[go: up one dir, main page]

JPH02100016A - Polarization non-dependence type optical circuit and device thereof - Google Patents

Polarization non-dependence type optical circuit and device thereof

Info

Publication number
JPH02100016A
JPH02100016A JP25335088A JP25335088A JPH02100016A JP H02100016 A JPH02100016 A JP H02100016A JP 25335088 A JP25335088 A JP 25335088A JP 25335088 A JP25335088 A JP 25335088A JP H02100016 A JPH02100016 A JP H02100016A
Authority
JP
Japan
Prior art keywords
light
polarization
ordinary
extraordinary
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25335088A
Other languages
Japanese (ja)
Other versions
JP2796315B2 (en
Inventor
Yoshihiro Konno
良博 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP63253350A priority Critical patent/JP2796315B2/en
Publication of JPH02100016A publication Critical patent/JPH02100016A/en
Application granted granted Critical
Publication of JP2796315B2 publication Critical patent/JP2796315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To execute single core type bidirectional optical communication at a low loss by separating and synthesizing an incident light beam to ordinary light and extraordinary light by a double refractive element and a non-phase inversion type element, separating an incident light from an opposite direction to ordinary light and extraordinary light, reflecting the light by a total reflecting mirror provided with a slit, reflecting the light by a total reflecting mirror, separating the light to the other optical system, and synthesizing the light to the ordinary light and the extraordinary light. CONSTITUTION:The beam from P1 transmits the total reflecting mirror (a) with the slit and is made incident on a planar double refractive crystal (b). The ordinary light and the extraordinary light are separated therein. The ordinary light and the extraordinary light are rotated 45 deg. by a Faraday rotator (c) and transmit the planar double refractive crystal (d). The ordinary light and the extraordinary light are thereafter rotated 45 deg. by a Faraday rotor (e) and are synthesized by the planar double refractive crystal (f). The incident light from P2 is reflected to the position different from the beam position in a forward direction in the total reflecting mirror part (a) with the slit. The ordinary light and extraordinary light made incident to the mirror of the total reflecting mirror (a) and reflected sideways are synthesized by the planar double refractive crystals (g), (h). The single core type bidirectional optical communication to the longer distance, the higher density of transmission wires, etc., are enabled in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバー通信及び光計測等における光デバ
イスに関し、非相反かつ偏光依存性のない光回路及びそ
の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical device for optical fiber communication, optical measurement, etc., and relates to a non-reciprocal and polarization-independent optical circuit and its device.

[従来の技術] 最近半導体レーザを光源とした光通信システムや光応用
機器が広範囲に利用されるようになり、それらのシステ
ムや機器の精度及び信頼性を向上する目的から、半導体
レーザの戻り光を除去するために光アイソレータが使用
されている。特に最近は半導体レーザへの戻り光量すな
わち反射減衰ωが一60dB程度まで要求されている。
[Prior Art] Recently, optical communication systems and optical application equipment that use semiconductor lasers as light sources have come into widespread use. Optical isolators are used to eliminate Particularly recently, the amount of light returned to the semiconductor laser, that is, the reflection attenuation ω, is required to be approximately 60 dB.

この反射減衰量の測定には第2図に示すような方向性結
合器が使用されている。
A directional coupler as shown in FIG. 2 is used to measure this return loss.

[発明が解決しようとした課題] しかしながら第2図のように入射光間の最低50%(=
3dB)は必ず損失となる。かつ戻り光の偏光状態は必
ずしも一様ではなく、ハーフミラ−の偏光依存性により
、反射光値と透過光量との比は一定とはならない。した
がって高精度。
[Problem that the invention sought to solve] However, as shown in Figure 2, the distance between the incident lights is at least 50% (=
3dB) is always a loss. Moreover, the polarization state of the returned light is not necessarily uniform, and the ratio between the reflected light value and the amount of transmitted light is not constant due to the polarization dependence of the half mirror. Therefore high precision.

高ダイナミツクレンジの測定をすることは困難となる。It becomes difficult to measure high dynamic ranges.

同様に中芯型双方向光通信においても前記方向性結合器
を使用すると、損失が大きくなるため信頼性の高い通信
はできなくなる。
Similarly, if the directional coupler is used in core type bidirectional optical communication, the loss will increase, making highly reliable communication impossible.

本発明はこの点を鑑みて、順方向においてはいかなる偏
光状態の光でも低損失で透過させ。
In view of this point, the present invention allows light of any polarization state to be transmitted with low loss in the forward direction.

逆方向においてはいかなる偏光状態の光でも低損失で、
順方向入射ボート以外のボートに伝送する偏波無依存型
光回路を提供することを目的とした。
In the opposite direction, light of any polarization state has low loss,
The purpose of this study is to provide a polarization-independent optical circuit for transmission to boats other than forward-incidence boats.

[課題を解決するための手段] 第1図に本発明の原理構成図を示し、常光及び異常光の
状態を順方向光(a)と逆方向光(b)との場合で、そ
れぞれ光学系の上部に図示している。本発明の一実施例
としては、aはスリット付き全反射ミラーを示し、b、
d、f、Q。
[Means for Solving the Problems] Fig. 1 shows a diagram of the principle configuration of the present invention, and shows the states of ordinary light and extraordinary light in the case of forward direction light (a) and backward direction light (b), respectively. Illustrated at the top of the page. In one embodiment of the present invention, a indicates a total reflection mirror with a slit, b,
d, f, Q.

hは平板状複屈折結晶を示し、c、eは永久磁石によっ
て同方向に磁化されたファラデー回転子である。b、d
、f、 g、hの平板状複屈折結晶は材料の供給力1価
格、性能から総合すると勇開面を利用できる方解石を使
用することが好ましい。もちろん他の複屈折物質たとえ
ばルチル等を使用することも本発明に包含するものであ
る。
h indicates a tabular birefringent crystal, and c and e are Faraday rotators magnetized in the same direction by permanent magnets. b, d
, f, g, and h, it is preferable to use calcite, which can utilize open planes, from the viewpoint of material availability, price, and performance. Of course, the present invention also encompasses the use of other birefringent materials such as rutile.

また平板状複屈折結晶すの厚さを1とすれば複屈折結晶
の厚さの比は、b、 d、 f、 Cl、 h=1 :
J2:1 :2:2の関係となる。結晶光軸は表面とそ
の法線を含む面内において表面から41〜49°傾斜し
ており、41°以下及び49°以上の角度では、常光及
び異常光の分離幅を得るために結晶の厚さを長くしなけ
ればならない。
Also, if the thickness of the tabular birefringent crystal is 1, the ratio of the thicknesses of the birefringent crystal is b, d, f, Cl, h=1:
The relationship is J2:1:2:2. The optical axis of the crystal is inclined at 41 to 49 degrees from the surface in a plane that includes the surface and its normal, and at angles of 41 degrees or less and 49 degrees or more, the thickness of the crystal is adjusted to obtain the separation width of ordinary and extraordinary light. I have to make it longer.

各複屈折結晶の表面からの角度は同角とした。The angles from the surface of each birefringent crystal were the same.

またファラデー回転子は磁気飽和状態において偏光面が
45°回転する。b、d、f複屈折結晶の結晶光軸をy
−z面に投影した時の各結晶光軸投影線の関係は、順方
向においてファラデー回転子による偏光面の回転方向に
前複屈折結晶の結晶光軸投影線から45°回転した位置
となる。
Further, the plane of polarization of the Faraday rotator rotates by 45° in a magnetically saturated state. b, d, f The optical axis of the birefringent crystal is y
The relationship between the crystal optical axis projection lines when projected onto the −z plane is a position rotated by 45° from the crystal optical axis projection line of the pre-birefringent crystal in the direction of rotation of the plane of polarization by the Faraday rotator in the forward direction.

9、h複屈折結晶の結晶光軸をX−Z面に投影した時の
結晶光軸投影線の関係は90°である。
9.h When the crystal optical axis of a birefringent crystal is projected onto the X-Z plane, the relationship between the crystal optical axis projection lines is 90°.

順方向を(P1→P2)としたと第1図(a)において
、Plからのビームはスリット付き全反射ミラーaを透
過し平板状複屈折結晶しに入射する。ここで常光と異常
光が分離しファラデー回転子Cに入射する。ファラデー
回転により常光、異常光が45°回転し、平板状複屈折
結晶dを透過する。ここでの光の状態は、常光の偏波面
はy−Z面から右に45°回転し、異常光の偏波面は常
光の偏波面と直交状態にある。常光。
Assuming that the forward direction is (P1→P2), in FIG. 1(a), the beam from Pl passes through a total reflection mirror a with a slit and enters a flat birefringent crystal. Here, the ordinary light and the extraordinary light are separated and enter the Faraday rotator C. The ordinary light and the extraordinary light are rotated by 45 degrees due to Faraday rotation and are transmitted through the tabular birefringent crystal d. The state of the light here is such that the plane of polarization of the ordinary light is rotated 45 degrees to the right from the y-Z plane, and the plane of polarization of the extraordinary light is orthogonal to the plane of polarization of the ordinary light. Tsuneko.

異常光の位置はZ−X面内にある。以後ファラデー回転
子eにより45°回転し、平板状複屈折結晶fにより常
光と異常光が合致し、以後の光学系に低損失で結合され
ることとなる。したがって偏波面に依存しないで透過さ
せることができる。
The position of the extraordinary light is within the Z-X plane. Thereafter, it is rotated by 45 degrees by a Faraday rotator e, and the ordinary light and extraordinary light are matched by the tabular birefringent crystal f, and are coupled to the subsequent optical system with low loss. Therefore, the light can be transmitted without depending on the plane of polarization.

逆方向を(P2→P3)としたと第1図(b)において
、ファラデー回転子による非相反性と、平板状複屈折結
晶による常光と異常光の分離現象を利用しているため、
P2から入射した光はスリット付き全反射ミラ一部aに
おいて順方向時のビーム位置とは異なった位置となる。
When the opposite direction is set to (P2→P3), in Figure 1(b), the non-reciprocity caused by the Faraday rotator and the separation phenomenon of ordinary and extraordinary light caused by the tabular birefringent crystal are used.
The light incident from P2 is at a position different from the beam position in the forward direction on the part a of the total reflection mirror with a slit.

したがって、ここではアイソレーション効果があるため
、Plには出射せず、スリット付き全反射ミラーaのミ
ラーに入射し側方に反射した常光。
Therefore, since there is an isolation effect here, the ordinary light does not go out to Pl, but enters the mirror of the total reflection mirror a with a slit and is reflected laterally.

異常光は、平板状複屈折結晶Q、hにより合成され低損
失でP3に投射される。
The extraordinary light is combined by the tabular birefringent crystals Q and h and projected onto P3 with low loss.

単芯型双方向光通信等に使用する場合、第3図に示すよ
うに、PlからのLD(レーザダイオード)からの信号
光は、偏波無依存型光回路を低損失で透過し、P2に出
射する。以後ファイバー内に伝送、P4→P6に伝送さ
れ、PD(フォトダイオード)で受光される。この時P
3とP5への漏話は非常に少ない。同様にP5からの信
号はP4→P2→P3の伝送経路となり、Pl、P6へ
の漏話は非常に少ない。通常近端反射光は漏話を増加さ
せるが、前記原理のようにP3.P6部に円形スリット
iを配置することにより漏話量を減衰させることができ
た。
When used in single-core bidirectional optical communication, etc., as shown in Figure 3, the signal light from the LD (laser diode) from Pl passes through the polarization-independent optical circuit with low loss, and the P2 emitted to. Thereafter, the light is transmitted into the fiber, from P4 to P6, and is received by a PD (photodiode). At this time P
There is very little crosstalk to P3 and P5. Similarly, the signal from P5 becomes a transmission path of P4→P2→P3, and there is very little crosstalk to P1 and P6. Normally, near-end reflected light increases crosstalk, but as in the above principle, P3. By arranging the circular slit i in the P6 section, the amount of crosstalk could be attenuated.

円形スリットは光ファイバー伝送路において順方向信号
光が、コネクタ等からの反射光として逆方向信号光と合
成され、漏話量が増加するのを防止するためである。す
なわち光ファイバー伝送路において反射光強度の高い近
端反射光は、高次モード成分が多いため光ファイバー断
面のコア部円周部分の光強度が高い。ところが逆方向信
号光はある距離を伝送されてくるため、高次モードが減
衰し低次モード成分の方が高い。
The purpose of the circular slit is to prevent forward direction signal light from being combined with reverse direction signal light as reflected light from a connector or the like in the optical fiber transmission line, thereby preventing an increase in the amount of crosstalk. That is, near-end reflected light with high reflected light intensity in an optical fiber transmission line has many higher-order mode components, so the light intensity is high at the core circumferential portion of the optical fiber cross section. However, since the backward signal light is transmitted over a certain distance, the higher-order modes are attenuated and the lower-order mode components are higher.

したがって、近端反射光ビーム径は大きく逆方向信号光
のビーム径が小さい現象となる。これを利用し円形スリ
ットにより近端反射光を減衰させることが可能となる。
Therefore, the beam diameter of the near-end reflected light is large and the beam diameter of the backward signal light is small. Utilizing this, it becomes possible to attenuate the near-end reflected light with the circular slit.

以上のように光ファイバー1木と偏波無依存型光回路2
個を使用することにより双方向光通信が実現できる。
As mentioned above, optical fiber 1 tree and polarization independent optical circuit 2
Two-way optical communication can be realized by using two-way optical communication.

反射減衰量測定装置に使用する場合、第4図に示すよう
に、LD光源からの光は、レンズによりコリメート(平
行)化され、偏波無依存型光回路に入射し、低損失で透
過され光ファイバーに伝送される。ファイバーからの出
射光はレンズによりコリメート化され被測定物jに入射
する。被測定物からの反射光はファイバー内を帰還し、
偏波無依存型光回路のP3に出射する。
When used in a return loss measuring device, as shown in Figure 4, the light from the LD light source is collimated (parallelized) by a lens, enters a polarization-independent optical circuit, and is transmitted with low loss. transmitted over optical fiber. The light emitted from the fiber is collimated by a lens and enters the object to be measured j. The reflected light from the object to be measured returns within the fiber,
The light is emitted to P3 of the polarization-independent optical circuit.

この光強度をパワーメータにで測定する。測定法は、は
じめに被測定物を取り除き、P4の光強度をパワーメー
タで測定する。次にパワーメータkをP3に接続し、P
4に被測定物jを置き、反射光量を測定する。反射減衰
量は次式により定義される。
Measure this light intensity with a power meter. The measurement method is to first remove the object to be measured and measure the light intensity of P4 with a power meter. Next, connect power meter k to P3, and
4, and measure the amount of reflected light. The return loss is defined by the following equation.

反射減衰量=−10・log(P4/P3)以上のよう
にして測定すると、反射減衰1fi60dBの高ダイナ
ミツクレンジが得られる。
Return loss=−10·log(P4/P3) When measured as above, a high dynamic range with a return loss of 1fi60 dB can be obtained.

[実施例] 第1図において本発明の実施例を示すと、スリット付き
全反射ミラーaは直角プリズムに溝加工を行ない、Pl
からの入射光が通過できるスリット幅とした。傾斜面に
は全反射膜が施されている。b、d、f、 g、hの平
板状複屈折結晶は、方解石の男開面を光学研磨面とし、
方解石板の厚さの比はす、d、f、Q、 h=1 :J
2:1:2:2である。ファラデー回転子にはBi置換
型希土類磁性ガーネット結晶を用い、永久磁石により磁
気飽和させて偏光面の77ラデ一回転角が45°となる
厚さとした。
[Example] An example of the present invention is shown in FIG.
The width of the slit was set to allow the incident light from to pass through. A total reflection film is applied to the inclined surface. The tabular birefringent crystals b, d, f, g, and h are made of calcite with an optically polished surface.
Ratio of calcite plate thickness, d, f, Q, h=1 :J
The ratio is 2:1:2:2. A Bi-substituted rare earth magnetic garnet crystal was used as the Faraday rotator, and the crystal was magnetically saturated with a permanent magnet to have a thickness such that one rotation angle of 77 rad of the plane of polarization was 45°.

[作用〕 順方向(P1→P2)においては、入射ビームはスリッ
ト付き全反射ミラーaのスリット部を通過して方解石板
すに入射し、ここで常光。
[Operation] In the forward direction (P1→P2), the incident beam passes through the slit portion of the slitted total reflection mirror a and enters the calcite plate, where it becomes ordinary light.

異常光に分離する。分離幅は方解石板の厚さの約171
0である。ファラデー回転子Cでは常光。
Separate into extraordinary light. The separation width is approximately 171 times the thickness of the calcite plate.
It is 0. Faraday rotator C has constant light.

異常光共に光の進行方向に対して左に偏光面が回転する
。右に回転させる場合は磁界方向を逆にすればよい。方
解石板dでは異常光の偏光方向を含む面内で表面から4
5°の方向に結晶光軸があり、図に示すようにdを透過
した常光、異常光は互いに直角であり、互いの光線を含
む面はZ−X面と平行となる。以下同じ原理でbで分離
した常光、異常光を合成させるためにファラデー回転子
eと方解石板fを設ける。
The plane of polarization of both extraordinary light rotates to the left with respect to the direction of travel of the light. If you want to rotate it to the right, just reverse the direction of the magnetic field. In the calcite plate d, 4 points from the surface in the plane including the polarization direction of the extraordinary light.
The optical axis of the crystal is in the 5° direction, and as shown in the figure, the ordinary light and the extraordinary light transmitted through d are at right angles to each other, and the plane containing each other's rays is parallel to the Z-X plane. Following the same principle, a Faraday rotator e and a calcite plate f are provided to combine the ordinary light and extraordinary light separated by b.

一方逆方向(P2→P3)においては、ファラデー回転
子による非相反性と方解石板による常光、異常光の分離
現象から1.方解石板すから出射する光は順方向におい
て入射した位置からずれて出射することとなる。したが
って図に示すようにスリット付き全反射ミラーaのミラ
ー部に投射されミラーにより全反射され側方に出射する
。この分離した常光、異常光を合致させるため方解石板
Q、hを設け、常光、異常光を合致させた。このためP
lから入射した光はP2から出射しP3からは出射せず
、P2から入射した光はP3から出射しPlからは出射
しない礪能を有する偏波無依存型光回路となる。
On the other hand, in the opposite direction (P2→P3), 1. The light emitted from the calcite plate will be emitted at a position shifted from the incident position in the forward direction. Therefore, as shown in the figure, the light is projected onto the mirror portion of the total reflection mirror a with a slit, is totally reflected by the mirror, and is emitted to the side. In order to match the separated ordinary light and extraordinary light, calcite plates Q and h were provided, and the ordinary light and extraordinary light were made to match. For this reason, P
This becomes a polarization-independent optical circuit having the ability that the light incident from P2 exits from P2 and does not exit from P3, and the light that enters from P2 exits from P3 and does not exit from Pl.

[発明の効果] 以上により順方向(P1→P2)へはいかなる偏波面の
光でも低損失で透過させることができ、逆方向(P2→
P3)へはいかなる偏波面の光でも低損失で透過させる
ことができる。またPlへは戻らないアイソレーション
効果がある。したがって上述の偏波無依存型光回路を使
用することにより、反射減衰Gの測定が高精度。
[Effect of the invention] As described above, light of any polarization plane can be transmitted with low loss in the forward direction (P1→P2), and in the reverse direction (P2→P2).
P3) can transmit light of any polarization plane with low loss. Furthermore, there is an isolation effect that does not return to Pl. Therefore, by using the polarization-independent optical circuit described above, the return loss G can be measured with high precision.

高ダイナミツクレンジとなるため、高性能な光デバイス
の開発が可能となり、単芯型双方向光通信に本回路を使
用することで長距離化、伝送線の高密度化、小型軽量化
等が可能となる。
The high dynamic range makes it possible to develop high-performance optical devices, and by using this circuit in single-core bidirectional optical communication, it is possible to increase long distances, increase the density of transmission lines, and reduce size and weight. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の偏波無依存型光回路の原理構成図を示
す。 (a):順方向光ビーム経路 (b);逆方向光ビーム経路 第2図は従来のバルク型方向性結合器の原理構成図を示
す。 第3図は本発明の偏波無依存型光回路を単芯型双方向光
通信等に使用した場合の概略図を示す。 第4図は本発明の偏波無依存型光回路を反射減衰量測定
装置に使用した場合の概略図を示す。 aニスリット付き全反射ミラー b;d;f:g:h:平板状複屈折結晶Cue:ファラ
デー回転子 二円形スリット 特許出願人 並木精密宝石株式会社 + \ −/ ハ( ↑ 第2図 + @1 図
FIG. 1 shows a basic configuration diagram of a polarization-independent optical circuit according to the present invention. (a): Forward light beam path (b); Reverse light beam path FIG. 2 shows a basic configuration diagram of a conventional bulk type directional coupler. FIG. 3 shows a schematic diagram when the polarization-independent optical circuit of the present invention is used for single-core bidirectional optical communication. FIG. 4 shows a schematic diagram when the polarization-independent optical circuit of the present invention is used in a return loss measuring device. a Total reflection mirror with Ni slit b; d; f: g: h: Tabular birefringent crystal Cue: Faraday rotator Bi-circular slit Patent applicant Namiki Precision Jewel Co., Ltd. + \ -/ Ha ( ↑ Figure 2 + @1 figure

Claims (4)

【特許請求の範囲】[Claims] (1)スリット付き全反射ミラーから入射した光ビーム
を複屈折素子で常光と異常光に分離し、非相反性素子で
複屈折素子を挟んで偏波面を90°回転した後、複屈折
素子で常光と異常光を合成して出射し、次に逆方向から
入射した光ビームは上記光学系を逆に透過することによ
り、常光と異常光に分離してそれぞれ順方向時のビーム
位置とは異なつた位置で上記スリット付き全反射ミラー
に達し、反射することにより他の光学系に分離され、複
屈折素子で常光と異常光を合成する構成を特徴とした偏
波無依存型光回路。
(1) A light beam incident from a total reflection mirror with a slit is separated into ordinary and extraordinary light by a birefringent element, and the plane of polarization is rotated by 90° with a non-reciprocal element sandwiching the birefringent element. The ordinary light and the extraordinary light are combined and emitted, and then the light beam that enters from the opposite direction passes through the above optical system in the reverse direction and is separated into the ordinary light and the extraordinary light, each of which has a beam position different from that in the forward direction. A polarization-independent optical circuit characterized by a configuration in which the slitted total reflection mirror reaches the slit-attached total reflection mirror and is reflected to be separated into other optical systems, and the ordinary light and the extraordinary light are combined by a birefringent element.
(2)スリット付き全反射ミラー、第1の平板状複屈折
結晶、第1のファラデー回転子、第2の平板状複屈折結
晶、第2のファラデー回転子、第3の平板状複屈折結晶
からなる順序に光学系が配列され、上記平板状複屈折結
晶は結晶光軸が表面に対して傾斜し、かつ第1、第2、
第3の平板状複屈折結晶の厚さの比は、それぞれに1:
√2:1であり、上記スリットから入射した光ビームは
上記光学系を透過して出射され、一方逆方向から入射し
た光ビームは上記光学系を逆に透過して上記全反射ミラ
ーで反射されることにより、厚さの比が前記平板状複屈
折結晶の厚さに対応してそれぞれ2:2である第4の平
板状複屈折結晶、第5の平板状複屈折結晶からなる他の
光学系を透過して出射される構成を特徴とした請求項(
1)記載の偏波無依存型光回路。
(2) From a total reflection mirror with a slit, a first flat birefringent crystal, a first Faraday rotator, a second flat birefringent crystal, a second Faraday rotator, and a third flat birefringent crystal. The optical system is arranged in this order, and the optical axis of the plate-shaped birefringent crystal is inclined with respect to the surface, and the first, second,
The thickness ratio of the third tabular birefringent crystal is 1:
√2:1, and the light beam entering from the slit passes through the optical system and is emitted, while the light beam entering from the opposite direction passes through the optical system in the opposite direction and is reflected by the total reflection mirror. By this, another optical device consisting of a fourth tabular birefringent crystal and a fifth tabular birefringent crystal each having a thickness ratio of 2:2 corresponding to the thickness of the tabular birefringent crystal. A claim (
1) Polarization-independent optical circuit as described above.
(3)請求項(1)記載の偏波無依存型光回路2個と光
ファイバー1本を使用した単芯型双方向光通信装置。
(3) A single-core bidirectional optical communication device using two polarization-independent optical circuits and one optical fiber according to claim (1).
(4)請求項(1)記載の偏波無依存型光回路を使用し
た反射減衰量測定装置。
(4) A return loss measuring device using the polarization-independent optical circuit according to claim (1).
JP63253350A 1988-10-07 1988-10-07 Polarization-independent optical circuit and device therefor Expired - Lifetime JP2796315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253350A JP2796315B2 (en) 1988-10-07 1988-10-07 Polarization-independent optical circuit and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253350A JP2796315B2 (en) 1988-10-07 1988-10-07 Polarization-independent optical circuit and device therefor

Publications (2)

Publication Number Publication Date
JPH02100016A true JPH02100016A (en) 1990-04-12
JP2796315B2 JP2796315B2 (en) 1998-09-10

Family

ID=17250107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253350A Expired - Lifetime JP2796315B2 (en) 1988-10-07 1988-10-07 Polarization-independent optical circuit and device therefor

Country Status (1)

Country Link
JP (1) JP2796315B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588018A (en) * 1978-12-26 1980-07-03 Nippon Telegr & Teleph Corp <Ntt> Photo nonreciprocal circuit
JPS61122624A (en) * 1984-11-20 1986-06-10 Fujitsu Ltd Optical isolator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588018A (en) * 1978-12-26 1980-07-03 Nippon Telegr & Teleph Corp <Ntt> Photo nonreciprocal circuit
JPS61122624A (en) * 1984-11-20 1986-06-10 Fujitsu Ltd Optical isolator

Also Published As

Publication number Publication date
JP2796315B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5212586A (en) Optical circulator having a simplified construction
US5204771A (en) Optical circulator
EP0015129A1 (en) Optical circulator
JPS6049297B2 (en) optical isolator
JPH02287421A (en) Quasi-achromatic optical isolator and circulator using prism with fresnel total internal reflection
US6360034B1 (en) Reflection based nonmoving part optical switch
JPH07191280A (en) Optical isolator
US6407861B1 (en) Adjustable optical circulator
JPS5828561B2 (en) optical isolator
JP3161885B2 (en) Optical isolator
JPH01241502A (en) Polarizing element for optical isolator
JPH0246419A (en) Optical isolator
JPH02100016A (en) Polarization non-dependence type optical circuit and device thereof
JPH0244310A (en) Optical isolator
JP2516463B2 (en) Polarization-independent optical isolator
JPH0477713A (en) Optical isolator independent of polarization
JP3008959B2 (en) Light switch
JPS6230607B2 (en)
JPH07301763A (en) Optocoupler and optical fiber amplifier
JP2553358B2 (en) Optical isolator
JP3154169B2 (en) Optical circulator
JP2002228984A (en) Optical circulator
JPS61102621A (en) optical isolator
JP2861316B2 (en) Optical isolator
JP3463175B2 (en) Combination rotator