[go: up one dir, main page]

JPH0141366B2 - - Google Patents

Info

Publication number
JPH0141366B2
JPH0141366B2 JP10659981A JP10659981A JPH0141366B2 JP H0141366 B2 JPH0141366 B2 JP H0141366B2 JP 10659981 A JP10659981 A JP 10659981A JP 10659981 A JP10659981 A JP 10659981A JP H0141366 B2 JPH0141366 B2 JP H0141366B2
Authority
JP
Japan
Prior art keywords
polysulfone
membrane
film
polyacrylamide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10659981A
Other languages
Japanese (ja)
Other versions
JPS588515A (en
Inventor
Shinsuke Takegami
Koji Fukuda
Kazuto Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP10659981A priority Critical patent/JPS588515A/en
Publication of JPS588515A publication Critical patent/JPS588515A/en
Publication of JPH0141366B2 publication Critical patent/JPH0141366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリスルホン系半透膜の製造方法に
関するものである。更に詳しくは過効率に優
れ、しかも透水速度の大きい、異方性を有するポ
リスルホン半透膜の製造方法に関するものであ
る。更に詳しくはポリスルホン系重合体をポリア
クリルアミドを含む非プロトン性溶媒に溶解して
製膜原液を作製せしめ、次いで該原液を所望の形
状の膜状物質を形成せしめたのち、凝固媒体と接
触させてポリスルホン重合体を凝固させて製膜す
ることを特徴とするポリスルホン系分離膜の製造
方法を提供することにある。 近年、廃水処理、海水の淡水化、食品工業ある
いは医療分野等の広範な用途分野において、半透
膜を使用する各種物質の分離技術が注目され、今
後も更に大きな発展が期待されている。 そのような膜分離技術として、水系媒体中に浮
遊、分散ないしは溶解している物質の大きさに応
じて限外過、逆浸透等種々の手法が提案されて
いる。すなわち、上記の各分離目的に応じて膜に
要求される性能が異なることは言うまでもない
が、共通的に要求される性能として、水系媒体の
透過速度が大きいこと、各種物質の半透性に優れ
ていること、機械的強度が大きく、耐熱性、耐薬
品性に優れていることなどが挙げられる。 従来、半透膜に使用されている素材として種々
のものが提案されており、中でも過性能が優れ
たものとしてアセチルセルロース半透膜が著名で
ある。しかし、アセチルセルロース膜は特に耐薬
品性、耐熱性、耐微生物性などに欠点を有してい
るため必ずしも好適な膜とはいえない。 一方、ポリスルホン系半透膜、特に芳香族ポリ
スルホンよりなる半透膜は機械的強度に優れ、耐
化学薬品性、耐熱性、耐微生物性などにも優れて
おり、アセチルセルロース半透膜では使用出来な
かつた分野にも用いられる可能性があり注目され
ている。 ポリスルホン系半透膜については、種々の製膜
方法が提案されている。例えば米国特許第
3615024号、特開昭49−23183、特開昭51−129880
などである。これらの製膜方法はいずれも湿式製
膜法が採用されており、基本的にはポリスルホン
系重合体を溶媒に溶解して製膜原液を作製せし
め、次いで該原液をキヤステイングした後、凝固
浴に浸漬して、脱溶剤して膜を製造する方法であ
る。 前記特許では上記の製膜方法において、良溶媒
にポリスルホンを析出させない程度に非溶媒を添
加することが述べられているが、これら先行文献
に具体的に開示されている非溶媒を用いた場合に
は製膜操作が困難であつたり、膜性能が劣つてい
たりするなど、不都合な点が多かつた。 ここにおいて本発明者等は、上記の欠点を克服
し、優れた膜性能を有するポリスルホン系半透膜
の製造方法を鋭意研究した結果、ポリスルホン系
重合体の溶媒としてポリアクリルアミドを含有し
たN,N−ジメチルホルムアミド、N,N−ジメ
チルアセトアミド、ジメチルスルホキシド、スル
ホラン又はN−メチルピロリドンを使用し、ポリ
アクリルアミドの添加量を特定化することによ
り、機械的強度に優れた異方性を有するポリスル
ホン半透膜を製造し有る事実を見出し、本発明に
到達した。 すなわち、本発明の目的は透水速度が大きく、
過効果に優れた非対称性のポリスルホン系半透
膜の製造方法を提供することにある。 本発明の他の目的はマイクロ過膜、限外過
膜、逆浸透膜用基材等の各種用途分野に応じた分
離性能の設計が可能なポリスルホン系半透膜の製
造方法を提供することにある。 上述した本発明の目的はポリスルホン系重合体
をポリアクリルアミドを含有する非プロトン性極
性溶媒に溶解して、製膜原液を作製せしめ、次い
で該原液を所望の形状の膜状物質に形成せしめた
後、凝固媒体と接触させてポリスルホン系重合体
を凝固させることを特徴とする製造方法によつて
達成される。 本発明に係るポリスルホン系重合体としては芳
香族系のものが好ましく、例えば の繰返し単位を有するポリスルホン、
The present invention relates to a method for producing a polysulfone-based semipermeable membrane. More specifically, the present invention relates to a method for producing an anisotropic polysulfone semipermeable membrane with excellent permeability and high water permeation rate. More specifically, a polysulfone-based polymer is dissolved in an aprotic solvent containing polyacrylamide to prepare a film-forming stock solution, and then the stock solution is formed into a film-like material of a desired shape, and then brought into contact with a coagulation medium. An object of the present invention is to provide a method for producing a polysulfone separation membrane, which is characterized in that the membrane is formed by coagulating a polysulfone polymer. In recent years, separation technologies for various substances using semipermeable membranes have been attracting attention in a wide range of application fields such as wastewater treatment, seawater desalination, food industry, and medical fields, and even greater development is expected in the future. As such membrane separation techniques, various methods such as ultrafiltration and reverse osmosis have been proposed depending on the size of substances suspended, dispersed, or dissolved in the aqueous medium. In other words, it goes without saying that the performance required of the membrane differs depending on the purpose of separation mentioned above, but the commonly required performance is a high permeation rate for aqueous media and excellent semipermeability for various substances. It has high mechanical strength, excellent heat resistance, and chemical resistance. Conventionally, various materials have been proposed for use in semipermeable membranes, and among them, acetyl cellulose semipermeable membranes are well-known as having excellent permeability. However, acetylcellulose membranes have drawbacks, particularly in chemical resistance, heat resistance, microbial resistance, etc., and are therefore not necessarily suitable membranes. On the other hand, polysulfone-based semipermeable membranes, especially semipermeable membranes made of aromatic polysulfone, have excellent mechanical strength, chemical resistance, heat resistance, and microbial resistance, and cannot be used with acetyl cellulose semipermeable membranes. It is attracting attention because it has the potential to be used in fields that have not yet been developed. Various membrane forming methods have been proposed for polysulfone-based semipermeable membranes. For example, US Patent No.
No. 3615024, JP-A-49-23183, JP-A-51-129880
etc. All of these film-forming methods employ a wet film-forming method, which basically involves dissolving the polysulfone polymer in a solvent to prepare a film-forming stock solution, then casting the stock solution, and then applying it to a coagulation bath. In this method, the membrane is manufactured by immersing it in water to remove the solvent. The above-mentioned patent states that in the above-mentioned film-forming method, a non-solvent is added to the good solvent to the extent that polysulfone does not precipitate. However, when using the non-solvent specifically disclosed in these prior documents, had many disadvantages, such as difficult membrane forming operations and poor membrane performance. Here, as a result of intensive research into a method for manufacturing a polysulfone-based semipermeable membrane that overcomes the above-mentioned drawbacks and has excellent membrane performance, the present inventors have discovered that N,N - By using dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, sulfolane or N-methylpyrrolidone and specifying the amount of polyacrylamide added, semi-transparent polysulfone with excellent mechanical strength and anisotropy After manufacturing the membrane, we discovered a certain fact and arrived at the present invention. That is, the purpose of the present invention is to have a high water permeation rate,
An object of the present invention is to provide a method for producing an asymmetric polysulfone-based semipermeable membrane with excellent permeability. Another object of the present invention is to provide a method for producing polysulfone-based semipermeable membranes that can be designed to have separation performance suitable for various application fields, such as microfiltration membranes, ultrafiltration membranes, and reverse osmosis membrane substrates. be. The purpose of the present invention described above is to dissolve a polysulfone-based polymer in an aprotic polar solvent containing polyacrylamide to prepare a film-forming stock solution, and then form the stock solution into a film-like substance of a desired shape. This is achieved by a manufacturing method characterized by coagulating a polysulfone polymer by contacting it with a coagulating medium. The polysulfone polymer according to the present invention is preferably aromatic, for example polysulfone having a repeating unit of

【式】の繰返し単位を有 するポリアリールエーテルスルホンを代表例とし
て挙げることができる。半透膜として好適なもの
は、重合度が40ないし200の範囲にある。 上記ポリスルホンの溶媒としてはポリアクリル
アミドを含有する非プロトン性極性溶媒を用いる
ことが必須条件である。 非プロトン性極性溶媒としては、N,N−ジメ
チルホルムアミド(DMF)、N,N−ジメチルア
セトアミド(DMAC)、ジメチルスルホキシド、
N−メチルピロリドン(NMP)、スルホラン、
ヘキサメチルホスホンアミドなどを例示すること
が出来るが、中でもN,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、N−メチル
ピロリドン、ジメチルスルホキシド、スルホラン
が好ましい。 ポリアクリルアミドの分子量は500ないし
100000の範囲のものがよく、特に1000ないし
60000の範囲のものが好適である。 分子量が小さいものを用いると透過水量が少な
くなるが、過効果は良くなる。又分子量が大き
いものを用いると透過水量が多くなるが分子量の
小さいものより過効果が悪くなる。ポリアクリ
ルアミドの分子量を調節することによつて過性
能及び透水速度を好適な範囲に調整し得る。一方
ポリアクリルアミドの添加量はポリアクリルアミ
ドと非プロトン性極性溶媒全重量に対して、5な
いし30%の範囲にすべきである。ポリアクリルア
ミドの添加量が少ないと充分な透水速度が得にく
いし、添加量が多すぎるとポリスルホン半透膜の
機械的強度が小さくなる。好ましくはポリアクリ
ルアミドの添加量を7ないし15%の範囲に維持す
ることである。 このようにポリスルホン系重合体を上述の混合
溶媒に溶解して作製した製膜原液を平板、エンド
レスベルト、回転ドラムなどの上に流延、または
スリツト状、アニユラー状などの口金を介して押
し出しなどの方法により、平膜、チユーブ、中空
繊維などの所望の膜状物質に形成する。 該膜状形成物質を空気や窒素などの不活性雰囲
気に接触させるか、又は直接凝固媒体と接触させ
て凝固させる。凝固媒体としては水、上記混合溶
媒を含んだ水溶液又は上記混合性溶媒と相溶性を
有する水溶性物質などいずれの凝固媒体でも採用
することが出来る。 本発明の理解を更に良好にするため、次に本発
明の代表的な実施例を示すが、本発明はこれらの
実施例の記載によつてその範囲を何ら限定するも
のではない。なお実施例に示される百分率および
部は特に断わりのない限り、全て重量基準による
ものである。 実施例 1 ポリアリールエーテルスルホン(商品名UDEL
P3500、ユニオンカーバイト社製)20gを、ジ
メチルホルムアミド100gに第1表に示す添加剤
を加えた混合液に溶解させた。この溶液をガラス
板上にキヤステイングして膜を作る。次いで25℃
に保たれた水中に静かに浸漬し凝固させる。1分
間浸漬したのち、水洗して水中に保存する。 得られた膜について蒸留水透水量およびポリエ
チレングリコール(平均分子量20000)2000ppm
の水溶液を用いてポリエチレングリコール除去率
を測定した。その結果を第1表に示す。なお、蒸
留水透水量は、25℃圧力4Kg/cm2において測定し
た。また、ポリエチレングリコールの濃度は水溶
液を絶乾した後重量法によつて測定した。
A polyarylether sulfone having a repeating unit of the formula can be cited as a representative example. Suitable semipermeable membranes have a degree of polymerization in the range of 40 to 200. It is essential to use an aprotic polar solvent containing polyacrylamide as the solvent for the polysulfone. Examples of aprotic polar solvents include N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), dimethylsulfoxide,
N-methylpyrrolidone (NMP), sulfolane,
Examples include hexamethylphosphonamide, among which N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and sulfolane are preferred. The molecular weight of polyacrylamide is 500 or more.
Something in the range of 100000 is good, especially 1000 or more
A range of 60,000 is preferred. If a material with a small molecular weight is used, the amount of permeated water will be reduced, but the overeffect will be improved. Furthermore, if a material with a large molecular weight is used, the amount of permeated water will increase, but the overeffect will be worse than a material with a small molecular weight. By adjusting the molecular weight of polyacrylamide, the superperformance and water permeation rate can be adjusted within a suitable range. On the other hand, the amount of polyacrylamide added should be in the range of 5 to 30% based on the total weight of polyacrylamide and the aprotic polar solvent. If the amount of polyacrylamide added is small, it will be difficult to obtain a sufficient water permeation rate, and if the amount added is too large, the mechanical strength of the polysulfone semipermeable membrane will be reduced. Preferably, the amount of polyacrylamide added is maintained in the range of 7 to 15%. The film-forming stock solution prepared by dissolving the polysulfone polymer in the above-mentioned mixed solvent is cast onto a flat plate, endless belt, rotating drum, etc., or extruded through a slit-shaped, annular-shaped, etc. By this method, it is formed into a desired membrane-like material such as a flat membrane, a tube, or a hollow fiber. The film-forming material is solidified by contacting it with an inert atmosphere such as air or nitrogen, or by directly contacting it with a solidification medium. As the coagulating medium, any coagulating medium such as water, an aqueous solution containing the above-mentioned mixed solvent, or a water-soluble substance having compatibility with the above-mentioned miscible solvent can be employed. In order to better understand the present invention, typical examples of the present invention will be shown next, but the scope of the present invention is not limited in any way by the description of these examples. Note that all percentages and parts shown in the examples are based on weight unless otherwise specified. Example 1 Polyarylether sulfone (trade name: UDEL)
P3500 (manufactured by Union Carbide) was dissolved in a mixture of 100 g of dimethylformamide and the additives shown in Table 1. This solution is casted onto a glass plate to form a film. Then 25℃
Gently immerse in water kept at a constant temperature to solidify. After soaking for 1 minute, wash and store in water. Distilled water permeability and polyethylene glycol (average molecular weight 20000) 2000ppm of the obtained membrane
The polyethylene glycol removal rate was measured using an aqueous solution of The results are shown in Table 1. Incidentally, the amount of distilled water permeation was measured at 25° C. and a pressure of 4 Kg/cm 2 . Moreover, the concentration of polyethylene glycol was measured by gravimetric method after drying the aqueous solution.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリスルホン系重合体をポリアクリルアミド
を含む非プロトン性極性溶媒に溶解して、製膜原
液を作製せしめ、次いで該原液を所望の形状の膜
状物質に形成せしめた後、凝固媒体と接触させて
ポリスルホン系重合体を凝固させて製膜すること
を特徴とするポリスルホン半透膜の製造方法。 2 非プロトン性極性溶媒がN,N−ジメチルホ
ルムアミド、N,N−ジメチルアセトアミド、ジ
メチルスルホキシド、スルホラン又はN−メチル
ピロリドンである特許請求の範囲第1項記載の方
法。 3 非プロトン性極性溶媒100g当り、ポリアク
リルアミドが5ないし30gの割合で用いる特許請
求の範囲第1項記載の方法。
[Claims] 1. After dissolving a polysulfone-based polymer in an aprotic polar solvent containing polyacrylamide to prepare a film-forming stock solution, and then forming the stock solution into a film-like material of a desired shape, A method for producing a polysulfone semipermeable membrane, which comprises forming a membrane by coagulating a polysulfone polymer by bringing it into contact with a coagulation medium. 2. The method according to claim 1, wherein the aprotic polar solvent is N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, sulfolane or N-methylpyrrolidone. 3. The method according to claim 1, wherein polyacrylamide is used in a proportion of 5 to 30 g per 100 g of aprotic polar solvent.
JP10659981A 1981-07-08 1981-07-08 Preparation of polysulfone semi-permeable membrane Granted JPS588515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10659981A JPS588515A (en) 1981-07-08 1981-07-08 Preparation of polysulfone semi-permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10659981A JPS588515A (en) 1981-07-08 1981-07-08 Preparation of polysulfone semi-permeable membrane

Publications (2)

Publication Number Publication Date
JPS588515A JPS588515A (en) 1983-01-18
JPH0141366B2 true JPH0141366B2 (en) 1989-09-05

Family

ID=14437602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10659981A Granted JPS588515A (en) 1981-07-08 1981-07-08 Preparation of polysulfone semi-permeable membrane

Country Status (1)

Country Link
JP (1) JPS588515A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644192B2 (en) * 1985-12-30 1994-06-08 ヤマハ株式会社 Automatic rhythm playing device

Also Published As

Publication number Publication date
JPS588515A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
Kim et al. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process
CN107530640B (en) Method for producing porous asymmetric membranes, and associated membranes and separation modules
JP2017515664A (en) Porous asymmetric polyphenylene ether membrane and related separation modules and methods
CN100457242C (en) Dialysis membrane having improved average molecular distance
JP3060985B2 (en) Filtration membrane and method for producing the same
JPH057047B2 (en)
EP3057688A1 (en) Improving the chemical stability of filtration membranes
JP6343470B2 (en) NF membrane manufacturing method
JPS6356802B2 (en)
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
CN112044291A (en) A dense separation membrane
JPS584561B2 (en) Kanjiyouporiniyosono Fuseihan Umaku
JPH05508344A (en) Polytetramethylene adipamide or nylon 46 membrane with narrow pore size distribution and method for producing the same
WO2019165840A1 (en) Forward osmosis membrane, and preparation method therefor
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
CN112312997A (en) Crosslinked polymer film
JPWO2016136966A1 (en) Composite semipermeable membrane
JPH0141366B2 (en)
JPH0468010B2 (en)
JP2701357B2 (en) Casting dope for film formation
JP2003251152A (en) Precision porous poly(ether sulfone) filter membrane
Guclu et al. Investigation of pilot scale manufacturing of polysulfone (PSf) membranes by wet phase inversion method
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
CN117919946B (en) Seawater desalination reverse osmosis composite membrane and its preparation method and application
CN110856804A (en) Chlorine-resistant porous membrane and preparation method thereof