JPH0160577B2 - - Google Patents
Info
- Publication number
- JPH0160577B2 JPH0160577B2 JP62207823A JP20782387A JPH0160577B2 JP H0160577 B2 JPH0160577 B2 JP H0160577B2 JP 62207823 A JP62207823 A JP 62207823A JP 20782387 A JP20782387 A JP 20782387A JP H0160577 B2 JPH0160577 B2 JP H0160577B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- nonwoven fabric
- heat
- composite
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Description
〔産業上の利用分野〕
本発明は、嵩高な従つて柔軟性にも優れた不織
布及びその製造方法に関するものである。
〔従来の技術〕
融点を異にする2成分から成り、融点の低い方
の成分が繊維表面の可成りな部分例えば半分以上
を占める並列型または鞘芯型のポリプロピレン系
熱接着性複合繊維とそれを使用した不織布が知ら
れてから既に多年を経過し、その間種々な改良が
なされてきた。これらの改良の主なものは、例え
ば特公昭52−12830号、特開昭58−136867号、特
開昭58−180614号等に開示されているように、不
織布に加工するときの加熱処理における収縮性の
改良、得られる不織布の強度の向上や嵩高性等の
改良を目的としたものであつて、それなりの成果
が得られているが、嵩高性については充分でなか
つた。
〔発明が解決しようとする問題点〕
上記の如くポリプロピレン系熱接着性複合繊維
の加熱処理によつて得られる不織布の嵩高性の向
上については充分な成果は得られていない。この
ような状況下で、例えば紙おしめ、衛材等の如く
用途によつては不織布に加工したときの嵩高性を
従つて柔軟材をも一層向上させたい要求を満たせ
ない問題点があり、その改善が強く望まれてい
た。
〔問題点を解決するための手段〕
本発明は、上記問題点を解決し、嵩高な従つて
柔軟性にも優れた不織布を提供することを目的に
鋭意研究した結果、芯部によつて嵩高性を付与
し、鞘部によつて熱接着性を付与するように熱接
着性複合繊維を構成してこれを使用することによ
つて、得られる不織布は充分に嵩高であると共に
柔軟な風合をも有することを究明して本発明を完
成した。
すなわち本発明の一つは、2種のポリプロピレ
ン系ポリマーの芯成分から成る並列型複合構造を
有しその複合比が1:2〜2:1であつて且つ一
方の芯成分のQ値(ここにQ=重量平均分子量/
数平均分子量)が6以上で他方の芯成分のQ値が
5以下である芯部と融点が上記2種の芯成分の低
い方の融点よりも20℃以上低いポリエチレン系ポ
リマーの鞘成分から成り上記芯部との合計量に基
づいて25〜55重量%の割合で上記芯部を被覆して
いる鞘部とから成る熱接着性複合繊維を少なくと
も30重量%含有していて該熱接着性複合繊維の鞘
部に鞘成分から成る節状の凝集部が形成されるこ
となく繊維間が接着されていることにより安定化
されていることを特徴とする不織布に関するもの
(以下、第一発明ということがある)である。
本発明の他の一つは、2種のポリプロピレン系
ポリマーを各別に2種の芯成分用に、また融点が
上記2種のポリプロピレン系ポリマーの低い方の
融点よりも20℃以上低いポリエチレン系ポリマー
を鞘成分用にそれぞれ使用して複合紡糸して、2
種の芯成分から成る並列型複合構造を有してその
複合比が1:2〜2:1であり且つ一方の芯成分
のQ値(ここにQ=重量平均分子量/数平均分子
量)が6以上で他方の芯成分のQ値が5以下であ
る芯部を鞘成分から成る鞘部が上記芯部との合計
量に基づいて25〜55重量%の割合で芯部を被覆し
た構造の複合未延伸糸を得、該複合未延伸糸を延
伸に先立つて非緊張下での加熱処理及び冷却処理
を施すことなく常温から130℃までの延伸温度で
総合延伸倍率として1.3〜9倍に一段以上の延伸
工程で延伸して熱接着性複合繊維を製造し、該熱
接着性複合繊維を少なくとも30重量%含有するウ
エブを調製して鞘成分の融点よりも高く2種の芯
成分の低い方の融点よりも低い温度で加熱処理す
ることを特徴とする不織布の製造方法に関するも
の(以下、第二発明ということがある)である。
〔第一発明の構成の具体的説明〕
以下に第一発明の構成を具体的に説明する。
先ず、本発明に係る不織布に使用されている熱
接着性複合繊維について図面により説明する。
第1図、第2図及び第3図はそれぞれ本発明に
おいて使用されている熱接着性複合繊維の断面構
成の態様を模式的に示す断面図である。
図面中、1は芯部であつて2種のポリプロピレ
ン系ポリマーの芯成分からそれぞれ成る芯区分帯
1a及び1bで構成された並列型複合構造を有し
ている。この芯部1の並列型複合構造には、種々
な態様がある。例えば、第1図の如き円を直径で
半円づつに2分した断面構造や、第2図の如き一
方の芯区分帯1aの周の僅かな1部を残してその
殆どを他方の芯成分帯1bが取り巻いた断面構造
があり、実際には多くの場合上記両極端の中間の
断面構造となつている。また、第3図の如く芯部
1が繊維断面において偏心している構造であつて
もよい。
ポリプロピレン系ポリマーとしては、結晶性の
ポリプロピレンが代表的に示されるが、プロピレ
ンと少量のエチレン、ブテン−1、ペンテン−1
等のプロピレン以外のα−オレフインとのコポリ
マーであつても良く、その場合、コモノマー成分
が40重量%以下が好ましい。
このようなポリプロピレン系ポリマーの2種が
それぞれ芯区分帯1a及び1bの芯成分として用
いられているが、これらはQ値において相違して
おり、1方の芯区分帯1aの芯成分(以下、1a
成分と略記することがある)のQ値は6以上であ
つて汎用のポリプロピレンが該当し、他方の芯区
分帯1bの芯成分(以下、1b成分と略記するこ
とがある)のQ値は5以下、好ましくは3〜5で
ある。ここで、Q値とはポリマーの分子量分布を
表わす数値であり、次式
Q=w/n
(ここでwは重量平均分子量
は数平均分子量)
で示される。
また芯部1を構成する芯成分1aと1bとの複
合比は1:2〜2:1である。
このように芯部1がQ値を異にする1a成分と
1b成分とで並列型複合構造をとることにより、
複合繊維に顕在捲縮を与えると共に加熱処理によ
り潜在捲縮を顕在化せしめて嵩高とするのであ
る。
2は鞘部であつて融点が芯部1の2つの芯成分
すなわち1a成分と1b成分との低い方の融点(融
点に差がない場合は同じ融点)よりも20℃以上低
いポリエチレン系ポリマーの鞘成分から成つてい
る。このようなポリエチレン系ポリマーとしては
ポリエチレンやエチレン−酢酸ビニルコポリマー
(エチレン成分98〜60重量%)が示される。更に
ポリエチレンとして低密度ポリエチレン、中密度
ポリエチレン及び高密度ポリエチレンが示され
る。
鞘部2が芯部1を被覆することにより鞘芯型複
合構造が構成されており、鞘部2の割合は芯部1
との合計量に対して25〜55重量%である。この鞘
部2の割合が、25重量%未満の場合は得られる不
織布の強度が低過ぎて実用上問題があり、55重量
%を超える場合は芯部1による捲縮発現を妨害し
て複合繊維としての捲縮が不充分となつて嵩高性
に劣るのである。
鞘部2は上記のように低い融点のポリエチレン
系ポリマーであつて、従来の熱接着性の鞘芯型複
合繊維と同様に繊維間が接着されている部分すな
わち繊維間接着部を形成している。上記芯部1及
び鞘部2と同様の成分で構成されている熱接着性
複合繊維であつても、その製造工程が次記する本
発明に係る製造工程と相違したものであることに
よつて特開昭63−105161号に開示されている如く
鞘部の多数の個所において鞘成分から成る節状の
凝集部が形成されている場合もあるが、本発明に
係る不織布を構成している複合繊維にはこのよう
な節状の凝集部は形成されていない。
なお、上記熱接着性複合繊維の繊度は特に限定
されないが、風合を重視する用途に供する不織布
の場合は0.7〜7デニールが適当である。
本発明に係る不織布は、上記の熱接着性複合繊
維の単独か、少なくとも30重量%含有して他の繊
維例えばレーヨン、木綿、麻、ポリアミド繊維、
ポリエステル繊維、アクリル繊維等と混在してお
り、上記熱接着性複合繊維の鞘部2の繊維間接着
部によつて不織布構造を成しているのである。
〔第二発明の構成の具体的説明)
本発明に係る不織布を製造するに当つて、先ず
熱接着性複合繊維を次のようにして製造する。す
なわち、前記第一発明の構成で説明した芯成分用
の2種のポリプロピレン系ポリマーと鞘成分用の
ポリエチレン系ポリマーとの3種のポリマーを準
備する。芯成分用のポリプロピレン系ポリマーに
ついては、Q値6以上の1a成分用のポリプロピ
レン系ポリマーとしてメルトフロレート(MFR
で示すことがある。JIS K7210の表1の条件14に
よる。以下同じ)が4〜40のものが好ましく、ま
た、Q値5以下の1b成分用のポリプロピレン系
ポリマーとしてメルトフロレートが4〜60のもの
が好ましい。Q値5以下のポリプロピレン系ポリ
マーは、Q値が5よりも大きいポリプロピレン系
ポリマーを原料ポリマーとして次の方法により製
造することも出来る。すなわち、一つの方法は、
原料ポリマーの融点以上の温度の加熱によりパー
オキサイドを発生する有機過酸化物化合物、例え
ばt−ブチルハイドロパーオキサイド、クメイン
ハイドロパーオキサイド、2,5−ジメチルヘキ
サン−2,5−ジヒドロパーオキサイド等を原料
ポリマーに0.01〜1.0重量%添加混合し、押出機
により溶融押出しをして造粒する方法である。或
は別法として、上記有機過酸化物化合物を添加し
ないで高温で数回溶融押出し、造粒を繰り返す方
法によつても良い。このようにQ値は溶融押出し
により少し小さくなるから、複合紡糸前のポリマ
ーとしては、1a成分用のポリマーのQ値は6よ
り若干大きい値以上のものが良く、1b成分用の
ポリマーのQ値は5より若干大きくても差し支え
ない。またポリエチレン系ポリマーとしてメルト
イデツクス(MIで示すことがある。JIS K7210
の表1の条件4による。)が2〜50のものが好ま
しい。
前記3種のポリマーが準備できたら、これらを
3台の押出機に各別に供給して溶融押出しをし、
それぞれ各別のギアポンプを経由して公知の適切
な複合紡糸用口金に導く。3つのポリマー成分を
使用して本発明に係る熱接着性複合繊維と同様の
断面構造に紡出することの出来る公知の複合紡糸
用口金として、例えば特公昭44−29522号に記載
されている複合紡糸用口金を使用することが出来
る。このような複合紡糸用口金に上記3種のポリ
マーを導くに当つて、芯成分1a用と1b用との
それぞれのポリマー量が2:1〜1:2の範囲の
所定の複合比となるように、また鞘成分用のポリ
マー量が芯部1の全ポリマー量との合計量に基づ
いて25〜55重量%の範囲の所定割合となるように
それぞれのギアポンプの圧送量を調節する。
このようにして得られた所定の断面構造の複合
未延伸糸を一段延伸または多段延伸する。延伸温
度は常温(15〜40℃)から130℃までの温度であ
る。多段延伸においては通常、第一段延伸温度を
第二段延伸温度よりも低くする方が、また一段延
伸の場合も室温ないしはそれに近い比較的低い延
伸温度の方が、得られる複合繊維の潜在捲縮性を
増大させるので好ましい。一般に延伸時は発熱す
るので、規定範囲内では低い温度の好ましい第一
段延伸は、例えば常温に維持されている水中を通
過させながら、或は、冷却水等により常温に保た
れている室内で行なうのが好ましい。
また、延伸倍率は、多段延伸の場合も含まれる
ように総合延伸倍率で示して1.3〜9倍特に1.5〜
6倍が好ましい。
上記の延伸工程において、特開昭63−105161号
に開示されている如き、延伸に先立つて複合未延
伸糸を非緊張下での加熱処理をした後に室温に冷
却するようなことは行わない。少なくとも上記の
如き非緊張下での熱処理及び冷却処理を延伸に先
立つて行わないことによつて、更に、は、本発明
においても一般の延伸条件と同様に最高延伸倍率
(糸切れし始めるときの延伸倍率)の90%未満で
延伸する場合には一層完全に、延伸された複合繊
維の鞘部に特開昭63−105161号に開示されている
如く加熱処理により鞘成分から成る節状の凝集部
を生成させる凝集部形成性部分が形成されること
はない。
前記の如き温度及び延伸倍率で行なうことによ
り、繊維強度が高く、得られる不織布の収縮率を
低くして嵩高とさせる三次元捲縮が得られるので
ある。延伸が終れば必要に応じて乾燥し、用途に
応じてそのままかまたは所定の長さにカツトす
る。
未延伸糸の延伸は、処理能率の上から通常、未
延伸糸を数万〜数百万デニールのトウに集束して
行なうのが好ましい。
このようにして得られる熱接着性複合繊維の単
独から成るウエブ、または少なくとも30重量%を
含有するように前記他の繊維と混合してウエブを
調製し、このウエブを熱接着性複合繊維の鞘成分
の融点よりも高く2種の芯成分の低い方の融点よ
りも低い温度で加熱処理して本発明に係る不織布
が得られるのである。
〔効果〕
本発明に係る不織布に使用されている熱接着性
複合繊維は、芯部がQ値の相違するポリプロピレ
ン系ポリマーを使用した並列型複合構造を有して
おり、融点が芯成分のポリマーよりも低いポリエ
チレン系ポリマーの鞘部で芯部を被覆した複合構
造となつている。従つてこのような熱接着性複合
繊維を含有するウエブが所定温度で加熱処理され
て得られた不織布は、充分に嵩高で且つ非常に安
定した不織布となつている。その理由は、この不
織布を構成している上記複合繊維は一般に捲縮発
現の小ない鞘芯構造でありながら、芯部が並列型
複合構造であることによつて加熱処理前から有す
る顕在捲縮及び加熱処理で潜在捲縮が顕在化せし
められた捲縮は充分に大きく且つこれらは緩やか
な三次元捲縮形態を有していて不織布を充分に嵩
高とならしめており、また繊維の断面構造全体が
鞘芯構造であることによつて熱接着性は充分であ
つて繊維間熱接着部による不織布構造は非常に安
定したものとなつているのである。
従つて本発明に係る不織布は、従来問題点であ
つた嵩高を充分向上させたものであり、従つて鞘
部に鞘成分から成る節状の凝集部が形成されては
いないが柔軟な風合をも有するものである。
〔実施例、比較例〕
以下、実施例、比較例により本発明を更に具体
的に説明する。
実施例1〜12、比較例1〜5
(i) 熱接着性複合繊維の製造
第1表に示す8種のポリプロピレンa、b、
c、d、e、f、g及びhと2種のポリエチレ
ン系ポリマーi及びjとを第2表に示す種々な
組み合わせで使用して2種のポリプロピレンか
らそれぞれ成る1a成分及び1b成分で構成され
た並列型複合構造の芯部を1種のポリエチレン
系ポリマーから成る鞘部が被覆した構造の複合
繊維を次のようにして複合紡糸及び延伸処理を
して製造した。
紡糸口金として孔径1.0mmφ、孔数120個のも
のを使用し、芯部を構成する1a成分と1b成分
との複合比を1:1とし、芯部と鞘部との合計
量に対する鞘部の割合は33.3〜66.7重量%に変
化させ、紡糸温度(紡出直前のポリマー温度)
をポリプロピレンは1a成分、1b成分共に260℃
で、ポリエチレン系ポリマーは220℃で紡糸し
て、11d/f(フイラメント当りのデニール)
の未延伸糸を得た。未延伸糸は約9万デニール
のトウに集束して延伸した。延伸には3段の延
伸ロールを用いた。一段延伸は上記トウを第一
延伸ロール及び第二段延伸ロールに通すことに
より、二段延伸は上記一段延伸に続いて更に第
三延伸ロールに通すことにより行つた。延伸温
度については第一段延伸温度(一段延伸の場合
の延伸温度も同じ)は第一延伸ロールの温度
と、また第二段延伸温度は第二延伸ロールの温
度と同じであると規定される。このような方法
により、先ず上記トウを21℃の0.2%表面仕上
剤浴を通過させてから、26℃の第一延伸ロー
ル、80℃の第二延伸ロール、及び28℃の第三延
伸ロールに順次通して二段延伸(実施例1〜
9、比較例1〜5)か、又は第二延伸ロールの
温度を70℃として第三延伸ロールを使用しない
で一段延伸(実施例10〜12)を行なつた後、室
温より高温のものは、室温に冷却した。このよ
うにして得られた各熱接着性複合繊維の強伸度
を測定し、また捲縮形状について調べた。
(ii) 各熱接着性複合繊維単独から成る不織布の製
造
前項(i)で得られた各熱接着性複合繊維毎に梳
綿機に2回通して目付100g/m2のウエブとし、
各ウエブを145℃の熱風循環式乾燥内に5分間
置いて不織化した後に室温にて冷却した。得ら
れた不織布の嵩高を試験した。
結果を第2表に示す。
実施例13〜17、比較例6〜7
熱接着性複合繊維の含有率を異にした他の繊維
との混合繊維から成る不織布の製造
実施例3で得られた熱接着性複合繊維(2.9d/
f)を64mmにカツトしたものと、2d×51mmのレ
ーヨンとを第3表に示す割合で混合し、実施例1
〜12と同様にして目付約100g/m2の不織布を製
造し、不織布の嵩高及び風合を試験し、不織布強
伸度も測定した。
結果を第3表に示す。なお、実施例17は実施例
3で得られた熱接着性複合繊維を100%使用し他
の繊維を使用しなかつたこと以外は上記と同様に
して製造した不織布であり、上記と同様に試験し
た結果を第3表に併記した。
上記各試験方法を以下に示す。
繊維強伸度:
JIS L1015 7.7による。
捲縮形状:
145℃に5分加熱後、目視により二次元捲縮
か三次元捲縮かを判断する。
不織布の嵩高:
各不織布を20cm×20cmの大きさに切断して5
枚を積み重ね、その上に厚紙を乗せて測つた不
織布全体の厚さから、不織布1枚当りの厚さを
算出して嵩高値(mm)とする。
不織布の強度及び伸度:
不織布から20cm×5cmの試験片を20cmの辺が
梳綿機上での流れ方向に沿うように5枚切り取
り、それぞれについてオートグラフ引張強度試
験機により
つかみ間隔 100mm
引張速度 100mm/分
の条件で破断強度及び伸度を求め、5枚の平均
値をとる。
[Industrial Field of Application] The present invention relates to a bulky nonwoven fabric with excellent flexibility and a method for producing the same. [Prior Art] Parallel type or sheath-core type polypropylene thermoadhesive conjugate fiber consisting of two components with different melting points, in which the component with the lower melting point occupies a considerable portion of the fiber surface, for example, more than half, and the same. It has been many years since non-woven fabrics using these materials were known, and various improvements have been made during that time. The main improvements in these improvements are as disclosed in, for example, Japanese Patent Publication No. 52-12830, Japanese Patent Application Publication No. 58-136867, and Japanese Patent Application Publication No. 180614/1980, etc., in heat treatment when processing into nonwoven fabrics. The aim was to improve the shrinkage properties, the strength and bulkiness of the obtained nonwoven fabric, and although some results were obtained, the bulkiness was not sufficient. [Problems to be Solved by the Invention] As described above, sufficient results have not been obtained in improving the bulkiness of nonwoven fabrics obtained by heat treating polypropylene thermoadhesive conjugate fibers. Under these circumstances, there is a problem that for some uses, such as paper diapers and sanitary materials, it is not possible to meet the demands of further improving the bulkiness and therefore the softness of nonwoven fabrics when processed. Improvement was strongly desired. [Means for Solving the Problems] As a result of intensive research aimed at solving the above-mentioned problems and providing a bulky nonwoven fabric with excellent flexibility, the present invention has been made to solve the above problems. By configuring and using heat-adhesive composite fibers to impart properties and heat-adhesive properties through the sheath, the resulting nonwoven fabric has sufficient bulk and a soft texture. The present invention was completed by determining that the present invention also has the following properties. That is, one of the present inventions has a parallel composite structure consisting of core components of two types of polypropylene polymers, the composite ratio of which is 1:2 to 2:1, and the Q value of one of the core components (here Q=weight average molecular weight/
The core component has a number average molecular weight (number average molecular weight) of 6 or more and the Q value of the other core component is 5 or less, and a polyethylene polymer sheath component whose melting point is 20°C or more lower than the lower melting point of the above two core components. The heat-adhesive composite fiber contains at least 30% by weight of heat-adhesive composite fibers consisting of a sheath covering the core in a proportion of 25 to 55% by weight based on the total amount of the core. A nonwoven fabric characterized in that it is stabilized by adhesion between fibers without the formation of nodal aggregates made of sheath components in the sheath portion of the fibers (hereinafter referred to as the first invention). ). Another aspect of the present invention is to use two types of polypropylene polymers separately for two types of core components, and a polyethylene type polymer whose melting point is 20°C or more lower than the lower melting point of the above two types of polypropylene polymers. are used for each of the sheath components, composite spinning is carried out, and 2
It has a parallel composite structure consisting of seed core components, the composite ratio is 1:2 to 2:1, and the Q value of one core component (here, Q = weight average molecular weight / number average molecular weight) is 6. A composite structure in which the other core component has a Q value of 5 or less, and the core component is covered with a sheath component at a ratio of 25 to 55% by weight based on the total amount of the core component. An undrawn yarn is obtained, and the composite undrawn yarn is stretched at a stretching temperature from room temperature to 130° C. without heat treatment or cooling treatment under no tension prior to stretching, and the total stretching ratio is increased by one step or more from 1.3 to 9 times. A web containing at least 30% by weight of the heat-adhesive conjugate fiber is prepared by stretching in the drawing step of 30% by weight, and the melting point of the sheath component is higher than that of the lower of the two core components. This invention relates to a method for producing a nonwoven fabric characterized by heat treatment at a temperature lower than its melting point (hereinafter sometimes referred to as the second invention). [Specific explanation of the structure of the first invention] The structure of the first invention will be specifically explained below. First, the heat-adhesive conjugate fiber used in the nonwoven fabric according to the present invention will be explained with reference to the drawings. FIG. 1, FIG. 2, and FIG. 3 are sectional views each schematically showing the cross-sectional configuration of the heat-adhesive conjugate fiber used in the present invention. In the drawings, reference numeral 1 denotes a core, which has a parallel composite structure composed of core segments 1a and 1b each made of core components of two types of polypropylene polymers. The parallel composite structure of the core 1 has various aspects. For example, a cross-sectional structure in which a circle is divided into two semicircles by the diameter as shown in Fig. 1, or a cross-sectional structure in which one core segment band 1a is divided into two semicircles by its diameter, or most of the circumference of one core segment band 1a is left aside and most of it is divided into two half circles as shown in Fig. 2. There is a cross-sectional structure surrounded by the band 1b, and in reality, in many cases, the cross-sectional structure is intermediate between the above two extremes. Further, the structure may be such that the core portion 1 is eccentric in the fiber cross section as shown in FIG. A typical polypropylene polymer is crystalline polypropylene, but propylene and a small amount of ethylene, butene-1, pentene-1
It may also be a copolymer with an α-olefin other than propylene such as, for example, propylene, and in that case, the comonomer component is preferably 40% by weight or less. Two types of such polypropylene polymers are used as the core components of the core segments 1a and 1b, respectively, but they differ in Q value, and the core component of one of the core segments 1a (hereinafter referred to as 1a
The Q value of the core component (hereinafter sometimes abbreviated as component 1b) of the other core segment band 1b is 6 or more and general-purpose polypropylene is 5. Below, preferably 3 to 5. Here, the Q value is a numerical value representing the molecular weight distribution of the polymer, and is expressed by the following formula: Q=w/n (where w is the weight average molecular weight and is the number average molecular weight). Further, the composite ratio of core components 1a and 1b constituting the core portion 1 is 1:2 to 2:1. In this way, core 1 has a different Q value from the 1a component.
By forming a parallel composite structure with the 1b component,
In addition to imparting actual crimp to the composite fiber, the latent crimp is brought to the surface through heat treatment, thereby making it bulky. 2 is a sheath part made of a polyethylene polymer whose melting point is 20°C or more lower than the lower melting point of the two core components of core part 1, that is, component 1a and component 1b (if there is no difference in melting point, the melting point is the same). It consists of a sheath component. Examples of such polyethylene polymers include polyethylene and ethylene-vinyl acetate copolymers (ethylene content: 98 to 60% by weight). Further examples of polyethylene include low density polyethylene, medium density polyethylene and high density polyethylene. A sheath-core type composite structure is constructed by covering the core 1 with the sheath 2, and the proportion of the sheath 2 is larger than that of the core 1.
and 25 to 55% by weight based on the total amount. If the proportion of this sheath part 2 is less than 25% by weight, the strength of the resulting nonwoven fabric will be too low, causing a practical problem, and if it exceeds 55% by weight, it will interfere with the crimp development of the core part 1, resulting in composite fibers. This results in insufficient crimp and poor bulkiness. The sheath portion 2 is made of a polyethylene polymer with a low melting point as described above, and forms a portion where fibers are bonded, that is, an interfiber bonding portion, similar to conventional heat-adhesive sheath-core composite fibers. . Even if the heat-adhesive composite fiber is composed of the same components as the core part 1 and the sheath part 2, the manufacturing process is different from the manufacturing process according to the present invention described below. As disclosed in JP-A No. 63-105161, there are cases in which knot-shaped aggregates of sheath components are formed at many locations in the sheath, but the composite constituting the nonwoven fabric according to the present invention Such knot-like aggregates are not formed in the fibers. The fineness of the heat-adhesive conjugate fiber is not particularly limited, but in the case of a nonwoven fabric used for applications in which texture is important, a denier of 0.7 to 7 is appropriate. The nonwoven fabric according to the present invention may contain the above heat-adhesive conjugate fibers alone or contain at least 30% by weight of other fibers such as rayon, cotton, hemp, polyamide fibers, etc.
It is mixed with polyester fibers, acrylic fibers, etc., and forms a nonwoven fabric structure by the interfiber bonding parts of the sheath part 2 of the heat-adhesive conjugate fibers. [Specific explanation of the structure of the second invention] In manufacturing the nonwoven fabric according to the invention, first, heat-adhesive composite fibers are manufactured as follows. That is, three types of polymers are prepared: two types of polypropylene polymers for the core component and a polyethylene polymer for the sheath component as explained in the configuration of the first invention. Regarding the polypropylene polymer for the core component, melt fluorate (MFR) is used as a polypropylene polymer for the 1a component with a Q value of 6 or more.
It may be indicated by According to condition 14 of Table 1 of JIS K7210. The same applies hereinafter) is preferably 4 to 40, and as a polypropylene polymer for component 1b having a Q value of 5 or less, a melt fluorate is preferably 4 to 60. A polypropylene polymer having a Q value of 5 or less can also be produced by the following method using a polypropylene polymer having a Q value greater than 5 as a raw material polymer. That is, one method is
Organic peroxide compounds that generate peroxide when heated to a temperature higher than the melting point of the raw material polymer, such as t-butyl hydroperoxide, cumain hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, etc. This is a method of adding and mixing 0.01 to 1.0% by weight of 0.01 to 1.0% by weight to a raw material polymer, followed by melt extrusion using an extruder and granulation. Alternatively, a method may be used in which melt extrusion and granulation are repeated several times at high temperature without adding the organic peroxide compound. In this way, the Q value becomes a little smaller due to melt extrusion, so as a polymer before composite spinning, the Q value of the polymer for component 1a should be slightly larger than 6, and the Q value of the polymer for component 1b should be slightly larger than 6. may be slightly larger than 5. Polyethylene polymers are also referred to as meltoids (MI).JIS K7210
According to condition 4 in Table 1. ) is preferably 2 to 50. Once the three types of polymers are prepared, they are individually fed to three extruders and melt extruded.
Each is led via a separate gear pump to a known suitable composite spinning die. As a known composite spinning die that can spin three polymer components into a cross-sectional structure similar to that of the heat-adhesive composite fiber according to the present invention, for example, the composite spinneret described in Japanese Patent Publication No. 44-29522 A spinning nozzle can be used. When introducing the above three types of polymers into such a composite spinning nozzle, the amount of each polymer for core component 1a and core component 1b is set at a predetermined composite ratio in the range of 2:1 to 1:2. In addition, the pumping amount of each gear pump is adjusted so that the amount of polymer for the sheath component becomes a predetermined ratio in the range of 25 to 55% by weight based on the total amount of the polymer in the core 1. The thus obtained composite undrawn yarn having a predetermined cross-sectional structure is drawn in one step or in multiple steps. The stretching temperature is from room temperature (15 to 40°C) to 130°C. In multi-stage drawing, it is usually better to set the first-stage drawing temperature lower than the second-stage drawing temperature, and in the case of single-stage drawing, it is better to use a relatively low drawing temperature at or near room temperature to improve the latent winding of the resulting composite fiber. This is preferred because it increases shrinkage. Generally, heat is generated during stretching, so the first stage of stretching is preferably performed at a low temperature within a specified range, for example, while passing through water maintained at room temperature, or in a room maintained at room temperature with cooling water, etc. It is preferable to do so. In addition, the stretching ratio is 1.3 to 9 times, especially 1.5 to 9 times, expressed as a total stretching ratio, including the case of multi-stage stretching.
Six times is preferred. In the above-mentioned drawing step, the composite undrawn yarn is not subjected to heat treatment under no tension prior to drawing and then cooled to room temperature, as disclosed in JP-A-63-105161. By not performing at least the heat treatment and cooling treatment under non-tension conditions as described above prior to stretching, the maximum stretching ratio (when the yarn begins to break) is When the drawing is carried out at less than 90% of the drawing ratio (drawing ratio), the sheath portion of the drawn composite fiber is more completely formed into knot-like agglomerations of sheath components by heat treatment as disclosed in JP-A-63-105161. No agglomerate-forming parts are formed. By carrying out the process at the temperature and stretching ratio as described above, it is possible to obtain three-dimensional crimp that increases the fiber strength and lowers the shrinkage rate of the resulting nonwoven fabric to increase its bulk. Once the stretching is completed, it is dried if necessary and, depending on the application, it can be left as is or cut into a predetermined length. From the viewpoint of processing efficiency, it is usually preferable to draw the undrawn yarn by collecting the undrawn yarn into tows of tens of thousands to millions of deniers. A web consisting of the heat-adhesive conjugate fiber obtained in this way alone or mixed with the above-mentioned other fibers so as to contain at least 30% by weight is prepared, and this web is sheathed with the heat-adhesive conjugate fiber. The nonwoven fabric according to the present invention is obtained by heat treatment at a temperature higher than the melting point of the two core components and lower than the lower melting point of the two core components. [Effect] The heat-adhesive composite fiber used in the nonwoven fabric according to the present invention has a parallel composite structure in which the core uses polypropylene polymers with different Q values, and the melting point is higher than that of the core component polymer. It has a composite structure in which the core is covered with a polyethylene polymer sheath that is lower than the core. Therefore, a nonwoven fabric obtained by heat-treating a web containing such heat-adhesive conjugate fibers at a predetermined temperature is a sufficiently bulky and very stable nonwoven fabric. The reason for this is that, although the composite fibers that make up this nonwoven fabric generally have a sheath-core structure that causes little crimp, the core has a parallel composite structure, which causes apparent crimp to occur even before heat treatment. The latent crimp is brought to light by the heat treatment, and the crimp is sufficiently large and has a gentle three-dimensional crimp form, making the nonwoven fabric sufficiently bulky, and the entire cross-sectional structure of the fiber is Because of the sheath-core structure, the thermal adhesion is sufficient, and the nonwoven fabric structure formed by the interfiber thermal bonding portions is extremely stable. Therefore, the nonwoven fabric according to the present invention has sufficiently improved bulk, which has been a problem in the past, and has a soft texture although no knot-like aggregates made of sheath components are formed in the sheath portion. It also has the following. [Examples and Comparative Examples] The present invention will be explained in more detail below using Examples and Comparative Examples. Examples 1 to 12, Comparative Examples 1 to 5 (i) Production of heat-adhesive conjugate fiber Eight types of polypropylene a, b, shown in Table 1
C, d, e, f, g, and h and two types of polyethylene polymers i and j are used in various combinations shown in Table 2 to produce components 1a and 1b, each consisting of two types of polypropylene. A composite fiber having a core having a parallel composite structure covered with a sheath made of one type of polyethylene polymer was manufactured by subjecting it to composite spinning and drawing as follows. A spinneret with a hole diameter of 1.0 mmφ and 120 holes was used, and the composite ratio of component 1a and component 1b constituting the core was 1:1, and the ratio of the sheath to the total amount of the core and sheath was The proportion was varied from 33.3 to 66.7% by weight, and the spinning temperature (polymer temperature just before spinning)
Polypropylene is heated at 260℃ for both 1a and 1b components.
So, the polyethylene polymer is spun at 220℃ and has a density of 11d/f (denier per filament).
An undrawn yarn was obtained. The undrawn yarn was drawn into a tow of about 90,000 denier. Three stages of stretching rolls were used for stretching. One-stage stretching was performed by passing the tow through a first stretching roll and a second-stage stretching roll, and two-stage stretching was performed by passing the tow through a third stretching roll following the first-stage stretching. Regarding the stretching temperature, it is specified that the first-stage stretching temperature (the stretching temperature in the case of one-stage stretching is the same) is the same as the temperature of the first stretching roll, and the second-stage stretching temperature is the same as the temperature of the second stretching roll. . In this manner, the tow is first passed through a 0.2% surface finisher bath at 21°C, then passed through a first draw roll at 26°C, a second draw roll at 80°C, and a third draw roll at 28°C. Two-stage stretching (Example 1~
9. Comparative Examples 1 to 5) or one-stage stretching (Examples 10 to 12) with the temperature of the second stretching roll set at 70°C without using the third stretching roll, and then the temperature was higher than room temperature. , cooled to room temperature. The strength and elongation of each heat-adhesive conjugate fiber thus obtained was measured, and the crimp shape was also examined. (ii) Production of a nonwoven fabric made of each heat-adhesive conjugate fiber alone Each heat-adhesive conjugate fiber obtained in the previous section (i) is passed through a carding machine twice to form a web with a basis weight of 100 g/m 2 .
Each web was placed in a hot air circulation dryer at 145° C. for 5 minutes to non-woven, and then cooled to room temperature. The bulk of the obtained nonwoven fabric was tested. The results are shown in Table 2. Examples 13 to 17, Comparative Examples 6 to 7 Manufacture of nonwoven fabrics consisting of mixed fibers with other fibers having different contents of heat-adhesive conjugate fibers The heat-adhesive conjugate fibers obtained in Example 3 (2.9 d /
f) cut into 64 mm and 2d x 51 mm of rayon were mixed in the proportions shown in Table 3, and Example 1 was prepared.
A nonwoven fabric having a basis weight of approximately 100 g/m 2 was produced in the same manner as in Example 12, and the bulk and texture of the nonwoven fabric were tested, and the strength and elongation of the nonwoven fabric was also measured. The results are shown in Table 3. In addition, Example 17 is a nonwoven fabric manufactured in the same manner as above except that 100% of the heat-adhesive composite fiber obtained in Example 3 was used and no other fibers were used, and the same test was performed as above. The results are also listed in Table 3. The above test methods are shown below. Fiber strength and elongation: According to JIS L1015 7.7. Crimp shape: After heating to 145°C for 5 minutes, visually determine whether it is two-dimensional crimp or three-dimensional crimp. Bulkyness of non-woven fabric: Cut each non-woven fabric into 20cm x 20cm pieces.
The bulkiness value (mm) is calculated by calculating the thickness of each nonwoven fabric from the thickness of the entire nonwoven fabric, which is measured by stacking the nonwoven fabrics and placing cardboard on top. Strength and elongation of non-woven fabric: Five 20 cm x 5 cm test pieces were cut from the non-woven fabric with the 20 cm sides along the flow direction on the carding machine, and each was tested using an autograph tensile strength tester at a gripping interval of 100 mm and a tensile speed. The breaking strength and elongation are determined under the condition of 100 mm/min, and the average value of 5 sheets is taken.
【表】【table】
【表】【table】
【表】【table】
【表】
第2表から不織布を構成する熱接着性複合繊維
の構成と不織布との関係について次のような種々
なことが判る。すなわち、実施例1〜12と比較例
1〜4とから、熱接着性複合繊維がその2種の芯
成分のQ値が本発明に規定する範囲内にある場合
は、他の構成が本発明を満足していることを条件
に三次元捲縮は充分に発現していて不織布の嵩高
が非常に優れていることが判る。また実施例6〜
12と比較例5とから、本発明方法によつて複合繊
維を得て製造した不織布は三次元捲縮の発現、不
織布の嵩高等すべて優れているのに対し、鞘部の
割合が本発明方法からら外れた条件で得た複合繊
維を使用する場合は、その原料ポリマーが本発明
方法によつて得られた不織布に使用した複合繊維
の原料ポリマーと同じであつても異なつていても
上記諸特性において劣つていることが判る。
また、第3表の比較例6〜7と実施例13〜17と
の比較から、本発明において使用されている熱接
着性複合繊維がレーヨン等の他繊維との混合繊維
中に30重量%以上使用されていれば風合、嵩高、
強度共に優れた不織布の得られることが判る。
なお、各実施例は勿論各比較例においても、複
合繊維の鞘部に節状の凝集部は形成されていなか
つた。[Table] From Table 2, the following various things can be seen regarding the relationship between the structure of the thermoadhesive conjugate fibers constituting the nonwoven fabric and the nonwoven fabric. That is, from Examples 1 to 12 and Comparative Examples 1 to 4, if the Q values of the two types of core components of the heat-adhesive composite fiber are within the range specified in the present invention, other configurations are acceptable according to the present invention. It can be seen that the three-dimensional crimp is sufficiently expressed and the bulk of the nonwoven fabric is excellent, provided that the above conditions are satisfied. Also, Example 6~
12 and Comparative Example 5, the nonwoven fabric produced by obtaining composite fibers by the method of the present invention is superior in both the expression of three-dimensional crimp and the bulk of the nonwoven fabric, whereas the proportion of the sheath portion is superior to that obtained by the method of the present invention. When using composite fibers obtained under conditions other than the above, the raw material polymer may be the same or different from the raw material polymer of the composite fiber used for the nonwoven fabric obtained by the method of the present invention. It can be seen that it is inferior in various characteristics. Furthermore, from a comparison of Comparative Examples 6 to 7 and Examples 13 to 17 in Table 3, it is clear that the thermal adhesive composite fiber used in the present invention is present in an amount of 30% by weight or more in the mixed fiber with other fibers such as rayon. If used, the texture, bulk,
It can be seen that a nonwoven fabric with excellent strength can be obtained. It should be noted that in each of the Examples as well as in each Comparative Example, no knot-shaped agglomerated portions were formed in the sheath portion of the composite fiber.
第1図、第2図及び第3図はそれぞれ本発明に
おいて使用されている熱接着性複合繊維の断面構
成の態様を模式的に示す断面図である。
1……芯部、1a……芯区分帯、1b……芯区
分帯、2……鞘部。
FIG. 1, FIG. 2, and FIG. 3 are sectional views each schematically showing the cross-sectional configuration of the heat-adhesive conjugate fiber used in the present invention. 1...Core part, 1a... Core segment band, 1b... Core segment band, 2... Sheath part.
Claims (1)
ら成る並列型複合構造を有しその複合比が1:2
〜2:1であつて且つ一方の芯成分のQ値(ここ
にQ=重量平均分子量/数平均分子量)が6以上
で他方の芯成分のQ値が5以下である芯部と融点
が上記2種の芯成分の低い方の融点よりも20℃以
上低いポリエチレン系ポリマーの鞘成分から成り
上記芯部との合計量に基づいて25〜55重量%の割
合で上記芯部を被覆している鞘部とから成る熱接
着性複合繊維を少なくとも30重量%含有していて
該熱接着性複合繊維の鞘部に鞘成分から成る節状
の凝集部が形成されることなく繊維間が接着され
ていることにより安定化されていることを特徴と
する不織布。 2 熱接着性複合繊維の2種の芯成分の少なくと
も一方のポリプロピレン系ポリマーがポリプロピ
レンである特許請求の範囲第1項に記載の不織
布。 3 熱接着性複合繊維の2種の芯成分の少なくと
も一方のポリプロピレン系ポリマーがプロピレン
とプロピレン以外の少量のα−オレフインとのコ
ポリマーである特許請求の範囲第1項に記載の不
織布。 4 熱接着性複合繊維の鞘成分のポリエチレン系
ポリマーがポリエチレンである特許請求の範囲第
1項から第3項までのいずれか1項に記載の不織
布。 5 熱接着性複合繊維の鞘成分のポリエチレン系
ポリマーがエチレン成分98〜60重量%のエチレン
−酢酸ビニルコポリマーである特許請求の範囲第
1項から第3項までのいずれか1項に記載の不織
布。 6 2種のポリプロピレン系ポリマーを各別に2
種の芯成分用に、また融点が上記2種のポリプロ
ピレン系ポリマーの低い方の融点よりも20℃以上
低いポリエチレン系ポリマーを鞘成分用にそれぞ
れ使用して複合紡糸して、2種の芯成分から成る
並列型複合構造を有してその複合比が1:2〜
2:1であり且つ一方の芯成分のQ値(ここにQ
=重量平均分子量/数平均分子量)が6以上で他
方の芯成分のQ値が5以下である芯部を鞘成分か
ら成る鞘部が上記芯部との合計量に基づいて25〜
55重量%の割合で芯部を被覆した構造の複合未延
伸糸を得、該複合未延伸糸を延伸に先立つて非緊
張下での加熱処理及び冷却処理を施すことなく常
温から130℃までの延伸温度で総合延伸倍率とし
て1.3〜9倍に一段以上の延伸工程で延伸して熱
接着性複合繊維を製造し、該熱接着性複合繊維を
少なくとも30重量%含有するウエブを調製して鞘
成分の融点よりも高く2種の芯成分の低い方の融
点よりも低い温度で加熱処理することを特徴とす
る不織布の製造方法。[Claims] 1. It has a parallel composite structure consisting of core components of two types of polypropylene polymers, and the composite ratio thereof is 1:2.
~2:1, and the core has a melting point above the Q value of one core component (here, Q = weight average molecular weight/number average molecular weight) of 6 or more and the Q value of the other core component of 5 or less. It consists of a polyethylene polymer sheath component whose melting point is 20°C or more lower than the melting point of the lower of the two core components, and covers the core at a ratio of 25 to 55% by weight based on the total amount with the core. It contains at least 30% by weight of heat-adhesive conjugate fibers consisting of a sheath part, and the fibers are bonded together without forming knot-like aggregates made of the sheath component in the sheath part of the heat-adhesive conjugate fibers. A nonwoven fabric characterized by being stabilized by 2. The nonwoven fabric according to claim 1, wherein the polypropylene polymer of at least one of the two types of core components of the heat-adhesive conjugate fiber is polypropylene. 3. The nonwoven fabric according to claim 1, wherein the polypropylene polymer of at least one of the two types of core components of the heat-adhesive conjugate fiber is a copolymer of propylene and a small amount of α-olefin other than propylene. 4. The nonwoven fabric according to any one of claims 1 to 3, wherein the polyethylene polymer of the sheath component of the heat-adhesive conjugate fiber is polyethylene. 5. The nonwoven fabric according to any one of claims 1 to 3, wherein the polyethylene polymer of the sheath component of the heat-adhesive composite fiber is an ethylene-vinyl acetate copolymer with an ethylene content of 98 to 60% by weight. . 6 Separately 2 types of polypropylene polymers
Two types of core components are obtained by composite spinning using a polyethylene polymer whose melting point is at least 20°C lower than the lower melting point of the two types of polypropylene polymers mentioned above for the seed core component and for the sheath component. It has a parallel composite structure consisting of a composite ratio of 1:2 to
2:1 and the Q value of one core component (here Q
= weight average molecular weight / number average molecular weight) is 6 or more and the Q value of the other core component is 5 or less.
A composite undrawn yarn having a structure in which the core is coated at a ratio of 55% by weight is obtained, and the composite undrawn yarn is heated from room temperature to 130°C without heat treatment and cooling treatment under no tension prior to stretching. A thermoadhesive conjugate fiber is produced by stretching it in one or more stretching steps at a total stretching ratio of 1.3 to 9 times at a stretching temperature, and a web containing at least 30% by weight of the thermoadhesive conjugate fiber is prepared, and a sheath component is prepared. A method for producing a nonwoven fabric, the method comprising heating at a temperature higher than the melting point of the lower one of the two core components and lower than the melting point of the lower one of the two core components.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62207823A JPS6452859A (en) | 1987-08-21 | 1987-08-21 | Nonwoven fabric and its production |
US07/108,459 US4818587A (en) | 1986-10-17 | 1987-10-15 | Nonwoven fabrics and method for producing them |
DK542387A DK542387A (en) | 1986-10-17 | 1987-10-16 | UNWOVEN SUBSTANCES AND PROCEDURES FOR PREPARING THEREOF |
KR1019870011480A KR940004704B1 (en) | 1986-10-17 | 1987-10-16 | Nonwoven fabrics and method for producing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62207823A JPS6452859A (en) | 1987-08-21 | 1987-08-21 | Nonwoven fabric and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6452859A JPS6452859A (en) | 1989-02-28 |
JPH0160577B2 true JPH0160577B2 (en) | 1989-12-25 |
Family
ID=16546099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62207823A Granted JPS6452859A (en) | 1986-10-17 | 1987-08-21 | Nonwoven fabric and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6452859A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017179621A (en) * | 2016-03-28 | 2017-10-05 | ダイワボウホールディングス株式会社 | Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3697801B2 (en) * | 1996-12-03 | 2005-09-21 | チッソ株式会社 | Long fiber nonwoven fabric and absorbent article using the same |
KR102378415B1 (en) * | 2018-11-05 | 2022-03-24 | 주식회사 엘지화학 | Resin composition for bi-component fiber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791760B2 (en) * | 1986-10-17 | 1995-10-04 | チッソ株式会社 | Nonwoven fabric and manufacturing method thereof |
-
1987
- 1987-08-21 JP JP62207823A patent/JPS6452859A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017179621A (en) * | 2016-03-28 | 2017-10-05 | ダイワボウホールディングス株式会社 | Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric |
Also Published As
Publication number | Publication date |
---|---|
JPS6452859A (en) | 1989-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940008076B1 (en) | Heat-adhesive composite fibers and method of making the same | |
US5626961A (en) | Polyester filaments and tows | |
KR940004704B1 (en) | Nonwoven fabrics and method for producing them | |
RU2443806C2 (en) | Fusible adhesive polyether bicomponent fibre | |
US5736243A (en) | Polyester tows | |
JPH02127553A (en) | Stretchable non-woven fabric and production thereof | |
JPH02200868A (en) | Ultrafine conjugate fiber and woven or nonwoven fabric thereof | |
JPH0791760B2 (en) | Nonwoven fabric and manufacturing method thereof | |
EP0842312B1 (en) | Polyester tow | |
JP3815517B2 (en) | Tow | |
JPH0160577B2 (en) | ||
JPH05500394A (en) | Bicomponent fiber manufacturing method | |
JPS6392722A (en) | Heat-weldable fiber and nonwoven cloth made thereof | |
JPH026850B2 (en) | ||
JPH0770899A (en) | Heat-bonded nonwoven cloth and its production | |
JPH04126815A (en) | Ultra-fine fiber-forming conjugate fiber | |
JPH03269154A (en) | Production of bulky long-fiber nonwoven fabric | |
JPH0434058A (en) | Production of nonwoven fabric of ultrafine short fiber | |
JP2005200795A (en) | Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber | |
JPS60259664A (en) | Fiber sheet material | |
JP2788140B2 (en) | Method for producing polypropylene-based composite short fiber and nonwoven fabric | |
JPH0578916A (en) | Conjugate polypropylene staple fiber and its nonwoven fabric | |
JP2936304B2 (en) | Polypropylene different shrinkage mixed fiber yarn and method for producing the same | |
JPH0382816A (en) | Binder fiber for nonwoven fabric | |
JPH0299630A (en) | Production of spun silk-like bulky textured yarn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071225 Year of fee payment: 18 |