ指数と2□723との関係を
示す図である。 1.2・・・ベルト 3a〜30′・・・ガイドロール 4.5・・・短辺鋳型   6・・・注入ノズル7・・
・薄鋳片      8・・・溶融金属9・・・凝固シ
ェル    10・・・R−S変曲点11・・・クレー
タ−エンド 12・・・冷却パッド第2図 第3図 第4図 第6図 第7図 :[ 第8図 [ 2占−玉e姦 嘴84槁;彰
FIG. 1 is an overall view of a belt-type thin slab continuous casting machine. FIG. 2 is a diagram showing a normal casting condition by a belt-type thin slab continuous casting machine, and FIGS. 3 and 4 are diagrams showing abnormal casting conditions by a belt-type thin slab continuous casting machine. FIG. 5 is a diagram showing the state of casting by a belt-type continuous thin cast slab casting machine. FIG. 6 is a diagram showing a normal casting pattern, FIG. 7 is a diagram showing a casting pattern in which a solidified shell serves as an anchor, and FIG. 8 is a diagram showing a casting pattern in which bulging occurs. FIG. 9 is a diagram showing the relationship between the internal cracking index of the slab and d+/d, and FIG. 10 is a diagram showing the relationship between the surface cracking index of the slab and 2□723. 1.2...Belt 3a-30'...Guide roll 4.5...Short side mold 6...Injection nozzle 7...
・Thin slab 8... Molten metal 9... Solidified shell 10... R-S inflection point 11... Crater end 12... Cooling pad Figure 2 Figure 3 Figure 4 Figure 6 Figure 7: [ Figure 8 [ 2 fortune-tama e adult beak 84 槁; Akira

Claims (1)

【特許請求の範囲】[Claims] 1、一定の距離にわたって溶融金属及び凝固シェルを保
持するための間隙を維持しつつ循環する一対の対向配置
されたベルトと、該ベルトの側縁近傍でベルトと緊密に
接し、上部が広幅で順次先細りとなり下部で一定幅とな
る短辺鋳型とで構成されるベルト式連続鋳造機により薄
鋳片を連続鋳造するに当り、該鋳型空間への溶融金属の
メニスカス高さおよび鋳造速度を調整することにより先
細り先端部での凝固厚みを制御することを特徴とするベ
ルト式連続鋳造方法。
1. A pair of oppositely arranged belts that circulate while maintaining a gap to hold the molten metal and solidified shell over a certain distance, and a pair of belts that are in close contact with the belt near the side edges of the belt and are wide at the top and sequentially Adjusting the meniscus height and casting speed of molten metal into the mold space when continuously casting thin slabs using a belt-type continuous casting machine consisting of a short side mold that tapers and has a constant width at the bottom. A belt-type continuous casting method characterized by controlling the solidification thickness at the tapered tip.
JP27201886A 1986-11-17 1986-11-17 Belt type continuous casting method Pending JPS63126651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27201886A JPS63126651A (en) 1986-11-17 1986-11-17 Belt type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27201886A JPS63126651A (en) 1986-11-17 1986-11-17 Belt type continuous casting method

Publications (1)

Publication Number Publication Date
JPS63126651A true JPS63126651A (en) 1988-05-30

Family

ID=17507984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27201886A Pending JPS63126651A (en) 1986-11-17 1986-11-17 Belt type continuous casting method

Country Status (1)

Country Link
JP (1) JPS63126651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211946A (en) * 1989-02-13 1990-08-23 Nippon Steel Corp Apparatus for continuously casting metal strip
JPH02217140A (en) * 1989-02-17 1990-08-29 Nippon Steel Corp Continuous metal ribbon casting equipment
JP2007271018A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Control device for automatic transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211946A (en) * 1989-02-13 1990-08-23 Nippon Steel Corp Apparatus for continuously casting metal strip
JPH02217140A (en) * 1989-02-17 1990-08-29 Nippon Steel Corp Continuous metal ribbon casting equipment
JP2007271018A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Control device for automatic transmission

Similar Documents

Publication Publication Date Title
JP2995519B2 (en) Light reduction of continuous cast strand
JP4337565B2 (en) Steel slab continuous casting method
JPS63126651A (en) Belt type continuous casting method
JP3817188B2 (en) Thin slab manufacturing method using twin drum type continuous casting machine having scum weir and scum weir
US4754804A (en) Method and apparatus for producing rapidly solidified metallic tapes
JPH06339754A (en) Continuous casting method for thin plates
JPH04197560A (en) Method for continuously casting metal sheet
JPS63126646A (en) Dam for twin roll type continuous casting
JP3023299B2 (en) Nozzle processing method for metal ribbon production
JP7028088B2 (en) How to pull out the slab
KR100490998B1 (en) Method For Continuous Casting A Strip
JP2662467B2 (en) Injection method of belt type continuous casting
JPH0539807Y2 (en)
JPH07124712A (en) Mold for continuous casting
JPH02133153A (en) Twin roll continuous casting method
JPH01133644A (en) Method for starting casting in twin roll type continuous casting machine
JP2944262B2 (en) Start method for continuous casting of thin sheets.
KR200260645Y1 (en) Mold having round lower edges for reducing surface defects and break-out of slab
JPH0519165Y2 (en)
JPS63215352A (en) Continuous casting apparatus
JPS63149044A (en) Short side plate of continuous thin slab casting machine
JPS6326244A (en) Fixed short side for continuous casting of thin slabs
JPS63137548A (en) Method and apparatus for casting steel plate
JPH02207948A (en) Production of cast strip with single belt type continuous casting machine
JPH01150439A (en) Twin belt continuous casting machine