JPS6049297B2 - optical isolator - Google Patents
optical isolatorInfo
- Publication number
- JPS6049297B2 JPS6049297B2 JP52064315A JP6431577A JPS6049297B2 JP S6049297 B2 JPS6049297 B2 JP S6049297B2 JP 52064315 A JP52064315 A JP 52064315A JP 6431577 A JP6431577 A JP 6431577A JP S6049297 B2 JPS6049297 B2 JP S6049297B2
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- light
- polarization
- light beams
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 title claims description 49
- 230000010287 polarization Effects 0.000 claims description 78
- 230000002427 irreversible effect Effects 0.000 claims description 11
- 239000013078 crystal Substances 0.000 description 45
- 239000013307 optical fiber Substances 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910021532 Calcite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/27—Optical coupling means with polarisation selective and adjusting means
- G02B6/2746—Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/093—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/06—Polarisation independent
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Communication System (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Light Guides In General And Applications Therefor (AREA)
Description
【発明の詳細な説明】
この発明は光波領域でのアイソレータ、特に光ファイ
バー通信等に適した光アイソレータに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an isolator in the light wave region, and particularly to an optical isolator suitable for optical fiber communications.
最近、光ファイバー通信の研究開発が急速に進展しそ
の実用化が進みつ)あるが、この光ファイバー通信に用
いられる各種光ディバイス(光ファイバー、光源と光フ
ァイバーの結合回路、等々)の性能向上、特に挿入損失
の減少に伴つて新たな問題が発生してきた。Recently, research and development of optical fiber communication has progressed rapidly and its practical application is progressing. However, it is important to improve the performance of various optical devices (optical fiber, coupling circuit between light source and optical fiber, etc.) used in optical fiber communication, especially insertion loss. With this decline, new problems have arisen.
即ち、各種光ディバイスの端面等での反射光があまり損
失を受けずに光源まで戻るために、光源がレーザ発振器
である場合にはその動作特性に悪影響を及ぼし、通信品
質を場合によつては極度に劣化せしめるという問題であ
る。また、各種光ディバイスの端面等での多重反 射に
より伝送信号にエコーが乗つてしまうという問題も生じ
る。反射光の帰還によるレーザ発振器の動作特性の劣化
は従来から自己モード同期の安定性等に関連して観測さ
れており、この劣化を防止するために偏光板とi波長板
を組合せた反射光除去回路や、偏光子とファラデー回転
素子ど検光子を組合せた光アイソレータ等が用いられて
きたのであるが、これらの回路は光ファイバー通信に関
連して生じた上記の問題を十分には解決できなかつた。
なぜなら、これらの回路は順方向の入射光のうちある方
向の直線偏光成分に対しては原理的には無損失であるが
、この成分と直交する直線偏光成分はすべて損失となつ
てしまうのに対して光ファイバーは普通、偏光状態を保
つたま)光を伝送することができず、従つて光フアイバ
ーーのうしろに上記の回路を接続するとほとんど必ず3
dB程度の損失を生じてしまい、しかもこの損失の値が
偏光状態によつて変つてしまうからである。更’ 1、
に偏光板とj波長板を組合せた反射光除去回路はこの
回路を順方向に通過した光の偏光状態が変らずに円偏光
のまゝ反射されて戻つて来た場合にのみこの逆方向の反
射光を十分除去できるだけであ・るから(従つてこの回
路は光アイソレータとは言えない)、光ファイバーを通
つて戻つてくる円偏光とは限らない逆方向の反射光を十
分除去することはできなかつた。In other words, in order for the reflected light from the end faces of various optical devices to return to the light source without much loss, if the light source is a laser oscillator, it will have an adverse effect on its operating characteristics, and in some cases may deteriorate the communication quality. The problem is that it causes extreme deterioration. Additionally, multiple reflections at the end faces of various optical devices cause echoes to be added to the transmitted signal. Deterioration of the operating characteristics of a laser oscillator due to feedback of reflected light has been observed in relation to the stability of self-mode locking, etc., and to prevent this deterioration, reflected light removal using a combination of a polarizing plate and an i-wavelength plate has been observed. circuits, optical isolators that combine polarizers, Faraday rotation elements, and analyzers, etc. have been used, but these circuits have not been able to satisfactorily solve the above problems associated with optical fiber communications. .
This is because these circuits are theoretically lossless for linearly polarized light components in a certain direction of forward incident light, but all linearly polarized light components orthogonal to this component will be lost. Optical fibers, on the other hand, cannot normally transmit light (while maintaining its polarized state), so connecting the above circuit behind an optical fiber will almost always result in
This is because a loss of about dB occurs, and the value of this loss changes depending on the polarization state. Sara' 1,
A reflected light removal circuit that combines a polarizing plate and a j-wavelength plate will detect the reverse direction only when the polarization state of the light that passes through this circuit in the forward direction remains unchanged and is reflected back as circularly polarized light. Since it can only sufficiently eliminate reflected light (therefore, this circuit cannot be called an optical isolator), it cannot sufficiently eliminate reflected light in the opposite direction, which is not necessarily circularly polarized light, that returns through the optical fiber. Nakatsuta.
この発明の目的は、順方向の入射光に対してはその偏光
状態に拘らず原理的には無損失の、従つて低損失で偏光
依存性が少ない光アイソレータを提供することにある。An object of the present invention is to provide an optical isolator which is theoretically lossless for forward incident light regardless of its polarization state, and therefore has low loss and little polarization dependence.
この発明によれば、順方向の入射光ビームをその偏光に
よつて2つの直線偏光光ビームに分岐する第1の複屈折
素子と、その各々の直線偏光光ビームの偏光方向をM,
.nを整数としてそれぞれ(2n1士聞)直角及び(2
n±h)直角(複号同順)だけ回転させる非可逆偏光回
転素子と、この非可逆偏光回転素子を通過した2つの直
線偏光光ビームをその偏光の直交性を利用して合成する
第2の複屈折素子とを含む光アイソレータが得られる。
この発明の第1の複屈折素子は順方向の入射光ビームを
その偏光によつて2つの直線偏光光ビームに分岐し、分
岐された2つの直線偏光光ビームはそれぞれ非可逆偏光
回転素子を通つてから第2の複屈折素子により合成され
る。第1の複屈折素子で分岐された2つの直線偏光光ビ
ームの偏光方向は互いに直角であり、この直交性は2つ
の直線偏光光ビームが非可逆偏光回転素子を通過しても
変らないから、第2の複屈折素子はこの直交性を利用し
て直線偏光光ビームを原理的には無損失になるように、
合成するのである。次に、この光アイソレータの出射光
ビームが反射されて任意の偏光状態で戻つてきた場合、
更には一般にこの光アイソレータに逆方向から光ビーム
が入射した場合について考えると、その光ビームはまず
第2の複屈折素子を逆方向に通過して2つの直線偏光光
ビームに分岐される。ところで、複屈折素子は可逆的で
あるから、この分岐された2つの直線偏光光ビームは、
順方向の2つの直線偏光光ビームとそれぞれ同じ方向の
偏光で、しかもそれぞれ同じ光.路を(ただし逆方向に
)進み、非可逆偏光回転素子に逆衷向から入射する。非
可逆偏光回転素子に入つた2つの直線偏光光ビームの偏
光方向はこの素子を通過することによつてそれぞれ一(
2n1±↓)直角及ひ一(2n士閉)直角(複合同順)
だけ回転し、同じ光路で順方向の直線偏光光ビームとの
偏光方向の違いは2×(2r]1士問)直角=(4m±
1)直角、及び(4n±1)直角となる(順方向と逆方
向の光に対して、非可逆偏光回転素子の、光進行方向か
ら見た偏光の回転方向は逆なので、この素子を光が往復
すると順方向から見た偏光回転角は2倍になる)。偏光
方向の2直角の差は差がないのと同じである。だから結
局、非可逆偏光回転素子を通過した逆方向の直線偏光光
ビームの偏光方向は、同じ光路で順方向の直線偏光光ビ
ームのそれと直交することになる。従つてこの)ような
直線偏光光ビームが順方向の直線偏光光ビームと同じ光
路を逆にたどつて第1の複屈折回転素子に入射すると、
この素子の可逆性から明らかなように、これらは順方向
の光ビームの光路を逆にたどることはできず異つた光路
を通つて出射す門る。すなわち、逆方向の光ビームが順
方向の光ビームの光路を戻ることはなく、従つて光アイ
ソレータの機能が果される。この発明の光アイソレータ
の、順方向入射光に対する損失について詳しく見てみる
と、第1の複l屈折素子がこの入射光ビームを互いに直
交する2つの直線偏光光ビームに分岐する際の損失は原
理的には無く、入射光ビームの偏光状態が変れば分岐さ
れた2つの直線偏光光ビームの強度比が変化するだけで
その強度の和は原理的には入射光ビームの強度に等しい
。According to this invention, the first birefringent element splits a forward incident light beam into two linearly polarized light beams according to its polarization, and the polarization direction of each linearly polarized light beam is set to M,
.. (2n1) right angle and (2
n±h) An irreversible polarization rotation element that rotates by a right angle (same order), and a second element that combines two linearly polarized light beams that have passed through this irreversible polarization rotation element using the orthogonality of the polarizations. An optical isolator including a birefringent element is obtained.
The first birefringent element of the present invention splits a forward incident light beam into two linearly polarized light beams according to its polarization, and each of the two branched linearly polarized light beams passes through an irreversible polarization rotation element. After that, they are synthesized by a second birefringent element. The polarization directions of the two linearly polarized light beams split by the first birefringent element are at right angles to each other, and this orthogonality does not change even if the two linearly polarized light beams pass through the irreversible polarization rotation element. The second birefringent element uses this orthogonality to convert the linearly polarized light beam into a linearly polarized light beam with no loss in principle.
It is synthesized. Next, if the output light beam of this optical isolator is reflected and returns with an arbitrary polarization state,
Furthermore, generally speaking, when considering the case where a light beam enters this optical isolator from the opposite direction, the light beam first passes through the second birefringent element in the opposite direction and is split into two linearly polarized light beams. By the way, since the birefringent element is reversible, these two branched linearly polarized light beams are
Two linearly polarized light beams in the forward direction, each with the same direction of polarization, and each with the same light beam. (but in the opposite direction) and enters the irreversible polarization rotation element from the reverse direction. The polarization directions of the two linearly polarized light beams entering the irreversible polarization rotation element are changed to the same direction by passing through this element.
2n1±↓) right angle and hiichi (2n shi closed) right angle (compound same order)
The difference in polarization direction with the forward linearly polarized light beam on the same optical path is 2 x (2r] 1 person) right angle = (4 m ±
1) Right angle and (4n±1) right angle (for forward and reverse direction light, the rotation direction of polarized light of the irreversible polarization rotation element as seen from the light traveling direction is opposite, so this element is When the light goes back and forth, the angle of polarization rotation seen from the forward direction doubles.) A difference between two right angles in polarization direction is the same as no difference. Therefore, the polarization direction of the backward linearly polarized light beam that has passed through the irreversible polarization rotation element is orthogonal to that of the forward linearly polarized light beam on the same optical path. Therefore, when a linearly polarized light beam like this) follows the same optical path as the forward linearly polarized light beam in the opposite direction and enters the first birefringent rotation element,
It is clear from the reversibility of this element that it is not possible to reverse the optical path of the forward light beam, but it exits through a different optical path. That is, the light beam in the opposite direction does not return along the optical path of the light beam in the forward direction, and therefore the function of an optical isolator is fulfilled. Taking a closer look at the loss of forward incident light in the optical isolator of this invention, the loss when the first birefringent element splits the incident light beam into two linearly polarized light beams orthogonal to each other is the principle. If the polarization state of the incident light beam changes, only the intensity ratio of the two branched linearly polarized light beams changes, and the sum of the intensities is, in principle, equal to the intensity of the incident light beam.
この2つの直線偏光光ビームが次に通過する非可逆偏光
回転素子も原理的には無損失であるから、第2の複屈折
素子に入射するこの2つの直線偏光光ビームの強度の和
についても同じことが言える。この2つの直線偏光光ビ
ームを合成する第2の複屈折素子はこの合成を偏光の直
交性を利用して行うのでその際の損失を原理的には無損
失にでき、合成された出射光ビームの強度は合成前の2
つの直線偏光光ビームの偏光の直交性により(原理的に
は)その強度の和、従つて入射光ビームの強度に等しく
なる。つまりこの発明の光アイソレータは順方向入射光
ビームに対しては原理的には無損失であつてこの入射光
ビームの偏光状態に依存して損失が変ることも原理的に
はない。現実にはこの光アイソレータを構成する素子に
若干の損失はあるが、低損失な素子を用いることが可能
だから、低損失でしかも入射光ビームの偏光状態にほと
んど依存しない光アイソレータを実現することができる
。次にこの発明について図面を参照して説明しよう。Since the irreversible polarization rotation element through which these two linearly polarized light beams pass next is also lossless in principle, the sum of the intensities of these two linearly polarized light beams that are incident on the second birefringent element is also The same can be said. The second birefringent element that combines these two linearly polarized light beams performs this combination using the orthogonality of polarization, so the loss at that time can be made lossless in principle, and the combined output light beam The strength of is 2 before composition.
The orthogonality of the polarizations of the two linearly polarized light beams results in (in principle) the sum of their intensities and thus equal to the intensity of the incident light beam. In other words, the optical isolator of the present invention has no loss in principle with respect to the forward incident light beam, and the loss does not change depending on the polarization state of the incident light beam in principle. In reality, the elements that make up this optical isolator have some loss, but since it is possible to use low-loss elements, it is possible to realize an optical isolator that has low loss and is almost independent of the polarization state of the incident light beam. can. Next, this invention will be explained with reference to the drawings.
第1図はこの発明の最も好ましい実施例(以下では第1
の実施例と呼ぶ)の斜視図である。FIG. 1 shows the most preferred embodiment of the invention (hereinafter referred to as the first
FIG.
第1の光ファイバー1の端面から放射状に出射した光は
)ピッチの第1の集束性伝送体11によつて平行な光ビ
ーム101に変換されて第1の複屈折結晶21に入射す
る(集束性光伝送体のレンズ作用等については特公昭4
7−816、特公昭47−6547等に、詳しく記載さ
れているのでこ)では述べない)。この光ビーム101
の進んで行く方向を順方向と呼び、図では実線の矢印で
この方向を示す(以下同様)。The light emitted radially from the end face of the first optical fiber 1 is converted into a parallel light beam 101 by the pitched first converging transmitter 11 and enters the first birefringent crystal 21 (convergent Regarding the lens action of optical transmission bodies, etc.
7-816, Japanese Patent Publication No. 47-6547, etc., so I will not discuss it here). This light beam 101
The direction in which the robot moves is called the forward direction, and this direction is shown by a solid arrow in the figure (the same applies hereafter).
また点線の矢印で逆方向を示す。既述のように光ファイ
バー中を通過した光の偏光状態は特定できないから、光
ビーム101の偏光状態は任意とし、それを図では偏光
状態図151て表わす(以下同様)。すなわち、Xyz
座標系を図のように定めれば、光ビーム101の偏光状
態は一般に、X方向の偏光成分とy方向の偏光成分の合
成として表わせるのて、偏光状態図151にはこの2つ
の偏光方向(電界の方向で示すことにする)を、2つの
偏光成分の強度比や位相関係は無視して示してあるので
ある。以後この種の偏光状態図で、実線の矢印は順方向
の光ビームの偏光方向を示し、点線の矢印は逆方向の光
ビームの偏光方向を示す。第1の複屈折結晶21は方解
石製で、その光軸(c軸)と約482をなす2つの平行
平面が入射面81及び出射面となつており、光軸(c軸
)は図示のようにXz平面上にあるように配置されてい
る。Also, dotted arrows indicate the opposite direction. As mentioned above, since the polarization state of the light passing through the optical fiber cannot be specified, the polarization state of the light beam 101 is arbitrary, and is represented by the polarization state diagram 151 in the figure (the same applies hereinafter). That is, Xyz
If the coordinate system is defined as shown in the figure, the polarization state of the light beam 101 can generally be expressed as a combination of the polarization component in the X direction and the polarization component in the y direction, so the polarization state diagram 151 shows these two polarization directions. (shown in terms of the direction of the electric field) is shown ignoring the intensity ratio and phase relationship of the two polarized light components. Hereinafter, in this type of polarization state diagram, solid arrows indicate the polarization direction of the forward light beam, and dotted arrows indicate the polarization direction of the reverse light beam. The first birefringent crystal 21 is made of calcite, and two parallel planes forming an angle of approximately 482 with the optical axis (c-axis) serve as an incident surface 81 and an exit surface, and the optical axis (c-axis) is as shown in the figure. It is arranged so that it lies on the Xz plane.
すると、入射面81に垂直入射した光ビーム101のy
方向偏光方向は常光線として第1の複屈折結晶21をま
つすぐ通過して共軸の光ビーム102となるのに対して
、光ビーム101のX方向偏光成分は異常光線として入
射面81て屈折して常光線(y方向偏光成分)と分離し
、出射面で再度屈折して前述の共軸光ビーム102と平
行異軸な光ビーム202となる。この種の複屈折結晶の
作用については昭和51年度電子通信学会光・電波部門
全国大会講演論文集所載の松下氏の論文「光分岐回路の
一構成」(283)に詳しい。Then, y of the light beam 101 that is perpendicularly incident on the incident surface 81
The direction of polarization is that an ordinary ray passes straight through the first birefringent crystal 21 and becomes a coaxial light beam 102, whereas the X-direction polarized component of the light beam 101 is refracted at the incident surface 81 as an extraordinary ray. The light beam is separated from the ordinary ray (polarized light component in the y direction) and refracted again at the exit surface to become a light beam 202 that is parallel to and different from the coaxial light beam 102 described above. The effects of this type of birefringent crystal are detailed in Matsushita's paper ``A Configuration of an Optical Branch Circuit'' (283), included in the 1975 Proceedings of the National Conference of the Optical and Radio Division of the Institute of Electronics and Communication Engineers.
次にこれらの光ビーム102,202は共にプラセオジ
ム・ガラス製のファラデー回転素子22に入射する。こ
のファラデー回転素子22には図示されていない電磁石
によりz方向に磁界が印加されており、順(z)方向に
通過する光の偏光方向を、光源に向つて見て左まわりに
45の回転させる。そこで光ビーム102,202はこ
のファラデー回転素子22を通過することによつて図示
のような、X方向に対して±45いた方向の偏光の光ビ
ーム103,203となる。次にこれらの光ビーム10
3,203は旋光性結晶24に入射する。この旋光性結
晶24は右水晶製で光軸(c軸)の方向に通過する光の
偏光方向を、光源に向つて見て右まわりに45の回転さ
せるので、光軸方向に入射した光ビーム103,203
はファラデー回転素子22への入射光ビーム102,2
02とそれぞれ同じ偏光方向の光ビーム104,204
になつて出射する。これらの光ビーム104,204は
次に第2の複屈折結晶25に入射し、第1の複屈折結晶
21と丁度逆の作用で、従つて原理的には無損失で1本
の平行な光ビーム105に合成され、(ピッチの第2の
集束性光伝送体12により集束されて第2の光ファイバ
ー2に結合する。次に第2の光ファイバー2から逆方向
に出射する光について考えると、この光は第2の集束性
光伝送体12により平行な光ビーム105(順方向と逆
方向の光ビームの光路は最後を除いて同じなのて同じ場
合は両方を便宜上同じ参照番号て表わすことにする。Both light beams 102, 202 then enter a Faraday rotator 22 made of praseodymium glass. A magnetic field is applied to this Faraday rotation element 22 in the z direction by an electromagnet (not shown), and the polarization direction of the light passing in the forward (z) direction is rotated by 45 degrees counterclockwise when viewed toward the light source. . The light beams 102, 202 then pass through this Faraday rotation element 22, thereby becoming light beams 103, 203 polarized in directions ±45 with respect to the X direction, as shown. Then these light beams 10
3,203 enters the optically active crystal 24. This optically active crystal 24 is made of right-handed quartz crystal and rotates the polarization direction of light passing in the direction of the optical axis (c-axis) by 45 degrees clockwise when viewed toward the light source, so that the light beam incident in the direction of the optical axis 103,203
is the incident light beam 102,2 on the Faraday rotator 22
Light beams 104 and 204 with the same polarization direction as 02, respectively.
It emits light. These light beams 104, 204 then enter a second birefringent crystal 25, which has exactly the opposite effect to the first birefringent crystal 21, and therefore in principle forms a single parallel beam without loss. It is combined into a beam 105, focused by the second convergent light transmission body 12 with a pitch of The light is transmitted to a parallel light beam 105 by the second convergent light transmitter 12 (the optical paths of the forward and reverse light beams are the same except for the last one, so if they are the same, both will be denoted by the same reference number for convenience. .
以下同様)となり、第2の複屈折結晶25に入射する。
逆方向の光ビーム105の偏光状態は任意だから、この
光ビーム105は一般にy方向の偏光の光ビーム104
とX方向の偏光の光ビーム204に分離され、旋光性結
晶24て偏光方向をそれぞれ、光源に向つて見て右まわ
りに45向回転された光ビーム103,203となつて
ファラデー回転素子22に入射する。これらの逆方向の
光ビーム103,203の偏光方向は、第2の複屈折素
子25や旋光性結晶24が可逆的だからそれぞれ順方向
の光ビーム103,203の偏光方向と同じであるが、
ファラデー回転素子22は非可逆で、逆方向に通過する
光の偏光方向は、光源に向つて見て“右まわり゛に45
光回転されるので、ファラデー回転素子22を逆方向に
通過した光ビーム102,202の偏光方向は順方向の
光ビーム102,202の偏光方向とそれぞれ90ビず
つ異なることになる。そこでこれらの光ビーム102,
202が第1の複屈折結晶21に入射すると、順方向の
光ビーム101が2つの光ビーム102,202に分離
した光路を逆にたどることはできずに、それぞれ順方向
の光ビーム101とは異なる光路の光ビーム109,2
09となつて出射することになる。具体的に述べると、
x方向の偏光の逆方向の光ビーム102は第1の複屈折
結晶21中では異常光線となるのて屈折して順方向の光
ビーム101の左(−x)側に出射するし、y方向の偏
光の逆方向の光ビーム202は第1の複屈折結晶21中
では常光線となるので直進して順方向の光ビーム101
の右(十x)側に出射するのである。これらの光ビーム
109,209は、順方向の光ビーム101と平行だが
位置が異なるので、図示されていない遮光板て遮られ、
第1の集束性光伝送体11には入射しない。また、たと
え第1の集束性光伝送体11に入射しても第1の光ファ
イバー1には有効に結合しない。(the same applies hereafter) and enters the second birefringent crystal 25.
Since the polarization state of the light beam 105 in the opposite direction is arbitrary, this light beam 105 is generally the same as the light beam 104 polarized in the y direction.
The light beams 204 are separated into light beams 204 polarized in the and incident. The polarization directions of these light beams 103 and 203 in the opposite direction are the same as the polarization directions of the light beams 103 and 203 in the forward direction, respectively, because the second birefringence element 25 and the optically active crystal 24 are reversible.
The Faraday rotation element 22 is irreversible, and the polarization direction of light passing in the opposite direction is 45 degrees clockwise when viewed from the light source.
Since the light is rotated, the polarization directions of the light beams 102 and 202 that have passed through the Faraday rotation element 22 in the opposite direction differ from the polarization directions of the light beams 102 and 202 in the forward direction by 90 Bi, respectively. Therefore, these light beams 102,
202 enters the first birefringent crystal 21, the light beam 101 in the forward direction is separated into two light beams 102, 202. The optical path cannot be reversed, and the light beam 101 in the forward direction is separated from the light beam 101 in the forward direction. Light beams 109,2 with different optical paths
09 and will be emitted. To be specific,
The light beam 102 with polarization in the opposite direction in the x direction becomes an extraordinary ray in the first birefringent crystal 21, is refracted, and is emitted to the left (-x) side of the light beam 101 in the forward direction, and is emitted in the y direction. The light beam 202 in the opposite direction of polarization becomes an ordinary ray in the first birefringent crystal 21, so it travels straight and becomes the light beam 101 in the forward direction.
The light is emitted to the right (10x) side. These light beams 109 and 209 are parallel to the forward light beam 101 but at different positions, so they are blocked by a light shielding plate (not shown).
It does not enter the first convergent light transmission body 11. Furthermore, even if the light is incident on the first convergent light transmission body 11, it is not effectively coupled to the first optical fiber 1.
従つていずれにしろ光アイソレータとしての機能が果さ
れる。Therefore, in any case, it functions as an optical isolator.
以上の説明から明らかなように、この実施例の光アイソ
レータは、順方向の入射光に対してはその偏光状態が変
つても光ビーム102,202(等)の強度比が変るだ
けで、その偏光状態に依らずに原理的には無損失で実際
にも低損失なものが実現できる。As is clear from the above description, the optical isolator of this embodiment changes only the intensity ratio of the light beams 102, 202 (etc.) even if the polarization state changes for forward incident light; Regardless of the polarization state, it is theoretically possible to achieve no loss and actually low loss.
更に、この実施例の第1の複屈折結晶21の出射光ビー
ム102,202は互いに平行でその状態のま)第2の
複屈折結晶25に入射させて合成することができるので
、第2、第3の実施例のように反射鏡等を使つて光路を
曲げる必要がなく、.構成が簡単で余分な損失も発生し
ないという利点がある。Furthermore, since the light beams 102 and 202 emitted from the first birefringent crystal 21 in this embodiment are parallel to each other and can be incident on the second birefringent crystal 25 to be combined, the second, Unlike the third embodiment, there is no need to bend the optical path using a reflecting mirror or the like. It has the advantage of simple configuration and no extra loss.
また、反射鏡等を用いなくてもすむのでこの2つの光ビ
ーム102,202の間隔をかなり小さくすることが可
能でファラデー回転素子22や旋光性結晶24をこの2
つのビーム102,202に対して共通に使用すること
が容易となり、構成の簡単さ、配置調整・固定の容易さ
、寸法の小型化、それらによる経済化等の利点が生じる
。この第1の実施例において、各素子(第1の集束性光
伝送体11、第1の複屈折結晶21、ファラデー回転素
子22、旋光性結晶24,・・・)の間は説明の都合上
離れているものとしたが、全体を小型に構成するため各
素子を密着させてもよく、更にこれらの素子と複屈折率
が同程度(約1.5)の透明接着剤や整合液て各素子の
間を埋めれば各素子の表面反射をほとんど除くことがで
き、また接着すれば位置関係を安定化できる。Furthermore, since there is no need to use a reflecting mirror or the like, the distance between these two light beams 102, 202 can be made considerably small, and the Faraday rotation element 22 and the optically active crystal 24 can be
This makes it easy to use the same beams 102 and 202 in common, resulting in advantages such as simplicity of construction, ease of arrangement adjustment and fixing, miniaturization of dimensions, and cost savings. In this first embodiment, for convenience of explanation, the spaces between each element (first focusing optical transmitter 11, first birefringent crystal 21, Faraday rotation element 22, optically active crystal 24, . . . ) are However, in order to make the whole element compact, each element may be placed in close contact with each other. Furthermore, each element may be placed in close contact with each other using a transparent adhesive or matching liquid with a birefringence similar to that of these elements (approximately 1.5). By filling in the spaces between the elements, surface reflection from each element can be almost eliminated, and by gluing them together, the positional relationship can be stabilized.
なお、旋光性結晶24を除いて、そのかわりに反射鏡で
光路を変更し第2の複屈折結晶25を傾けることによつ
ても光アイソレータを実現することができるが、詳細は
第3の実施例の後で述べる。第2図はこの発明の第2の
実施例の斜視図である。Note that an optical isolator can also be realized by omitting the optically active crystal 24 and instead changing the optical path with a reflecting mirror and tilting the second birefringent crystal 25, but the details will be explained in the third embodiment. I will discuss it after the example. FIG. 2 is a perspective view of a second embodiment of the invention.
第1の実施例と同様に第1の光ファイバー1から出射し
て第1の集束性光伝送体11によつて平行に変換された
光ビーム101は、第1のロシヨンプリズム31に入射
し、互いに直交する偏光の光ビーム112,212に分
けられる。この2つの光ビームは平行でないのて第1の
反射鏡42で一方の光ビーム212の方向を変更して平
行に直した後それぞれ第1及び第2のファラデー回転素
子32,33に入射させ、その出射ビーム113,21
3は更に旋光性結晶34に通す。こ)で用いたファラデ
ー回転素子32,33や旋光性結晶34はそれぞれ第1
の実施例のファラデー回転素子22や旋光性結晶24と
類似のものて機能的には同じなので、偏光状態の変化の
仕方は第1の実施例と同様である。旋光性結晶34は出
射した光ビーム114,214は、一方の光ビーム21
4の方向が第2の反射鏡44で変えられた後、第2のロ
シヨンプリズムで偏光の直交性を利用して合成され、合
成された光ビーム115は、第1の実施例と同様に第2
の集束性光伝送体12で集束されて第2の光ファイバー
2に結合される。次に第2の光ファイバー2から逆方向
に出射する光について考えると、第1の実施例と同様に
この光は順方向の光ビームの光路を逆にたどつて第1の
ロシヨン・プリズムに達するが、ファラデー回転素子3
2,33を逆方向に通過するためにその偏光の方向は順
方向のそれと直交しており、このために直進しててきた
光ビーム112は第1のロシヨンプリズムで曲げられて
光ビーム219となり、第1の反射鏡42で曲げられた
光ビーム212は直進して光ビーム119となる。即ち
、第1のロシヨン・プリズムへの順方向入射光ビームの
光路を逆にたどる光ビームは生じず、従つて光アイソレ
ータの機能が果される。この第2の実施例での第1のロ
シヨン●プリズムの逆方向出射光ビーム119,219
は、順方向入射光ビーム101と方向が異なるので遮光
板を用いた場合に第1の実施例よりも第1の光ファイバ
ー1に結合しにくいという利点がある。順方向の入射光
に対しては第1の実施例とあまり違わない低損失なもの
ができるが、入射光の偏光状態に対する依存性は、第1
及び第2の反射鏡の反射率を完全に100%にはできな
いために、第1の実施例と異つてわずかながら生ずるの
が普通である。この依存性を完全になくすには直進する
光ビーム112(等)に対してわざとわすかな損失を与
える必要がある。As in the first embodiment, the light beam 101 that is emitted from the first optical fiber 1 and converted into parallel light by the first converging light transmission body 11 enters the first Rosillon prism 31, and The light beams are divided into light beams 112 and 212 with mutually orthogonal polarization. Since these two light beams are not parallel, the direction of one of the light beams 212 is changed by the first reflecting mirror 42 to make it parallel, and then the light beams are made incident on the first and second Faraday rotation elements 32 and 33, respectively. The output beams 113, 21
3 is further passed through an optically active crystal 34. The Faraday rotation elements 32, 33 and the optically active crystal 34 used in this) are the first
Since elements similar to the Faraday rotation element 22 and the optically active crystal 24 in the embodiment are functionally the same, the manner in which the polarization state changes is the same as in the first embodiment. The optically active crystal 34 emits the light beams 114 and 214, one of which is the light beam 21.
4 is changed by the second reflecting mirror 44, and then combined by the second Rosillon prism using the orthogonality of polarization, and the combined light beam 115 is generated in the same way as in the first embodiment. Second
The light is focused by a convergent optical transmission body 12 and coupled to a second optical fiber 2. Next, considering the light emitted from the second optical fiber 2 in the opposite direction, as in the first embodiment, this light follows the optical path of the forward light beam in the opposite direction and reaches the first Rosillon prism. However, Faraday rotating element 3
2 and 33 in the opposite direction, the direction of its polarization is perpendicular to that in the forward direction. Therefore, the light beam 112 traveling straight is bent by the first Rossillon prism and becomes a light beam 219. Therefore, the light beam 212 bent by the first reflecting mirror 42 travels straight and becomes the light beam 119. That is, no light beam retraces the optical path of the forwardly incident light beam to the first Rossillon prism, thus fulfilling the function of an optical isolator. In this second embodiment, the light beams 119, 219 emitted from the first rotary prism in the opposite direction
Since the direction of the light beam is different from that of the forward incident light beam 101, it has the advantage that it is more difficult to couple to the first optical fiber 1 than in the first embodiment when a light shielding plate is used. For forward-directed incident light, a low-loss device similar to the first embodiment can be obtained, but the dependence on the polarization state of the incident light is similar to that of the first embodiment.
Also, since the reflectance of the second reflecting mirror cannot be made completely 100%, a slight difference from the first embodiment usually occurs. In order to completely eliminate this dependence, it is necessary to intentionally give a small loss to the light beam 112 (etc.) traveling straight.
この第2の実施例において、第1の集束性光伝送体11
と第1のロシヨン・プリズム31の間、ファラデー回転
素子32,33と旋光性結晶34の間、及び第2のロシ
ヨン・プリズム35と第2の集束性光伝送体12の間は
、密着させて小形化したり、接着して表面反射を除き位
置関係を安定化したりすることができることは第1の実
施例と同様である。In this second embodiment, the first focusing optical transmission body 11
and the first Rossillon prism 31, between the Faraday rotation elements 32, 33 and the optically active crystal 34, and between the second Rossillon prism 35 and the second convergent light transmitting body 12, As in the first embodiment, it is possible to downsize it and to stabilize the positional relationship by removing surface reflection by adhering it.
また、第1と第2の実施例において、2つの直交する偏
光の光ビーム103,203または113,213に対
して1つの旋光性結晶24または34を用いたが1つの
光ビームに対して1つの旋光性結晶を用いるようにして
もよい。Furthermore, in the first and second embodiments, one optically active crystal 24 or 34 was used for two orthogonally polarized light beams 103, 203 or 113, 213; Alternatively, two optically active crystals may be used.
特に第2の実施例のように2つの光ビーム113,21
3の間隔が比較的離れているような場合には、こうする
ことによつて旋光性結晶を小さく従つて経済的にするこ
とができる。また、磁界の方向を変えてファラデー回転
素子の方向を逆にして、そのかわりに旋光性結晶24,
34として左水晶を用いてもよい。勿論、他の結晶や光
学活性を示す有機液体等を用いることもできる。この旋
光性結晶24または34はファラデー回転素子22また
は32,33で回転された順方向の光ビーム103,2
03または113,213の偏光方向を元に戻している
が、このことによつてその後の2つの光ビーム104,
204または114,214の合成を第1の複屈折結晶
21(またはロシヨン・プリズム31)と対称的な形で
やれるようにしている。In particular, the two light beams 113, 21 as in the second embodiment
This allows the optically active crystal to be smaller and therefore more economical, in cases where the spacing of 3 is relatively far apart. Also, by changing the direction of the magnetic field and reversing the direction of the Faraday rotation element, the optically active crystal 24,
A left crystal may be used as 34. Of course, other crystals and organic liquids exhibiting optical activity can also be used. This optically active crystal 24 or 34 is rotated by a Faraday rotation element 22 or 32, 33, and a forward light beam 103, 2
03 or 113, 213 is returned to its original polarization direction, which causes the subsequent two light beams 104,
204 or 114, 214 can be synthesized symmetrically with the first birefringent crystal 21 (or Rosillon prism 31).
これは次に示す第3の実施例と比較すると明らかになる
が構成を簡単化するのに大いに役立つており、順方向入
射光に対する損失の偏光依存性を少なくするのにも有効
である。第3図はこの発明の第3の実施例を示す斜視図
であつて、第2図に示した第2の実施例と同じ部分は一
部省略して示してある。This will become clear when compared with the third embodiment described below, but it is very useful for simplifying the configuration, and is also effective in reducing the polarization dependence of loss for forward incident light. FIG. 3 is a perspective view showing a third embodiment of the present invention, with some of the same parts as those of the second embodiment shown in FIG. 2 being omitted.
第2図の害施例と同様にして第1、第2のファラデー回
転素子32,33から出射した順方向光ビーム113,
213の偏光方向はX方向に対して±451傾いている
ので、このうちの直進する方の光ビーム113が直接入
射する第2のロシヨン・プリズム35も、そこで損失が
生じないように第2の実施例の場合に対して−45じ傾
いて配置されている。このためこの第2のロシヨン・プ
リズム35に入射するもう一方の光ビーム224は、直
進する方の光ビーム113の中心軸を含みX方向と−4
5のをなす平面302の上にある必要があり、しかもそ
の偏光の方向はこの平面に垂直でなければならない。第
2、第3、第4、第5の反射鏡51,52,53,54
は、この2つの条件を満す光ビーム224を第2のファ
ラデー回転素子33を出射した光ビーム213から作り
出すもので、まず第2の反射鏡51がこの光ビーム21
3を、Xy平面に平行な平面301上でX方向に対して
−45の方向の光ビーム221に変え、次いで第3の反
“射鏡52がこの光ビーム221の方向をこの平面30
1上で90の曲げた光ビーム222に変え更に第4の反
射鏡53がこの平面301上でこの光ビーム222の方
向をもう一度900曲げた光ビーム223に変える。こ
の光ビーム223はX方向と−45にをなす前記の平面
302にも乗つているので第5の反射鏡54によつてこ
れを第2のロシヨン・プリズム35に入射して合成され
る光ビーム224に変換することが可能になる。この最
後の光ビーム224を偏光方向を無視して作るためにJ
はこの部分の反射鏡の数は2枚で十分であるが、その偏
光方向をX方向と−45枚をなす平面302に対して垂
直になるようにするにはそれては済まない。この第3の
実施例ては第2の反射鏡51によつて偏光の方向がXy
平面に平行な平面301上にあるような状態を作り出し
、第3、第4の反射鏡52,53ではその状態を崩さな
いようにし、そうすることによつて第4の反射鏡53で
反射された光ビーム223の偏光方向が自然にx方向と
−45ビをなす平面302に垂直になるようにし、第5
の反射鏡54ではその状態を変えないようにして理想的
な合成に必要な光ビーム224を得ているのである。こ
の第3の実施例において、第2、第3、第4、第5の反
射鏡51,52,53,54のように4枚の反射鏡を用
いずに枚数を減らしてもよいが、その場合には第2のロ
シヨン・プリズム35に斜め入射する光ビーム224の
偏光状態が多少とも理想状態からずれて、合成の際に損
失が生じるほかに逆方向の光に対するアイソレーシヨン
も悪くなることを忘れてはならない。Forward light beams 113, which are emitted from the first and second Faraday rotation elements 32, 33 in the same manner as in the embodiment shown in FIG.
Since the polarization direction of the light beam 213 is tilted by ±451 with respect to the It is arranged at an angle of -45 with respect to the case of the embodiment. Therefore, the other light beam 224 that enters the second Rosillon prism 35 includes the central axis of the straight-progressing light beam 113 and the -4 direction.
5, and the direction of polarization must be perpendicular to this plane. Second, third, fourth, fifth reflecting mirrors 51, 52, 53, 54
creates a light beam 224 that satisfies these two conditions from the light beam 213 emitted from the second Faraday rotation element 33. First, the second reflecting mirror 51 converts this light beam 21
3 into a light beam 221 in the direction -45 with respect to the X direction on a plane 301 parallel to the
The fourth reflector 53 redirects the light beam 222 on this plane 301 into a light beam 223 bent by 900 degrees. Since this light beam 223 also lies on the plane 302 which forms a -45 angle with the X direction, it is incident on the second Rossillon prism 35 by the fifth reflecting mirror 54 to form a combined light beam. It becomes possible to convert to H.224. To create this final light beam 224 ignoring the polarization direction, J
Although it is sufficient to have two reflecting mirrors in this part, it is not enough to make the polarization direction perpendicular to the plane 302 which forms -45 mirrors with the X direction. In this third embodiment, the direction of polarization is changed to Xy by the second reflecting mirror 51.
A state is created in which the light lies on a plane 301 parallel to the plane, and the third and fourth reflecting mirrors 52 and 53 maintain this state, so that the light is reflected by the fourth reflecting mirror 53. The polarization direction of the light beam 223 is naturally perpendicular to the plane 302 which forms -45 bis with the x direction.
The reflecting mirror 54 obtains the light beam 224 necessary for ideal synthesis without changing its state. In this third embodiment, the number of reflecting mirrors may be reduced without using four reflecting mirrors such as the second, third, fourth, and fifth reflecting mirrors 51, 52, 53, and 54; In this case, the polarization state of the light beam 224 that obliquely enters the second Rossillon prism 35 deviates from the ideal state, causing a loss during synthesis and also deteriorating the isolation with respect to light in the opposite direction. Don't forget.
なぜなら、少い枚数の反射鏡で理想的な偏光の光ビーム
224が得られないということは、第2のロシヨン・プ
リズム35を斜めに出射した逆方向の光ビーム224の
偏光方向が必然的に理想的(x方向と−450をなす平
面302に垂直)となる以上、それがそれらの反射鏡で
反射されて第2のファラデー回転素子33に逆方向から
入射する際の偏光状態はこ)での順方向光ビーム213
のそれとは異なり、従つて最終的には順方向と同じ光の
光路を第1の光ファイバー1まで戻る成分が出てくるこ
とを意味するからである。しかしこのアイソレーシヨン
の低下が許容できるような用途に対してはこの反射鏡枚
数の削減は有効である。第1の実施例においても、この
第3の実施例で、第2の実施例の旋光性結晶34を反射
鏡51,52,53,54に置き換えたのと同様のこと
が可能であることは明らかであろう。This is because the ideally polarized light beam 224 cannot be obtained with a small number of reflecting mirrors, which means that the polarization direction of the light beam 224 that is obliquely emitted from the second Rossillon prism 35 is necessarily Since it is ideal (perpendicular to the plane 302 making -450 degrees with the x direction), the polarization state when it is reflected by those mirrors and enters the second Faraday rotation element 33 from the opposite direction is as follows. forward light beam 213 of
This is because, unlike the above, this means that a component that returns to the first optical fiber 1 along the same optical path as the forward direction will eventually appear. However, this reduction in the number of reflecting mirrors is effective for applications where this reduction in isolation is acceptable. In the first embodiment as well, it is possible to do the same thing as in the third embodiment where the optically active crystal 34 in the second embodiment is replaced with reflecting mirrors 51, 52, 53, and 54. It should be obvious.
この場合には−45あ傾けた第2の複屈折結晶25への
2つの入射光ビームが互いに平行でよいので用いるべき
反射.゛鏡は2枚で十分である点が第3の実施例の場合
より有利である(たたし第2の複屈折結晶25へ入射す
る光ビームの間隔は第1の複屈折結晶21の出射光ビー
ムの間隔の1/V!になるように厚さを変えるのが偏光
状態の保存のために望まし・い)。また第3の実施例の
第2のロシヨン・プリズム35を第1の実施例の複屈折
結晶25と同種のもので置き換えて反射鏡の枚数を減ら
すことができることも明らかであろう。第2、第3の実
施例において、ロシヨン・プリズム31,35は他種の
複屈折プリズム、例えばニコル・プリズムやウオラスト
ン・プリズムに置き換えてもよい。In this case, the two incident light beams to the second birefringent crystal 25 tilted by -45 may be parallel to each other, so the reflection that should be used. It is more advantageous than the third embodiment in that two mirrors are sufficient (however, the interval between the light beams incident on the second birefringent crystal 25 is equal to the output of the first birefringent crystal 21). It is desirable to change the thickness so that it is 1/V! of the interval between the emitted light beams in order to preserve the polarization state). It will also be apparent that the second Rochlon prism 35 of the third embodiment can be replaced with one of the same type as the birefringent crystal 25 of the first embodiment to reduce the number of reflecting mirrors. In the second and third embodiments, the Rosillon prisms 31 and 35 may be replaced with other types of birefringent prisms, such as Nicol prisms or Wollaston prisms.
また反射鏡42,44,51,52,53,54のかわ
りに全反射プリズム等を用いてもよい。また、以上の実
施例において、集束性光伝送体11,12のピッチはユ
に限らず、β5・・・・・・・で
4ゝ4・も機能的にはほぼ同様である。Moreover, total reflection prisms or the like may be used instead of the reflecting mirrors 42, 44, 51, 52, 53, and 54. In addition, in the above embodiments, the pitch of the convergent optical transmitters 11 and 12 is not limited to Y, but is β5...
4.4. are also functionally almost the same.
更に、これらを通常の球画レンズで置換してもよい。ま
た、光は光ファイバー1,2を通る必要はなく、第1の
複屈折結晶21や第1のロシヨン・プリズム31等に平
行光ビーム101が入射し、第2の複屈折結晶25や第
2のロシヨン・プリズム35等から平行光ビーム105
,115が出射すれば十分であることは明らかであろう
。更にこれらの複屈折結晶21,25やロシヨン・プリ
ズム31,35等は方解石製である必要はなく、水晶等
の他の複屈折性の結晶で作つてもよい。Furthermore, these may be replaced with ordinary spherical lenses. In addition, the light does not need to pass through the optical fibers 1 and 2, and the parallel light beam 101 is incident on the first birefringent crystal 21, the first Rosillon prism 31, etc. Parallel light beam 105 from a Rossillon prism 35 etc.
, 115 is sufficient to emit light. Further, the birefringent crystals 21, 25, the Rosillon prisms 31, 35, etc. do not need to be made of calcite, and may be made of other birefringent crystals such as quartz.
ファラデー回転素子22,32,33の材料としては一
般に希土類元素や鉛、ビスマス等を含むガラスが用い得
るし、赤外光に対してはYlG等の結晶が用い得る。実
施例ではファラデー回転素子22,32,33中を光ビ
ームが直進するが、2つの反射面の間をジグザグに進む
ようにしてもよく、この形は特に電磁石の代りに永久磁
石を用いる場合に有効である。なお、逆方向の出射光ビ
ーム109,209または119,219を遮光板で遮
らずに利用することも可能で、偏光の直交性を利用して
それらを合成して用いることもできる。As the material for the Faraday rotation elements 22, 32, 33, glass containing rare earth elements, lead, bismuth, etc. can generally be used, and for infrared light, crystals such as YlG can be used. In the embodiment, the light beam travels straight through the Faraday rotary elements 22, 32, 33, but it may also travel in a zigzag manner between two reflective surfaces, and this shape is particularly effective when permanent magnets are used instead of electromagnets. be. Note that it is also possible to use the emitted light beams 109, 209 or 119, 219 in the opposite direction without blocking them with a light shielding plate, or they can be combined and used using the orthogonality of polarization.
第1図はこの発明の最も好ましい第1の実施例を示す斜
視図、第2図はこの発明の第2の実施例を示す斜視図、
第3図はこの発明の第3の実施例の特徴的部分を示す斜
視図である。
なお、図において、1,2・・・・・・光ファイバー、
11,12・・・・・・集束性光伝送体、21,25・
・複屈折結晶、31,35・・・・・ロシヨン・プリズ
ム、22,32,33・・・・・・ファラデー回転素子
、24,34・・・・・・旋光性結晶、42,44,5
1〜54・・・・・反射鏡、81・・・・・入射面、1
01〜105,109,112〜115,119,20
2〜204,209,212〜214,219,221
〜224・・・・・光ビーム、151・・・・・・偏光
状態図、301,302・・・・・・平面、てある。FIG. 1 is a perspective view showing the most preferred first embodiment of the invention, FIG. 2 is a perspective view showing the second embodiment of the invention,
FIG. 3 is a perspective view showing characteristic parts of a third embodiment of the invention. In addition, in the figure, 1, 2...optical fibers,
11, 12... Focusing optical transmission body, 21, 25...
・Birefringent crystal, 31, 35... Rocillon prism, 22, 32, 33... Faraday rotation element, 24, 34... Optical rotation crystal, 42, 44, 5
1 to 54...Reflector, 81...Incidence surface, 1
01-105, 109, 112-115, 119, 20
2-204, 209, 212-214, 219, 221
~224... Light beam, 151... Polarization state diagram, 301, 302... Plane.
Claims (1)
ビームに分岐する第1の複屈折素子と、その各々の直線
偏光光ビームの偏光方向を、m、nを整数として、それ
ぞれ(2m±1/2)直角及び(2n±1/2)直角(
複号同順)だけ回転させる非可逆偏光回転素子と、この
非可逆偏向回転素子を通過した2つの直線偏光光ビーム
をその偏光の直交性を利用して合成する第2の複屈折素
子とを含む光アイソレータ。1 A first birefringent element that splits an incident light beam into two linearly polarized light beams according to its polarization, and a polarization direction of each linearly polarized light beam, where m and n are integers, respectively (2 m ± 1/2) right angle and (2n±1/2) right angle (
a second birefringence element that combines two linearly polarized light beams that have passed through this irreversible polarization rotation element by utilizing the orthogonality of the polarizations. Including optical isolator.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52064315A JPS6049297B2 (en) | 1977-05-31 | 1977-05-31 | optical isolator |
US05/911,116 US4178073A (en) | 1977-05-31 | 1978-05-31 | Optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52064315A JPS6049297B2 (en) | 1977-05-31 | 1977-05-31 | optical isolator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53149046A JPS53149046A (en) | 1978-12-26 |
JPS6049297B2 true JPS6049297B2 (en) | 1985-11-01 |
Family
ID=13254670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52064315A Expired JPS6049297B2 (en) | 1977-05-31 | 1977-05-31 | optical isolator |
Country Status (2)
Country | Link |
---|---|
US (1) | US4178073A (en) |
JP (1) | JPS6049297B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194192U (en) * | 1984-06-04 | 1985-12-24 | 株式会社ワールドケミカル | Shaft sealing device |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54103062A (en) * | 1978-01-31 | 1979-08-14 | Nippon Telegr & Teleph Corp <Ntt> | Multimode optical isolator |
US4239329A (en) * | 1978-08-04 | 1980-12-16 | Nippon Telegraph And Telephone Public Corporation | Optical nonreciprocal device |
JPS5828561B2 (en) * | 1978-08-04 | 1983-06-16 | 日本電信電話株式会社 | optical isolator |
JPS55121215U (en) * | 1979-02-21 | 1980-08-28 | ||
DE3013498A1 (en) * | 1979-04-09 | 1980-10-30 | Crosfield Business Mach | OPTICAL MODULATOR AND LASER ENGRAVING DEVICE WITH SUCH A MODULATOR |
JPS5649517U (en) * | 1979-09-25 | 1981-05-01 | ||
JPS57100410A (en) * | 1980-12-15 | 1982-06-22 | Fujitsu Ltd | Optical isolator |
CA1253726A (en) * | 1982-06-28 | 1989-05-09 | Masataka Shirasaki | Polarization rotation compensator and optical isolator using the same |
US4464022A (en) * | 1982-09-28 | 1984-08-07 | At&T Bell Laboratories | Optical circulator |
JPS6036930A (en) * | 1983-08-09 | 1985-02-26 | Fujitsu Ltd | Chromatic dispersion measurement method |
US4686678A (en) * | 1984-03-27 | 1987-08-11 | Nec Corporation | Semiconductor laser apparatus with isolator |
DE3741455A1 (en) * | 1987-12-08 | 1989-06-22 | Standard Elektrik Lorenz Ag | OPTICAL ISOLATOR |
US4893890A (en) * | 1988-05-04 | 1990-01-16 | Lutes George F | Low-loss, high-isolation, fiber-optic isolator |
US4974944A (en) * | 1988-07-21 | 1990-12-04 | Hewlett-Packard Company | Optical nonreciprocal device |
US5033830A (en) * | 1989-10-04 | 1991-07-23 | At&T Bell Laboratories | Polarization independent optical isolator |
US5052786A (en) * | 1990-03-05 | 1991-10-01 | Massachusetts Institute Of Technology | Broadband faraday isolator |
US5151955A (en) * | 1990-06-20 | 1992-09-29 | Kabushiki Kaisha Shinkosha | Optical isolator |
US5237445A (en) * | 1990-11-30 | 1993-08-17 | Shimadzu Corporation | Optical isolator |
DE69121176T2 (en) * | 1990-12-17 | 1997-01-09 | Nippon Telegraph & Telephone | Optical circulator |
US5267078A (en) * | 1990-12-20 | 1993-11-30 | Kazuo Shiraishi | Optical isolator |
JPH0746177B2 (en) * | 1991-05-28 | 1995-05-17 | 三菱瓦斯化学株式会社 | Optical isolator |
US5428477A (en) * | 1991-06-14 | 1995-06-27 | Tokin Corporation | Optical isolator operating independent of polarization of an incident beam |
US5191467A (en) * | 1991-07-24 | 1993-03-02 | Kaptron, Inc. | Fiber optic isolater and amplifier |
JP3160319B2 (en) * | 1991-07-25 | 2001-04-25 | 株式会社信光社 | Optical isolator |
US5631771A (en) * | 1991-09-19 | 1997-05-20 | Lucent Technologies Inc. | Optical isolator with polarization dispersion and differential transverse deflection correction |
JP2677726B2 (en) * | 1991-09-20 | 1997-11-17 | 富士通株式会社 | Optical transmitter |
JP2775547B2 (en) * | 1992-02-17 | 1998-07-16 | 秩父小野田株式会社 | Optical isolator |
WO1994015243A1 (en) * | 1992-12-22 | 1994-07-07 | Telstra Corporation Limited | An optical isolator |
US5602673A (en) * | 1993-12-29 | 1997-02-11 | Lucent Technologies Inc. | Optical isolator without polarization mode dispersion |
US5528415A (en) * | 1994-11-09 | 1996-06-18 | Duke University | Compact enhanced performance optical isolator using a faraday rotator |
JP2774467B2 (en) * | 1995-08-14 | 1998-07-09 | 彰二郎 川上 | Polarization independent optical isolator |
US5729377A (en) * | 1995-12-26 | 1998-03-17 | Lucent Technologies, Inc. | Optical apparatus |
JPH1051388A (en) * | 1996-08-01 | 1998-02-20 | Nec Corp | Optical amplifier device |
US5734763A (en) * | 1996-09-04 | 1998-03-31 | Hewlett-Packard Company | Compact two-by-n optical components based on bierfringent walk-off crystals |
US6449091B1 (en) * | 1996-12-03 | 2002-09-10 | Jds Fitel Inc. | Optical isolator |
US6014254A (en) * | 1997-02-24 | 2000-01-11 | Cheng; Yihao | Optical device for splitting an input beam into two orthogonal polarization states |
US6026202A (en) * | 1997-02-25 | 2000-02-15 | Hewlett-Packard Company | Compact, low crosstalk, three-port optical circulator |
US5930418A (en) * | 1997-02-25 | 1999-07-27 | Hewlett-Packard Company | Optical assembly and method based on TEC fibres |
US6088153A (en) * | 1997-06-26 | 2000-07-11 | Scientific-Atlanta, Inc. | Multi-functional optical isolator |
US6075642A (en) * | 1998-06-18 | 2000-06-13 | Hewlett-Packard Company | Multi-port optical isolator |
US5973832A (en) * | 1998-10-19 | 1999-10-26 | Uniphase Corporation | High performance optical circulators |
US6167174A (en) * | 1998-10-27 | 2000-12-26 | Adc Telecommunications, Inc. | Multiple port, fiber optic isolator |
US6078716A (en) | 1999-03-23 | 2000-06-20 | E-Tek Dynamics, Inc. | Thermally expanded multiple core fiber |
US6246518B1 (en) | 1999-03-25 | 2001-06-12 | E-Tek Dynamics, Inc. | Reflection type optical isolator |
US6374009B1 (en) | 1999-05-10 | 2002-04-16 | Jds Uniphase Corporation | TEMC fiber based optical switch |
US6631220B1 (en) | 2000-07-07 | 2003-10-07 | Optiwork, Inc. | Optical isolator |
US6442310B1 (en) | 2000-07-14 | 2002-08-27 | Jds Uniphase Inc. | Optical coupling device and method |
US7173762B2 (en) * | 2000-10-13 | 2007-02-06 | Finisar Corporation | Optical isolator with reduced insertion loss and minimized polarization mode dispersion |
US6580558B2 (en) * | 2001-04-27 | 2003-06-17 | Hon Hai Precision Ind. Co., Ltd. | Optical isolator |
US7170921B1 (en) * | 2002-10-18 | 2007-01-30 | Finisar Corporation | Magneto-optic variable optical attenuator |
US20040156092A1 (en) * | 2003-02-08 | 2004-08-12 | Hunt Jeffrey H. | Stimulated Rayleigh scattering optical amplifier |
US20040196530A1 (en) * | 2003-03-06 | 2004-10-07 | Hunt Jeffrey H | Stimulated spin-flip raman optical amplifier |
US7426325B2 (en) * | 2007-01-04 | 2008-09-16 | Electro-Optics Technology, Inc. | Compact, high power, fiber pigtailed faraday isolators |
GB2450955B (en) | 2008-03-11 | 2009-07-08 | Wymbs Engineering Ltd | Valve assembly and method of operation |
JP5643936B2 (en) * | 2011-06-29 | 2014-12-24 | フルウチ化学株式会社 | Collimator and optical isolator with collimator |
US9663703B2 (en) | 2014-04-25 | 2017-05-30 | James George Clements | Method and compositions for enhanced oil recovery |
US20170176781A1 (en) | 2015-12-18 | 2017-06-22 | Electro-Optics Technology, Inc. | Single and multi-stage high power optical isolators using a single polarizing element |
US10718963B1 (en) | 2016-11-16 | 2020-07-21 | Electro-Optics Technology, Inc. | High power faraday isolators and rotators using potassium terbium fluoride crystals |
CN113009720A (en) * | 2021-04-19 | 2021-06-22 | 深圳市麓邦技术有限公司 | Optical isolator |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3495892A (en) * | 1966-01-21 | 1970-02-17 | Rca Corp | Split beam light modulator |
US3512867A (en) * | 1967-05-18 | 1970-05-19 | Philips Corp | Magneto-optical digital light deflection device |
US3523718A (en) * | 1968-04-17 | 1970-08-11 | Us Army | Low temperature optical isolator for laser systems |
US3617129A (en) * | 1969-11-10 | 1971-11-02 | United Aircraft Corp | Interferometric optical isolator |
-
1977
- 1977-05-31 JP JP52064315A patent/JPS6049297B2/en not_active Expired
-
1978
- 1978-05-31 US US05/911,116 patent/US4178073A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194192U (en) * | 1984-06-04 | 1985-12-24 | 株式会社ワールドケミカル | Shaft sealing device |
Also Published As
Publication number | Publication date |
---|---|
JPS53149046A (en) | 1978-12-26 |
US4178073A (en) | 1979-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6049297B2 (en) | optical isolator | |
US4756607A (en) | Optical isolator device having two cascaded isolator elements with different light beam rotation angles | |
US4702557A (en) | Optical branching device using a liquid crystal | |
EP0552783B1 (en) | Optical isolator device | |
US5936768A (en) | Optical passive device for an optical fiber amplifier and the optical amplifier | |
JP3368209B2 (en) | Reflective optical circulator | |
JP2003098500A (en) | Reflective variable optical attenuator | |
JP3161885B2 (en) | Optical isolator | |
JPH01241502A (en) | Polarizing element for optical isolator | |
JPH0246419A (en) | Optical isolator | |
US20070171528A1 (en) | Polarized wave coupling optical isolator | |
GB2143337A (en) | Optical isolator | |
JPS6230607B2 (en) | ||
EP0653660A1 (en) | Optical isolator with reduced walk-off | |
JPH04102821A (en) | Polarization nondependent type optical isolator | |
JP2553358B2 (en) | Optical isolator | |
JP2686453B2 (en) | Optical isolator | |
JP2002250897A (en) | Optical device | |
JPH06258599A (en) | 3-port optical circulator | |
JPH04366806A (en) | optical circulator | |
JPS61102621A (en) | optical isolator | |
JPH1096838A (en) | Composite optical device | |
JPS6230609B2 (en) | ||
JPH06317703A (en) | Polarization-independent beam splitter and optical component using the same | |
JP3463175B2 (en) | Combination rotator |