[go: up one dir, main page]

JPH01502930A - Improved analytical techniques and equipment - Google Patents

Improved analytical techniques and equipment

Info

Publication number
JPH01502930A
JPH01502930A JP63502231A JP50223188A JPH01502930A JP H01502930 A JPH01502930 A JP H01502930A JP 63502231 A JP63502231 A JP 63502231A JP 50223188 A JP50223188 A JP 50223188A JP H01502930 A JPH01502930 A JP H01502930A
Authority
JP
Japan
Prior art keywords
optical structure
binding partner
sample
specific binding
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63502231A
Other languages
Japanese (ja)
Inventor
ソーヤーズ,クレイグ ジョージ
ドレイク,ローズマリー アン ルーシー
Original Assignee
アレス‐セロノ リサーチ アンド ディベロップメント リミティド パートナーシップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アレス‐セロノ リサーチ アンド ディベロップメント リミティド パートナーシップ filed Critical アレス‐セロノ リサーチ アンド ディベロップメント リミティド パートナーシップ
Publication of JPH01502930A publication Critical patent/JPH01502930A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N21/774Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
    • G01N21/7743Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure the reagent-coated grating coupling light in or out of the waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 改良された分析技術およびそのための装置発明の分野 この発明は、試料中の化学的、生化学的または生物学的な分析対象の定性的およ び/または定量的検出が確定され得るような分析技術に関し、そしてそのような 技術が実行され得るような装置に関する。[Detailed description of the invention] IMPROVED ANALYTICAL TECHNIQUES AND DEVICE THEREOF FIELD OF INVENTION This invention provides qualitative and and/or analytical techniques by which quantitative detection can be determined. It concerns an apparatus in which the technique may be carried out.

発明の背景 言及される分析技術は、分析することになっている分析対象と、特定の種類の表 面上にコートされている受容物質、例えばリガンドまたは特異的結合相手との間 の親和力に基づいている。(a)基質上の予め成形された起伏断面を有する表面 の少なくとも予め決定された部分を、分析することになっている種を結合するこ とのできる薄膜材料でコーティングし、その表面部分は予め決定された波長のバ ンドを少なくとも越える輻射線に関して光学的に活性であり、そして(b)コー ティングされた表面を試料と接触させ、そして該表面上の薄膜材料上への核種の 結合の結果としての光学的性質における定性的および/または定量的変化を測定 するために該表面部分の光学的性質を観察することを含んで成る分析技術の記載 については、国際特許公開WO34102578およびWO36101901に 参照される。Background of the invention The analytical techniques mentioned depend on the object of analysis that is to be analyzed and the particular type of table. between a receptor substance coated on the surface, e.g. a ligand or a specific binding partner. It is based on the affinity of (a) A surface with a pre-shaped contoured cross-section on a substrate combining at least a predetermined portion of the species to be analyzed. The surface area is coated with a thin film material that can be (b) optically active with respect to radiation at least exceeding the code; The stained surface is brought into contact with the sample and the nuclide is deposited onto the thin film material on the surface. Measure qualitative and/or quantitative changes in optical properties as a result of binding Description of an analytical technique comprising observing the optical properties of said surface portion in order to For details, see international patent publications WO34102578 and WO36101901. Referenced.

これらの公開において記載されたように、予め成形された起伏断面は、典型的に は単純な単一格子または2もしくはそれより多数交差した格子でもよい光格子の 形であり、そのリッジは正方形、正弦または三角形の横断面形を有し、そして本 明細書中で使用する時、格子に対する言及はそのような格子全てを包含するつも りである。As described in these publications, preformed relief sections typically is an optical grating which can be a simple single grating or two or more intersecting gratings. shape, whose ridges have a square, sinusoidal or triangular cross-section, and whose ridges have a square, sinusoidal or triangular cross-section When used in the specification, reference to a grid is intended to include all such grids. It is.

公開WO34102578においては、分析することになっている分析対象(例 えば血清中の特定抗原)の結合の結果としての格子の光学的性質における変化は 、本質的に(1)結合した分析対象の質量または大きさく2)それの誘電特性の 結果として引き起こされる。In public WO34102578, the analysis target to be analyzed (e.g. Changes in the optical properties of the lattice as a result of binding (e.g., specific antigens in serum) , essentially (1) the mass or size of the bound analyte and 2) its dielectric properties. caused as a result.

公開WO36101901においては、その結合結果が感受性表面に付着した色 素標識された結合相手の蛍光特性における変化によりモニターされる。In published WO36101901, the binding result is the color attached to the sensitive surface. It is monitored by changes in the fluorescent properties of the labeled binding partner.

前述した両技術のどちらにおいても、格子面は少なくとも照射用に使用される輻 射線の波長で不透明であり、故にその格子は反射回折格子であるとみなされ得る 。分析技術の結果として分析対象または他の物質の格子上への付着の結果として 起こる格子の性質の変化は、該格子の反射の特徴(WO84102578)およ び蛍光放出の特徴(WO86101901)における変化として前記の明細書中 に記載されたようにして現れる。しかしながら、そのような分析技術の好結果の 操作は格子表面を照明する能力に頼っており、そしてそれ故に特異的な結合反応 を通して該表面に結合するもの以外のあらゆる物質が光の通過をさえぎるであろ うし、故にそのようなテストがいかにして“湿式において”実施できるかを考え つくことは困難であった。In both of the aforementioned techniques, the grating plane is at least as large as the radiation used for illumination. opaque at the wavelength of the radiation, so the grating can be considered a reflective grating . as a result of analytical techniques, as a result of the deposition of analytes or other substances on the grid; The changes in the properties of the grating that occur are due to the reflection characteristics of the grating (WO84102578) and In the above specification as a change in fluorescence emission characteristics (WO86101901) It appears as described in. However, the positive results of such analytical techniques The operation relies on the ability to illuminate the lattice surface, and therefore specific binding reactions. Any material other than that which binds to the surface through will block the passage of light. Therefore, it is important to consider how such a test can be carried out “in the wet”. It was difficult to reach.

“湿式において”とは、格子面と接触した液体を用いることを意味し、そして従 来の技術を使う時、励起または観察の波長で光を吸収または散乱するならば、こ のタイプの分析は特に難しい。“In a wet manner” means using a liquid in contact with the grating surface, and When using traditional techniques, this can occur if light is absorbed or scattered at the excitation or observation wavelength. This type of analysis is particularly difficult.

従、て、本発明の目的は、改良された方法および装置を提供することであり、こ れにより分析技術が“湿式において”そして液体中の浮遊粒子による吸光または 散乱の存在下においてでさえも実施され得る。It is therefore an object of the present invention to provide an improved method and apparatus, which This allows analytical techniques to be used “in the wet” and to detect light absorption by suspended particles in the liquid or It can even be performed in the presence of scattering.

発明の要約 従って、最も広義の見方においては、本発明は試料中のリガンドについて分析す る方法を提供し、この方法は、表面プラズモン共鳴を表すことのできる光学構造 の一表面と試料を接触させてインキュベートし、前記表面は、直接的または間接 的に、検出することが望まれるリガンドのための特異的結合相手をその上に吸着 しているかまたはそれと結合しており;適当な波長の輻射線で光学構造の別の一 表面を照射し:そして、光学構造の表面プラズモン共鳴の特徴がリガンドと特異 的結合相手との間の複合体の形成により変化するかどうかそして所望であればそ の程度および/またはその速度を測定する;ことを含んで成る。Summary of the invention Therefore, in its broadest sense, the present invention provides an analysis method for ligands in a sample. This method provides a method for optical structures that can exhibit surface plasmon resonance. The sample is incubated in contact with one surface of the sample, and said surface is directly or indirectly specifically, adsorb onto it a specific binding partner for the ligand desired to be detected. or coupled to another part of the optical structure with radiation of the appropriate wavelength. Irradiate the surface: and the surface plasmon resonance features of the optical structure are unique to the ligand. whether it changes due to the formation of a complex between the target binding partner and, if desired, measuring the degree and/or rate of

好ましくは、前記光学構造は透明なプラスチックまたはガラス材料の回折格子で あり、そして前記格子は金属または金属様の薄い層でコーティングされており、 この層は少なくとも研究目的で格子を照明または観察するために使用することに なっている輻射線の波長において部分的に反射性であり且つ部分的に透過性であ る。Preferably, the optical structure is a diffraction grating of transparent plastic or glass material. and the grid is coated with a thin layer of metal or metal-like; This layer may be used to illuminate or observe the grid, at least for research purposes. partially reflective and partially transparent at the wavelength of radiation that Ru.

好ましくは、分析されるリガンドは抗体または抗原であろうし、そしてその特異 的結合相手は相補的に抗原または抗体であろう。Preferably, the ligand to be analyzed will be an antibody or an antigen, and its specific A complementary binding partner may be an antigen or an antibody.

本発明はさらに、試料中の1つまたは複数のリガンドを検出するための装置を提 供し、その装置は、分析することにな−っている試料を保持するための貯槽を含 んで成り、前記貯槽の少なくとも内側の表面部分は、表面プラズモン共鳴を表す ことのできる光学構造を含んで成り、使用の際に試料と接触するであろう前記貯 槽の表面は、検出することが望まれるリガンドのための特異的結合相手を直接的 もしくは間接的のどちらかでその上に吸着しているかまたはそれと結合している 。The invention further provides an apparatus for detecting one or more ligands in a sample. The equipment shall contain a reservoir for holding the sample to be analyzed. at least the inner surface portion of the reservoir exhibits surface plasmon resonance. said reservoir, which in use will come into contact with the sample. The surface of the bath directly exposes the specific binding partner for the ligand desired to be detected. or indirectly adsorbed onto or bound to it. .

本発明の装置の一態様は、貯槽の外側から、使用の際に試料から離れているであ ろう光学構造のその表面を照射するための手段;および、前記光学構造の表面プ ラズモン共鳴の特徴がリガンドと特異的結合相手との間の複合体の形成により変 化するかどうかそして所望であればその程度および/またはその速度を測定する ために、反射された輻射線を分析するための手段;をさらに含んで成る。One aspect of the device of the invention is that the device is located outside the reservoir and away from the sample during use. means for irradiating the surface of the wax optical structure; and a surface plate of the optical structure. The characteristics of rasmon resonance are altered by the formation of a complex between the ligand and a specific binding partner. determine whether and, if desired, the degree and/or rate of The method further comprises: means for analyzing the reflected radiation.

典型的には、該貯槽は平底を有する浅溝のウェルを含んで成り、そのウェルの内 側の上面において形成されそして該格子表面に適用された金属または金属様の薄 いフィルムを部分的には反射し部分的には透過する回折格子を有する。Typically, the reservoir comprises a shallow grooved well with a flat bottom; a metal or metal-like thin film formed on the upper surface of the side and applied to the grating surface; It has a diffraction grating that partially reflects and partially transmits the transparent film.

貯槽中に入れられる液体または他の物質から金属を保護することが重要である場 合には、その金属フィルムが好ましくは不活性物質のさらなるフィルムによりコ ートされるが、この不活性物質は、適当な波長の光により活性化される時回折格 子が表面プラズモン共鳴を示すことを可能にする一方で、やはり金属と貯槽内部 の反応体との間の化学的相互作用を妨害する。Where it is important to protect the metal from liquids or other substances placed in the storage tank. If the metal film is preferably co-coated with a further film of inert material, This inert material, when activated by light of the appropriate wavelength, forms a diffraction grating. While still allowing the particles to exhibit surface plasmon resonance, the metal and the inside of the reservoir interfere with chemical interactions between reactants.

本発明の利点は、“湿式において”および液体試料中散乱粒子の存在下において 試料を使用する時に本分析技術が使用され得ることである。An advantage of the present invention is that “in the wet” and in the presence of scattered particles in a liquid sample, This analytical technique can be used when using samples.

さらなる利点は、反応が起こる時にそれらをモニターすることができ、そしてそ れ故に分析の終点を予測することができ、それにより分析を行うのに要する時間 の長さを縮小することができることである。A further advantage is that reactions can be monitored as they occur and that Therefore, the end point of the analysis can be predicted, thereby reducing the time required to perform the analysis. It is possible to reduce the length of.

付加的な利点は、測定前にセンサーから試料を分離する必要が全くないというこ とである。゛ 本発明は、従って全血試料または光散乱化合物もしくは粒状物質を含有する他の 生物学的試料を用いる使用に適する。An additional advantage is that there is no need to separate the sample from the sensor before measurement. That is.゛ The invention therefore provides a method for preparing whole blood samples or other samples containing light-scattering compounds or particulate matter. Suitable for use with biological samples.

本発明はまた、試薬の抗体が蛍光標識されている競合アッセイが湿式もしくは乾 式において行われ得るようにし、または二次抗体が蛍光標識されているサンドイ ッチアッセイが行われ得るようにする。The present invention also allows for wet or dry competitive assays in which the antibodies in the reagents are fluorescently labeled. or in which the secondary antibody is fluorescently labeled. This allows for patch assays to be performed.

検出手段が、受けとった光の異なる波長間を識別することができ、そして特に蛍 光標識により生成されるものに相当する波長の光が格子から再放射された光の中 に存在するか否かを決定することができれば、蛍光標識された物質を使用するこ とが可能である。The detection means are capable of discriminating between different wavelengths of the received light, and in particular are capable of discriminating between different wavelengths of light received. Light of a wavelength corresponding to that produced by the optical label is present in the light re-emitted from the grating. Fluorescently labeled substances can be used if it is possible to determine whether is possible.

典型的な装置においては、格子を照射するための一次光源として単色または半単 色の光源が使用され、そして典型的にはレーザーが使用されるけれども、光源の 選択をレーザーに限定するものではないし、そして光の入射角が変更されるとい うことが理解されるであろう。代わりに、多色の、例えば白色の光源を使用して もよく、入射角を一定に保ちそして表面プラズモン共鳴効果を検出するために反 射光に特徴的な波長が分析される。In a typical device, a monochromatic or semi-monochromatic light source is used as the primary light source to illuminate the grating. Although colored light sources are used and typically lasers are used, the light source The choice is not limited to lasers, and the angle of incidence of the light may be changed. It will be understood that Instead, use a multicolored, e.g. white light source In order to keep the angle of incidence constant and detect the surface plasmon resonance effect, The characteristic wavelengths of the emitted light are analyzed.

本発明は、これから添付した図を参照にしながら簡単に説明されるだろう。The invention will now be briefly explained with reference to the attached figures.

第1図は、回折格子の背面照射による表面プラズモン共鳴効果を示し;そして、 第2図は、これにより本発明に従って分析が行われるかもしれない装置および本 発明の好ましい構成の特徴を具体化したものを概略的に示す。FIG. 1 shows the surface plasmon resonance effect due to back illumination of the diffraction grating; and FIG. 2 shows an apparatus and a book by which an analysis may be carried out according to the invention. 1 schematically illustrates embodiments of features of preferred configurations of the invention;

第1図は、真空蒸発により50nmの銀でコーティングされそしてヘリウム−ネ オンレーザ−(λ= 633r+a+)で格子の裏面から照射された、射出成形 された回折格子から得られた結果を示す。反射光の強度は入射角(θ)の変化を 伴ってモニターされた。特定範囲の角度にわたって表面プラズモン共鳴の反射能 特性に関するくぼみ(dip)が観察された。格子のないメタライジングテスト 装置の一領域を照射すると、カバーされた角度の範囲にわたって反射光の強度に 全く変化を与えなかった。Figure 1 is coated with 50 nm of silver by vacuum evaporation and helium Injection molding irradiated from the back side of the grating with on-laser (λ=633r+a+) The results obtained from the diffraction grating shown in FIG. The intensity of the reflected light is determined by the change in the angle of incidence (θ). was monitored accordingly. Reflectivity of surface plasmon resonance over a range of angles A characteristic dip was observed. Metallizing test without grid When illuminating one area of the device, the intensity of the reflected light changes over the range of angles covered. It didn't make any difference at all.

第2図において、浅溝のウェル10は平底12を有するプラスチック材料として 形成され、この平底の上側内部表面上に適当な方法、例えば接触圧成形または機 械加工またはその他により回折格子14が形成されている。In FIG. 2, the shallow groove well 10 is shown as a plastic material with a flat bottom 12. formed on the upper inner surface of this flat bottom by a suitable method, such as contact molding or mechanical A diffraction grating 14 is formed by machining or otherwise.

格子14の上側表面は、半一反射性の金属または金属様フグされ、そして金属フ ィルムと該ウェル中に入れられる試薬類との間に不活性中間層が必要であれば、 その表面は適当な緩衝材料、例えばケイ素酸化物の層でコーティングされる。The upper surface of the grating 14 is semi-reflective metal or metal-like and has a metal foil. If an inert intermediate layer is required between the film and the reagents placed in the well, Its surface is coated with a layer of a suitable buffering material, for example silicon oxide.

該格子は、蛍光化合物で標識されていてもよい特異的な抗原、抗体または他の結 合相手を含有する薄膜材料でコーティングされ、そして該ウェルは、分析される ことになっている特異的な抗体、抗原または相補的な結合相手を含む液体を入れ るように用意される。The grid contains a specific antigen, antibody or other binding material that may be labeled with a fluorescent compound. coated with a thin film of material containing a mating partner, and the wells are analyzed. Add a liquid containing the specific antibody, antigen or complementary binding partner to be used. It is prepared so that

該ウェルを含有する製品は、概略的に16で示される装置の中に組み込まれ、こ れはレーザー光源18を含み、そこから光が放出され、適当な光学手段(図示し ていない)を使って、適当な入射角で該ウェルの底面を照射して回折格子におけ る表面プラズモン共鳴を引き起こす。波長感受性の光検出器20もハウジング1 6の内部に設置され、そして該検出器20からの出力は、該ハウジングの内部に 含まれていてもいなくてもよい22のような電気処理および表示装置に送られる 。The product containing the wells is assembled into a device shown schematically at 16, which It includes a laser light source 18 from which light is emitted and suitable optical means (not shown). irradiate the bottom of the well at an appropriate angle of incidence using a causes surface plasmon resonance. A wavelength-sensitive photodetector 20 is also included in the housing 1 6 and the output from the detector 20 is installed inside the housing. sent to electrical processing and display devices such as 22, which may or may not include .

検出器20並びに処理および表示回路22に対する調整は、該ウェルが適所にお いて照射されそしてリガンドを含有しない液体を含む時に最初の読み取りを生ず るように行われる。Adjustments to detector 20 and processing and display circuitry 22 are made until the well is in place. The first reading occurs when the liquid is irradiated and contains no ligand. It is done as follows.

リガンドを含んでいてもいなくてもよい試料をあらゆる便利な方法において該ウ ェルに添加し、そして装置22により表示されるような検出器20の出力をモニ ターしてあらゆる変化を測定する。Samples, which may or may not contain ligands, can be prepared in any convenient manner. well and monitor the output of detector 20 as displayed by device 22. monitor and measure any changes.

蛍光分析技術が使用されるならば、検出器は該分析において蛍光ラベルのいずれ かの波長の光が検出され得るか否かを決定するためにセットされ得る。If fluorescence analysis techniques are used, the detector detects any of the fluorescent labels in the analysis. can be set to determine whether light of a certain wavelength can be detected.

図中参照番号24により記された液体試料が光散乱粒子を含有する場合、これら が液体を通る光の透過および回折格子を行きかう光の透過を妨害し、そして液体 を通した回折格子のあらゆる観察を実行不可能にするだろうと思われよう。しか しながら、検出器20により測定されるような表面プラズモン共鳴効果は液体中 の光散乱粒子の存在により影響されず、そしてその分析技術は“湿式において” 実施され得ることが例証された。If the liquid sample marked by reference number 24 in the figure contains light scattering particles, these interferes with the transmission of light through the liquid and across the grating, and the liquid It would be expected that this would make any observation of the grating through the diffraction grating impractical. deer However, the surface plasmon resonance effect as measured by the detector 20 is is unaffected by the presence of light-scattering particles, and the analytical technique is “wet”. It has been demonstrated that it can be implemented.

例証された例は1つのウェルだけを示すけれども、光源18はもちろん複数のウ ェルを同時に照射するのに使用されてもよく、そして対応する複数の検出器が使 用されてもよいし、または多数の異なる試料の分析が比較的迅速に行われ得るよ うに連続して各ウェルをスキャンするようにセットされた1つの検出器が使用さ れてもよい。Although the illustrated example shows only one well, the light source 18 can of course include multiple wells. may be used to irradiate wells simultaneously, and corresponding multiple detectors may be used. or analysis of a large number of different samples can be done relatively quickly. One detector is used, set to scan each well in succession. You may be

ぞれその上に異なる結合相手を有することができ、そしてこれらが多数の異なる 分析対象を同時に測定するためにも、“対照領域”との比較により非特異的結合 の規準を堤供するためにも、どちらにも使用され得る。そして、例えば分析され る試料中に存在することがあるあらゆるリガンドに対してそれ自体特異的でない 結合相手を担持していてもよい。each can have a different binding partner on it, and these can have a number of different In order to simultaneously measure the analyte, non-specific binding can be detected by comparison with a “control area”. It can be used either way to provide the criteria. And analyzed for example is not itself specific for any ligand that may be present in the sample. It may also carry a binding partner.

国際調査報告 mA#”、PCT/GB 8B100176international search report mA#”, PCT/GB 8B100176

Claims (14)

【特許請求の範囲】[Claims] 1.試料中のリガンドについて分析する方法であって、表面プラズモン共鳴を表 すことのできる光学構造の一表面と接触させて試料をインキュベートし、前記表 面は、検出されることが望まれるリガンドに対する特異的結合相手を直接的もし くは間接的にその上に吸着しているかまたはそれと結合しており;該光学構造の 別の一表面を適当な波長の輻射線で照射し;そして、該光学構造の表面プラズモ ン共鳴の特徴がリガンドと特異的結合相手との間の複合体の形成により変化する かどうかそして所望によりその程度および/またはその速度を測定するために、 反射された輻射線を分析する;ことを含んで成る方法。1. A method for analyzing ligands in a sample, which expresses surface plasmon resonance. The sample is incubated in contact with one surface of an optical structure that can be The surface may directly contain a specific binding partner for the ligand desired to be detected. or indirectly adsorbed on or bonded to the optical structure; irradiating another surface with radiation of a suitable wavelength; and The resonance characteristics change due to the formation of a complex between the ligand and the specific binding partner. to determine whether and, if desired, the extent and/or the speed of the A method comprising: analyzing reflected radiation. 2.前記光学構造が回折格子である、請求項1に記載の方法。2. 2. The method of claim 1, wherein the optical structure is a diffraction grating. 3.前記特異的結合相手が抗原または抗体である、請求項1または2に記載の方 法。3. 3. The method according to claim 1 or 2, wherein the specific binding partner is an antigen or an antibody. Law. 4.前記光学構造が、使用される輻射線の波長において部分的に反射性であり且 つ部分的に透過性である、上記の請求項いずれか一項に記載の方法。4. the optical structure is partially reflective at the wavelength of the radiation used; and A method according to any one of the preceding claims, wherein the method is partially transparent. 5.1または複数のリガンドを検出するための装置であって、この装置はテスト される試料を保持するための貯槽を含んで成り、前記貯槽の少なくとも内側の表 面部分が表面プラズモン共鳴を表すことのできる光学構造を含んで成り、使用の 際に該試料と接触するであろう前記構造のその表面が、検出することが望まれる リガンドのための特異的結合相手を直接的もしくは間接的のどちらかでその上に 吸着しているかまたはそれと結合しているような装置。5.A device for detecting one or more ligands, the device being used for testing a storage tank for holding a sample to be sampled, and at least an inner surface of said storage tank. The surface portion comprises an optical structure capable of exhibiting surface plasmon resonance, and the use of That surface of said structure which would then come into contact with said sample is desired to be detected. a specific binding partner for the ligand either directly or indirectly A device that is adsorbed or associated with it. 6.貯槽の外側から、使用の際に試料から離れているであろう光学構造の表面を 照射するための手段および、リガンドと特異的結合相手との間の複合体の形成に より前記光学構造の表面プラズモン共鳴の特徴が変化するかどうかそして所望に よりその程度および/または速度を測定するために、反射された輻射線を分析す るための手段をさらに含んで成る、請求項5に記載の装置。6. From outside the reservoir, view the surface of the optical structure that will be away from the sample during use. means for irradiating and forming a complex between a ligand and a specific binding partner; whether the surface plasmon resonance characteristics of said optical structure change and as desired. analyze the reflected radiation to determine its extent and/or speed. 6. The apparatus according to claim 5, further comprising means for controlling. 7.複数の分割領域を有する貯槽を含んで成り、各分割領域が請求項5に定義さ れたような光学構造を含んで成り、使用の際に試料と接触するであろう各分割領 域の表面が異なる特異的結合相手をその上に吸着しているかまたはそれと結合し ている、試料中の複数のリガンドを検出するための請求項5に記載の装置。7. comprising a storage tank having a plurality of divided regions, each divided region being as defined in claim 5. each segment that will come into contact with the sample during use. The surface of the region has a different specific binding partner adsorbed on it or binds to it. 6. The apparatus of claim 5 for detecting a plurality of ligands in a sample. 8.複数の請求項5に定義された貯槽を含んで成る、請求項5に記載の装置。8. 6. A device according to claim 5, comprising a plurality of reservoirs as defined in claim 5. 9.前記貯槽の外側から、使用の際に試料から離れているであろう光学構造の表 面を照射するための手段;および、リガンドと特異的結合相手との間の複合体の 形成により前記光学構造の表面プラズモン共鳴の特徴が変化するかどうかそして 所望によりその程度および/またはその速度を測定するために、反射された輻射 線を分析するための複数の手段、または連続して各分割領域もしくは貯水槽をス キャンすることのできる反射された輻射線を分析するための複数の手段をさらに 含んで成る、請求項7または請求項8に記載の装置。9. From outside the reservoir, a table of the optical structure that will be separated from the sample in use. means for irradiating the surface; and of the complex between the ligand and the specific binding partner. whether the formation changes the surface plasmon resonance characteristics of the optical structure; and reflected radiation, optionally to measure its extent and/or its speed. Multiple ways to analyze lines, or scan each segment or reservoir in succession. Additionally, there are multiple means for analyzing reflected radiation that can be scanned. 9. A device according to claim 7 or claim 8, comprising: 10.前記光学構造が回折格子である、請求項5〜9のいずれか一項に記載の装 置。10. Apparatus according to any one of claims 5 to 9, wherein the optical structure is a diffraction grating. Place. 11.前記特異的結合相手が抗原または抗体である、請求項5〜10のいずれか 一項に記載の装置。11. Any of claims 5 to 10, wherein the specific binding partner is an antigen or an antibody. Apparatus according to paragraph 1. 12.前記光学構造が、使用される輻射線の波長において部分的に反射性であり 且つ部分的に透過性である金属または金属様の薄い層でコートされている、請求 項5〜11のいずれか一項に記載の装置。12. the optical structure is partially reflective at the wavelength of the radiation used; and coated with a thin layer of metal or metal-like material that is partially transparent. The device according to any one of Items 5 to 11. 13.前記照射手段が単色または半一単色の光源である、請求項5〜12のいず れか一項に記載の装置。13. Any of claims 5 to 12, wherein the irradiation means is a monochromatic or semi-monochromatic light source. The device described in item (1) above. 14.前記光源がレーザーである、請求項13に記載の装置。14. 14. The apparatus of claim 13, wherein the light source is a laser.
JP63502231A 1987-03-10 1988-03-09 Improved analytical techniques and equipment Pending JPH01502930A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8705650 1987-03-10
GB878705650A GB8705650D0 (en) 1987-03-10 1987-03-10 Assay technique

Publications (1)

Publication Number Publication Date
JPH01502930A true JPH01502930A (en) 1989-10-05

Family

ID=10613686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63502231A Pending JPH01502930A (en) 1987-03-10 1988-03-09 Improved analytical techniques and equipment

Country Status (5)

Country Link
EP (1) EP0304461A1 (en)
JP (1) JPH01502930A (en)
AU (1) AU1391288A (en)
GB (1) GB8705650D0 (en)
WO (1) WO1988007202A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307141A (en) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh Method for simultaneously detecting mutual reaction of organism molecule using plasmon resonance and fluorescent detection
JP2003533692A (en) * 2000-05-06 2003-11-11 ツェプトゼンス アクチエンゲゼルシャフト Grating waveguide structures for multiple analyte measurements and their use
JP2005521052A (en) * 2002-03-20 2005-07-14 ウイスコンシン アラムニ リサーチ ファンデーション Optical imaging of nanostructured substrates
JP2011226925A (en) * 2010-04-20 2011-11-10 National Institute Of Advanced Industrial & Technology Microplate having periodic structure and manufacturing method of the same
JP2014016372A (en) * 2013-10-29 2014-01-30 National Institute Of Advanced Industrial & Technology Microplate having periodic structure and surface plasmon excitation enhanced fluorescent microscope using the same, fluorescence microplate reader and method of detecting peculiar antigen and antibody reaction
WO2015155799A1 (en) * 2014-04-08 2015-10-15 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement device and surface plasmon enhanced fluorescence measurement method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1321488C (en) * 1987-08-22 1993-08-24 Martin Francis Finlan Biological sensors
GB8801807D0 (en) * 1988-01-27 1988-02-24 Amersham Int Plc Biological sensors
GB8817710D0 (en) * 1988-07-25 1988-09-01 Ares Serono Res & Dev Ltd Method of assay
US5478755A (en) * 1988-07-25 1995-12-26 Ares Serono Research & Development Ltd. Long range surface plasma resonance immunoassay
GB8924951D0 (en) * 1989-11-04 1989-12-28 Fisons Plc Device and methods
DE69017471D1 (en) * 1990-02-22 1995-04-06 Univ Mcgill SOLIDS PHASE INTERFEROMETRIC IMMUNOTEST SYSTEM.
NL9001052A (en) * 1990-05-02 1991-12-02 Tno METHOD FOR DETERMINING A SPECIFIC LIGAND IN A LIQUID SAMPLE USING AN EVANESCENT FIELD, AND AN APPROPRIATE PART OF THE MEASURING DEVICE REQUIRED.
EP0517930B1 (en) * 1991-06-08 1995-05-24 Hewlett-Packard GmbH Method and apparatus for detecting the presence and/or concentration of biomolecules
GB9120000D0 (en) * 1991-09-19 1991-11-06 British Gas Plc Optical sensing
US5846843A (en) * 1996-11-18 1998-12-08 The University Of Toledo Sensor using long range surface plasmon resonance with diffraction double-grating
US5776785A (en) * 1996-12-30 1998-07-07 Diagnostic Products Corporation Method and apparatus for immunoassay using fluorescent induced surface plasma emission
DE19903576C2 (en) * 1999-01-29 2001-02-22 Bodenseewerk Perkin Elmer Co Quantitative determination of analytes in a heterogeneous system
DE10064146A1 (en) * 2000-12-22 2002-07-04 Andreas Hofmann Biosensor and method for its production
DE102004027957A1 (en) * 2004-06-08 2005-12-29 Carl Zeiss Jena Gmbh Investigation of interactions between biomolecules of differing types, attaches biomolecules to backlit biochip using chemical spacers, and includes measurements with total internal reflection
GB2431233A (en) * 2005-10-14 2007-04-18 E2V Tech Molecular detector arrangement
PT103601B (en) * 2006-11-09 2008-10-14 Biosurfit Sa DETECTION DEVICE BASED ON SURFACE PLASMA RESONANCE EFFECT
DE202007014923U1 (en) 2007-10-24 2009-02-26 Bioscitec Gmbh Tub-shaped container for optically analyzed test objects and manufacturing apparatus therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979184A (en) * 1975-05-27 1976-09-07 General Electric Company Diagnostic device for visually detecting presence of biological particles
DE3135196A1 (en) * 1981-09-05 1983-03-17 Merck Patent Gmbh, 6100 Darmstadt METHOD, MEANS AND DEVICE FOR DETERMINING BIOLOGICAL COMPONENTS
WO1984002578A1 (en) * 1982-12-21 1984-07-05 Comtech Res Unit Assay technique
AU581669B2 (en) * 1984-06-13 1989-03-02 Applied Research Systems Ars Holding N.V. Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor
US4647544A (en) * 1984-06-25 1987-03-03 Nicoli David F Immunoassay using optical interference detection
GB8423204D0 (en) * 1984-09-14 1984-10-17 Comtech Res Unit Assay technique and equipment
GB8618133D0 (en) * 1986-07-24 1986-09-03 Pa Consulting Services Biosensors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307141A (en) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh Method for simultaneously detecting mutual reaction of organism molecule using plasmon resonance and fluorescent detection
JP2003533692A (en) * 2000-05-06 2003-11-11 ツェプトゼンス アクチエンゲゼルシャフト Grating waveguide structures for multiple analyte measurements and their use
JP2005521052A (en) * 2002-03-20 2005-07-14 ウイスコンシン アラムニ リサーチ ファンデーション Optical imaging of nanostructured substrates
JP2011226925A (en) * 2010-04-20 2011-11-10 National Institute Of Advanced Industrial & Technology Microplate having periodic structure and manufacturing method of the same
JP2014016372A (en) * 2013-10-29 2014-01-30 National Institute Of Advanced Industrial & Technology Microplate having periodic structure and surface plasmon excitation enhanced fluorescent microscope using the same, fluorescence microplate reader and method of detecting peculiar antigen and antibody reaction
WO2015155799A1 (en) * 2014-04-08 2015-10-15 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement device and surface plasmon enhanced fluorescence measurement method
JPWO2015155799A1 (en) * 2014-04-08 2017-04-13 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measuring apparatus and surface plasmon enhanced fluorescence measuring method

Also Published As

Publication number Publication date
WO1988007202A1 (en) 1988-09-22
GB8705650D0 (en) 1987-04-15
EP0304461A1 (en) 1989-03-01
AU1391288A (en) 1988-10-10

Similar Documents

Publication Publication Date Title
JPH01502930A (en) Improved analytical techniques and equipment
EP0167335B1 (en) Method of detecting binding reaction between ligand and anti-ligand
EP0670043B1 (en) Ligand assay using interference modulation
USRE33581E (en) Immunoassay using optical interference detection
US7221457B2 (en) Imaging platform for nanoparticle detection applied to SPR biomolecular interaction analysis
US6859280B2 (en) Imaging apparatus and method
US5350697A (en) Scattered light detection apparatus
US7713751B2 (en) Method of optical detection of binding of a material component to a sensor substance due to a biological, chemical or physical interaction and apparatus for its embodiment (variants)
JP2002502967A (en) Method and apparatus for measuring luminescence
WO1998022808A1 (en) Analytical apparatus
JPH0627703B2 (en) Optical sensor for selective detection of substance and detection of change in refractive index in measurement substance
EP1021708A1 (en) Use of biosensors to diagnose plant diseases
JP2572829B2 (en) Waveguide sensor
WO2002086468A1 (en) Imaging apparatus and method
WO1994000763A1 (en) Method for determining multiple immunocomplexes on one surface using spectroscopy
JP2005077396A (en) Optical waveguide for analysis
NO884985L (en) IMPROVED EVALUATION TECHNIQUE AND APPARATUS FOR SELECTING THIS.
AU3145393A (en) Ligand assay using interference modulation
Laing et al. 12 High-Resolution Label Free Detection Applied to Protein Microarray Research
CA2149784A1 (en) Ligand assay using interference modulation