JPH0146839B2 - - Google Patents
Info
- Publication number
- JPH0146839B2 JPH0146839B2 JP55079177A JP7917780A JPH0146839B2 JP H0146839 B2 JPH0146839 B2 JP H0146839B2 JP 55079177 A JP55079177 A JP 55079177A JP 7917780 A JP7917780 A JP 7917780A JP H0146839 B2 JPH0146839 B2 JP H0146839B2
- Authority
- JP
- Japan
- Prior art keywords
- column
- tower
- diameter
- enlarged
- perforated plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 8
- 231100000614 poison Toxicity 0.000 claims description 6
- 230000007096 poisonous effect Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 230000001914 calming effect Effects 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910052580 B4C Inorganic materials 0.000 description 3
- 229910052778 Plutonium Inorganic materials 0.000 description 3
- 229910052770 Uranium Inorganic materials 0.000 description 3
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 3
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- ZQPKENGPMDNVKK-UHFFFAOYSA-N nitric acid;plutonium Chemical compound [Pu].O[N+]([O-])=O ZQPKENGPMDNVKK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G56/00—Compounds of transuranic elements
- C01G56/001—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Inorganic Chemistry (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Measurement Of Radiation (AREA)
Description
【発明の詳細な説明】
本発明は幾何学的な安全形状で、多孔板及び両
端部で拡大された沈静域を備える、核分裂性物質
および/または燃料親物質精製用抽出塔に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extraction column for the purification of fissile material and/or fuel parent material, with a geometrically safe shape, perforated plates and enlarged settling zones at both ends.
原子核工業において、特に使用済み燃料要素の
再処理の際にウランおよびプルトニウムの精製が
液−液抽出によつて実施されている。溶液のU−
235およびプルトニウム含量に応じて、抽出に使
用される塔のシリンダ直径は臨界理由から一定の
直径値を越えることができない。この制限により
抽出塔の処理流量が限定される。したがつて大規
模装置で多数の抽出ライン(ラインは例えば塔3
〜6基を有する)を並置しなければならず、この
ことは高い設備費用を必要とする。したがつて塔
の処理流量の所望の増加または倍増はその他の抽
出ラインのための経費を節約するのみならず、例
えば再処理設備においてより厚いコンクリートに
よる対外遮蔽によつて特に高価である処理空間を
も節約するものである。 In the nuclear industry, the purification of uranium and plutonium is carried out by liquid-liquid extraction, especially during the reprocessing of spent fuel elements. Solution U-
235 and the plutonium content, the cylinder diameter of the column used for extraction cannot exceed a certain diameter value for critical reasons. This restriction limits the processing flow rate of the extraction column. Therefore, large-scale installations require a large number of extraction lines (e.g. column 3).
~6 units) must be placed side by side, which requires high equipment costs. The desired increase or doubling of the throughput of the column therefore not only saves costs for other extraction lines, but also saves processing space, which is particularly expensive, due to external shielding with thicker concrete, for example in reprocessing plants. It also saves money.
そのため既りハフニウム金属を用いて塔の非均
質的毒物質注入を実施することが提案された〔反
応炉会議、1976年ジユツセルドルフ〕。その際塔
の多孔板を層厚約2.5mmのハフニウム板から形成
すべきことが警告されている。 For this reason, it has already been proposed to carry out a heterogeneous poison injection of the tower using hafnium metal [Reactor Conference, Jutsserdorf, 1976]. At this time, it is cautioned that the perforated plate of the tower should be made of hafnium plate with a layer thickness of approximately 2.5 mm.
しかしこの提案は一連の欠点を伴なつている。
すなわち塔の形状を僅かにしか拡大することがで
きず、したがつて処理流量の倍増が可能ではな
い。更に応力腐食を排除できない、それというの
も塔は不銹鋼から形成され、局部電池が形成され
ることがあるからである。その上に板の厚さの減
少は吸収計算にかかわり、かつ臨界を高めるの
で、多孔板の層厚を屡々制御しなければならな
い。 However, this proposal comes with a series of drawbacks.
This means that the column geometry can only be enlarged slightly and therefore a doubling of the throughput volume is not possible. Moreover, stress corrosion cannot be ruled out, since the towers are made of stainless steel and local batteries can form. Moreover, the layer thickness of the perforated plate often has to be controlled, since a reduction in the plate thickness affects absorption calculations and increases the criticality.
したがつて本発明の課題は、前記の欠点を持た
ない、特に腐食問題が生じることなく、著しく高
められた処理流量を可能にする、幾何学的な安全
形状で、多孔板及び両端部で拡大された沈静域を
備える、核分裂性物質および/または燃料親物質
精製用抽出塔を創出することである。 The object of the invention is therefore to provide a perforated plate and an enlarged at both ends, with a geometrically safe shape, which does not have the above-mentioned disadvantages and in particular allows a significantly increased throughput, without corrosion problems. The purpose of the present invention is to create an extraction column for the purification of fissile material and/or fuel parent material with a calming zone.
この課題は本発明により、多孔板を支持し、か
つ被覆と芯から構成され、塔の沈静域において拡
大部を有し、かつ漏れ表示装置が設けられている
丸棒が塔内の中心にその全長にわたつて配置され
ており、この際被覆は塔と同じ材料からなり、芯
は中性子毒物質からなり、かつ丸棒の拡大部が塔
の内径より小さいことにより解決する。 This problem is solved according to the invention by providing a round bar in the center of the tower, which supports the perforated plate and is composed of a jacket and a core, has an enlargement in the calm area of the tower, and is equipped with a leakage indicator. They are arranged over their entire length, the cladding being made of the same material as the column, the core being made of a neutron poisonous substance, and the solution is that the enlargement of the round rod is smaller than the internal diameter of the column.
中心の丸棒の被覆は塔自体と同じ材料からなる
ので、強力な腐食に導びく局部電池は形成されな
い。漏れ表示装置は抽出酸の決壊を確実に示し、
困難な(放射性)条件下にしばしばコントロール
を必要とすることなく、中心の丸棒の簡単な交換
を可能とする。 Since the cladding of the central round bar consists of the same material as the tower itself, no local batteries are formed, which can lead to strong corrosion. A leak indicator reliably indicates a breakdown of the extracted acid,
Allows easy exchange of the central rod without the need for controls, often under difficult (radioactive) conditions.
添付図面は本発明による塔の有利な実施形の略
示図である。 The attached drawing schematically shows an advantageous embodiment of a column according to the invention.
種々の液体、例えば油出剤および抽出すべき溶
液のための供給導管および排出導管が設けられた
塔1内に塔1の塔底3および塔頂4において拡大
された直径を有している丸棒2が存在する。この
塔1の沈静域は相の良好な分離に非常に重要であ
る。中心に配置された丸棒2は被覆5から成り、
この芯6には中性子毒物質が充填される。更には
塔は多孔板7を有している。 In the column 1 there is provided a round column with an enlarged diameter at the bottom 3 and top 4 of the column 1, which is provided with feed and discharge lines for various liquids, e.g. extractant and the solution to be extracted. Bar 2 is present. This calming zone of column 1 is very important for good separation of the phases. A centrally placed round bar 2 is made of a covering 5;
This core 6 is filled with a neutron poisonous substance. Furthermore, the tower has a perforated plate 7.
丸棒2の被覆5は塔自体と同一の材料から成
る。この中性子毒物質を充填され、かつ全面が閉
鎖された丸棒2は任意に拡大することができ、そ
の結果塔の直径も実際に任意に拡大され、かつ著
しく高められた断面積、したがつて通過量を達成
することができる。天然ウランの精製では直径1
mの塔(中心棒なし)が既に公知であり、かつか
かる塔を今や中心に丸棒を設置して濃縮ウランお
よびプルトニウムに対しても使用することができ
る。応力腐食は統一的な塔材料によつて除かれ
る。丸棒2から中性子毒物質が溶出しないように
検出装置として有利に丸棒2の中に液体が侵入し
た際に直ちに警告を発信する漏れ表示装置を組込
む。このようにして経費のかかる制御は省略され
る。 The covering 5 of the bar 2 consists of the same material as the column itself. This round rod 2 filled with neutron poisonous substance and closed on all sides can be enlarged arbitrarily, so that the diameter of the column can also be enlarged practically arbitrarily and the cross-sectional area, thus significantly increased, can be enlarged arbitrarily. throughput can be achieved. In refining natural uranium, diameter 1
m columns (without a central rod) are already known, and such columns can now also be used for enriched uranium and plutonium with a round rod in the center. Stress corrosion is eliminated by the uniform tower material. In order to prevent neutron poisonous substances from eluting from the round rod 2, a leakage display device is advantageously incorporated as a detection device to immediately issue a warning when liquid enters the round rod 2. In this way, expensive controls are omitted.
中性子吸収材としては例えばち密な粉末または
錠剤の形状の炭化硼素(B2C)、合金の形状でも
よいカドミウム金属または酸化ガドリニウムおよ
び他の希土類(Dy2O3、Sm2O3等)が好適であ
る。 Suitable neutron absorbers are, for example, boron carbide (B 2 C) in the form of a compact powder or tablet, cadmium metal or gadolinium oxide and other rare earths (Dy 2 O 3 , Sm 2 O 3 etc.), which may also be in the form of alloys. It is.
安価な炭化硼素が一番有利であり、稀れな場合
にのみ更に大きな中性子吸収断面積の物質が要求
される。中心の丸棒の管は塔自体と同じかまたは
より小さな層厚で同一材料から製造し、例えば
B4C−粉末を充填され、かつ気密に溶接される。
この丸棒は例えば同時に約5cm毎に塔全体にわた
つて配置される多孔板の保持に役立つ。塔の塔底
および塔頂における拡大された沈静空間は同様に
して相応して太い中性子吸収棒により臨界的に安
全にすることができる。かかる拡大部(沈静領
域)は塔の制御に重要である界面をフレークが析
出しないように保持するために必要とされる。 Cheap boron carbide is the most advantageous; only in rare cases will a material with a larger neutron absorption cross section be required. The central round bar tube is manufactured from the same material with the same or smaller layer thickness as the tower itself, e.g.
B 4 C - Powder filled and hermetically welded.
This round bar serves, for example, to hold perforated plates which are arranged at the same time about every 5 cm throughout the column. The enlarged calming space at the bottom and top of the column can likewise be made critically safe by means of correspondingly thick neutron absorption rods. Such expansion (settlement zone) is required to keep the interfaces, which are important for column control, free from flake precipitation.
次に実施例につき本発明を詳説する。 Next, the present invention will be explained in detail with reference to examples.
例 1
U−235の濃縮度4%の硝酸ウラニル溶液につ
いて安全な塔径は38.5cmである。任意の塔の処理
量を倍にするためには、倍の通過断面積が必要で
ある。安全な塔直径38.5cmは通過断面積1164cm2に
相当する。塔径を直径約58cmに拡大し、かつ中心
の中性子吸収棒が直径19.5cmを有し、かつ例えば
炭化硼素粉末を充填されている場合に、通過熱面
積を倍の2328cm2にすることが達成される。塔径58
cmは通過断面積2642cm2を有し、これは中心の中性
子吸収棒の断面積約300cm2少なくされるので、通
過断面積2342cm2は残り、これにより処理流量はほ
ぼ2倍にされる。Example 1 The safe column diameter for a 4% concentrated uranyl nitrate solution of U-235 is 38.5 cm. To double the throughput of any column, a doubling of the passage cross section is required. A safe column diameter of 38.5 cm corresponds to a passage cross section of 1164 cm 2 . By expanding the column diameter to approximately 58 cm, and when the central neutron absorption rod has a diameter of 19.5 cm and is filled with, for example, boron carbide powder, it is possible to double the passing heat area to 2328 cm 2 . be done. Tower diameter 58
cm has a passage cross-section of 2642 cm 2 , which is reduced by about 300 cm 2 of the cross-section of the central neutron-absorbing rod, leaving a passage cross-section of 2342 cm 2 , which nearly doubles the throughput.
塔頂または塔底の界面において塔を常用の約3
倍の通過断面積に拡大すると、塔端部は直径94.5
cmを有し、かつこの位置において吸収棒は直径56
cmを有する。その際吸収棒は、その太い端部の直
径が依然として塔の内径よりも小さい。 Approximately 3
When expanded to double the passage cross section, the column end has a diameter of 94.5
cm, and in this position the absorption rod has a diameter of 56
with cm. The diameter of the absorption rod at its thick end is then still smaller than the internal diameter of the column.
例 2
硝酸プルトニウム溶液に関する安全な塔径は15
cmである。処理流量の倍増は塔の通過断面積の倍
増を必要とする。直径15cmの塔は通過断面積177
cm2を有するので、処理流量を倍にするためには通
過断面積354cm2が必要である。Example 2 The safe column diameter for plutonium nitrate solution is 15
cm. Doubling the throughput flow rate requires doubling the passage cross section of the column. A tower with a diameter of 15 cm has a passage cross section of 177
cm 2 , so in order to double the processing flow rate, a passage cross-sectional area of 354 cm 2 is required.
中心の吸収棒(B4C−充填)を有する塔は処理
流量を倍にするために次の寸法を有する:
塔径=22.5cm、F=398cm2
B4C−棒の直径=7.5cm、F=44cm2
自由通過面積F=354cm2が得られる。 The column with a central absorption rod (B 4 C-packing) has the following dimensions to double the throughput: Column diameter = 22.5 cm, F = 398 cm 2 B 4 C-rod diameter = 7.5 cm, F = 44 cm 2 A free passage area F = 354 cm 2 is obtained.
拡大された塔端部は直径37cmを有し、吸収棒は
直径22cmを有する。 The enlarged column end has a diameter of 37 cm and the absorption rod has a diameter of 22 cm.
添付図面は本発明による塔の一実施形の略示図
である。
1……塔、2……丸棒、3,4……沈静域、5
……被覆、6……芯、7……多孔板。
The accompanying drawing is a schematic representation of one embodiment of a tower according to the invention. 1...Tower, 2...Round bar, 3, 4...Calm area, 5
...Coating, 6... Core, 7... Perforated plate.
Claims (1)
拡大された沈静域を備える、核分裂性物質およ
び/または燃料親物質精製用抽出塔において、多
孔板7を支持し、かつ被覆5と芯6とから構成さ
れ、塔1の沈静域3,4において拡大部を有し、
かつ漏れ表示装置が設けられている丸棒2が塔1
内の中心にその全長にわたつて配置されており、
この際被覆5は塔1と同じ材料からなり、芯6は
中性子毒物質からなり、かつ丸棒2の拡大部が塔
1の内径より小さいことを特徴とする核分裂性物
質および/または燃料親物質用抽出塔。1 In an extraction column for the purification of fissile material and/or fuel parent material, with a geometrical safety shape, with a perforated plate and with enlarged settling zones at both ends, supporting the perforated plate 7 and connecting the cladding 5 and the core. 6, and has an enlarged part in the calming areas 3 and 4 of the tower 1,
And the round bar 2 on which the leakage indicator is installed is the tower 1.
It is located at the center of the interior along its entire length,
In this case, the cladding 5 is made of the same material as the column 1, the core 6 is made of a neutron poisonous substance, and the enlarged part of the round rod 2 is smaller than the inner diameter of the column 1. extraction tower.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2923870A DE2923870C2 (en) | 1979-06-13 | 1979-06-13 | Extraction column for cleaning of fissile and / or breeding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS562598A JPS562598A (en) | 1981-01-12 |
JPH0146839B2 true JPH0146839B2 (en) | 1989-10-11 |
Family
ID=6073108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7917780A Granted JPS562598A (en) | 1979-06-13 | 1980-06-13 | Tower for nuclear fissionable material and or fuel material |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS562598A (en) |
BR (1) | BR8003430A (en) |
DE (1) | DE2923870C2 (en) |
FR (1) | FR2458879A1 (en) |
GB (1) | GB2056156B (en) |
SE (1) | SE8004392L (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57162656A (en) * | 1981-04-01 | 1982-10-06 | Toshiba Corp | Centrifugal clarifier |
JPS57162657A (en) * | 1981-04-01 | 1982-10-06 | Toshiba Corp | Centrifugal clarifier |
DE3506693C1 (en) * | 1985-02-26 | 1986-10-09 | Wiederaufarbeitungsanlage Karlsruhe Betriebsgesellschaft mbH, 7514 Eggenstein-Leopoldshafen | Sieve tray column for countercurrent extraction |
DE8900876U1 (en) * | 1989-01-26 | 1989-08-10 | Siemens AG, 1000 Berlin und 8000 München | Heating element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319760A (en) * | 1976-08-09 | 1978-02-23 | Hitachi Ltd | Integrated circuit device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB811790A (en) * | 1956-02-28 | 1959-04-15 | Atomic Energy Authority Uk | Improvements in or relating to vessels for processing nuclear fuel |
DE2261018C3 (en) * | 1972-12-13 | 1981-02-05 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Countercurrent extraction column for liquid-liquid extraction with simultaneous electrolysis |
DE2520940C2 (en) * | 1975-05-10 | 1982-08-19 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Device for the continuous, extractive separation of connections by means of electrolytic reduction |
FR2311389A1 (en) * | 1975-05-10 | 1976-12-10 | Metallgesellschaft Ag | APPLICATION OF HAFNIUM OR HAFNIUM ALLOYS AS A MATERIAL IN PLANTS FOR THE PROCESSING OF IRRADIATED NUCLEAR FUELS |
GB2007010A (en) * | 1977-10-03 | 1979-05-10 | British Nuclear Fuels Ltd | Solvent extraction columns |
-
1979
- 1979-06-13 DE DE2923870A patent/DE2923870C2/en not_active Expired
-
1980
- 1980-04-08 FR FR8007863A patent/FR2458879A1/en active Granted
- 1980-05-30 BR BR8003430A patent/BR8003430A/en not_active IP Right Cessation
- 1980-06-05 GB GB8018402A patent/GB2056156B/en not_active Expired
- 1980-06-12 SE SE8004392A patent/SE8004392L/en unknown
- 1980-06-13 JP JP7917780A patent/JPS562598A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319760A (en) * | 1976-08-09 | 1978-02-23 | Hitachi Ltd | Integrated circuit device |
Also Published As
Publication number | Publication date |
---|---|
SE8004392L (en) | 1980-12-14 |
GB2056156B (en) | 1983-01-26 |
DE2923870C2 (en) | 1982-10-28 |
GB2056156A (en) | 1981-03-11 |
FR2458879A1 (en) | 1981-01-02 |
FR2458879B1 (en) | 1984-01-06 |
JPS562598A (en) | 1981-01-12 |
BR8003430A (en) | 1981-01-05 |
DE2923870A1 (en) | 1980-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2937127A (en) | Laboratory reactor | |
FR2354612A1 (en) | FAST NUCLEAR REACTOR PROVIDED WITH A NEUTRON SHIELD IN THE FORM OF GROUPED BARS | |
JPH0146839B2 (en) | ||
US4246238A (en) | Dissolver for removing nuclear fuel materials from fuel element segments | |
Lowe et al. | Development of a pressurized cation exchange chromatographic process for separation of transplutonium actinides | |
Hyder et al. | Processing of irradiated, enriched uranium fuels at the Savannah River Plant | |
Konrad | Facilities for the irradiation of 235-U for the production of 99 Mo at the HFR Petten | |
GB2007010A (en) | Solvent extraction columns | |
Matsushita et al. | Neutron flux gradients and spectrum changes in the irradiation capsule for reactor neutron activation analysis | |
GB1320476A (en) | Liquid cooled nuclear reactor including a neutron flux measurement installation | |
Sjoeborg et al. | The Planning of a Small Pilot Plant for Development Work on Aqueous Reprocessing of Nuclear Fuels | |
DE1433194A1 (en) | Nuclear reactor for underground use in boreholes | |
Bisby et al. | IN-LINE RADIOMETRIC PROCESS MONITORS. PART 1 | |
Farrell et al. | The Reprocessing of Homogeneous Beryllium-based Reactor Fuel. a Suggested Scheme for the Selective Aqueous Dissolution of the Matrix | |
Akell et al. | New developments in liquid-liquid extractors: Selected papers from ISEC 83 | |
Pankratov et al. | The experience in handling of lead-bismuth coolant contaminated by Polonium-210 | |
JP2023119380A (en) | Method for reducing load of processing high-level radioactive waste and fuel of fast reactor | |
Evans | A Review of Criticality Incidents within the European Community | |
Masterson et al. | THE LIMITING CRITICAL CONCENTRATIONS FOR Pu239 AND U2= IN AQUEOUS SOLUTiONS | |
Borst | NUCLEAR REACTOR FOR A RAILWAY VEHICLE | |
Cojocaru et al. | DETERMINATION OF ACTIVATED IMPURITIES IN SEMICONDUCTOR-GRADE SILICON BY $ gamma $-SPECTROGRAPHY | |
Kochetkov et al. | The experience of the fuel waste management of AM and BR-10 reactor facilities at SSC RF IPPE named after AI Leipunsky | |
Bradley | REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS | |
Jemli et al. | Properties and extraction data of Levextrel (HDEHP). Nuclear application | |
Noaks | Extended Zero Power Experiments on the Army Package Power Reactor-zpe-2 |