[go: up one dir, main page]

JPH0468010B2 - - Google Patents

Info

Publication number
JPH0468010B2
JPH0468010B2 JP62193322A JP19332287A JPH0468010B2 JP H0468010 B2 JPH0468010 B2 JP H0468010B2 JP 62193322 A JP62193322 A JP 62193322A JP 19332287 A JP19332287 A JP 19332287A JP H0468010 B2 JPH0468010 B2 JP H0468010B2
Authority
JP
Japan
Prior art keywords
membrane
polytetrafluoroethylene resin
fiber
forming polymer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62193322A
Other languages
Japanese (ja)
Other versions
JPS6434407A (en
Inventor
Takashi Kawai
Tomoko Katsu
Toshio Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62193322A priority Critical patent/JPS6434407A/en
Priority to PCT/JP1988/000755 priority patent/WO1989000879A1/en
Priority to DE8888906883T priority patent/DE3878899T2/en
Priority to EP88906883A priority patent/EP0343247B1/en
Publication of JPS6434407A publication Critical patent/JPS6434407A/en
Priority to US07/358,205 priority patent/US5158680A/en
Priority to US07/918,060 priority patent/US5286324A/en
Publication of JPH0468010B2 publication Critical patent/JPH0468010B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Molding Of Porous Articles (AREA)
  • Artificial Filaments (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は逆浸透、限外ろ過、精密ろ過など濃
縮、物質分離に適する新規なポリテトラフルオロ
エチレン系樹脂多孔性膜およびその製造方法に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a novel polytetrafluoroethylene resin porous membrane suitable for concentration and substance separation such as reverse osmosis, ultrafiltration, and microfiltration, and a method for producing the same. It is.

(従来の技術) 従来より、逆浸透、限外ろ過、精密ろ過など
に、セルロースアセテート系、ポリエチレン、ポ
リプロピレン系、ポリメチルメタクリレート系、
ポリアクリロニトリル系、ポリスルホン系などの
多孔性膜が用いられてきたが、透過性能、機械的
強度、耐熱性、耐アルカリ性、耐酸性、耐溶媒
性、耐薬品性などに欠点を有していた。
(Conventional technology) Cellulose acetate, polyethylene, polypropylene, polymethyl methacrylate,
Porous membranes such as polyacrylonitrile and polysulfone have been used, but they have drawbacks in permeability, mechanical strength, heat resistance, alkali resistance, acid resistance, solvent resistance, chemical resistance, etc.

かかる観点から、機械的強度、耐熱性、耐アル
カリ性、耐酸性、耐溶媒性、耐薬品性などに優れ
た特性を有するポリテトラフルオロエチレン系樹
脂が注目され、多孔性膜化が検討されてきた。
From this point of view, polytetrafluoroethylene resins, which have excellent properties such as mechanical strength, heat resistance, alkali resistance, acid resistance, solvent resistance, and chemical resistance, have attracted attention, and the creation of porous membranes has been studied. .

例えば、特公昭42−13560号、特開昭46−7284
号、特開昭50−71759号にあるような、液体状潤
滑剤を含む未焼結ポリテトラフルオロエチレン樹
脂混和物、あるいは固体状造孔剤と樹脂分散液と
の凝集混合物からの成形物を、未焼結状態で少な
くとも一方向に延伸した状態で約327℃以上に加
熱することを特徴とした方法で得た例がこれまで
にあるが、膜の多孔構造の制御が不十分で性能が
低いものであるか、製膜性が悪く、膜厚の厚いも
のしかできなかつた。
For example, JP 42-13560, JP 46-7284.
No. 50-71759, a molded product made from an unsintered polytetrafluoroethylene resin mixture containing a liquid lubricant, or an agglomerated mixture of a solid pore-forming agent and a resin dispersion. To date, there have been examples in which membranes have been obtained using a method characterized by heating the membrane in an unsintered state stretched in at least one direction to a temperature of approximately 327°C or higher, but the pore structure of the membrane was insufficiently controlled and the performance was poor. Either the thickness of the film was low, or the film forming properties were poor, and only thick films could be formed.

(発明が解決しようとする問題点) 本発明者らは上記欠点のないポリテトラフルオ
ロエチレン系樹脂多孔性膜について鋭意検討した
結果、本発明に到達した。
(Problems to be Solved by the Invention) The present inventors have intensively studied a polytetrafluoroethylene resin porous membrane that does not have the above-mentioned drawbacks, and as a result, have arrived at the present invention.

(問題点を解決するための手段) 本発明は次の構成を有する。(Means for solving problems) The present invention has the following configuration.

(1) 平均孔径が0.01〜2μで、樹脂粒子が互いに融
着した微多孔網目状組織からなるポリテトラフ
ルオロエチレン系樹脂多孔性膜。
(1) A porous polytetrafluoroethylene resin membrane with an average pore diameter of 0.01 to 2μ and consisting of a microporous network structure in which resin particles are fused together.

(2) ポリテトラフルオロエチレン系樹脂分散液と
繊維形成性重合体の均一混合物を成形し、得ら
れた成形物を樹脂の融点以上の温度で熱処理し
た後、繊維形成性重合体を除去することを特徴
とするポリテトラフルオロエチレン系樹脂多孔
性膜の製造方法。
(2) Molding a homogeneous mixture of a polytetrafluoroethylene resin dispersion and a fiber-forming polymer, heat-treating the resulting molded product at a temperature equal to or higher than the melting point of the resin, and then removing the fiber-forming polymer. A method for producing a porous polytetrafluoroethylene resin membrane, characterized by:

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明でいう微多孔網目状組織からなる膜と
は、平均孔径0.01〜2μの微多孔が多数存在してお
り、かつその膜の透過性に関与する細孔が、互い
に連結して膜内に均一に分布した構造を有するも
のをいう。
In the present invention, a membrane consisting of a microporous network structure has a large number of micropores with an average pore diameter of 0.01 to 2μ, and the pores that are involved in the permeability of the membrane are connected to each other within the membrane. It refers to something that has a uniformly distributed structure.

また、膜面に平行な面でみた孔の形状には実質
的な配向がなく、さらにくわしくは一方向にそろ
えて測定した平均孔径の最大値とその方向に垂直
な方向の平行孔径の比率が5以下であり、さらに
好ましくは3以下であるのがよい。そして、空孔
率は20%以上であることが好ましい。
In addition, there is no substantial orientation in the shape of the pores when viewed in a plane parallel to the membrane surface, and more specifically, the ratio of the maximum average pore diameter measured aligned in one direction to the parallel pore diameter in the direction perpendicular to that direction is It is preferably 5 or less, more preferably 3 or less. The porosity is preferably 20% or more.

本発明におけるポリテトラフルオロエチレン系
樹脂は、テトラフルオロエチレンホモポリマー、
テトラフルオロエチレン−パーフルオロアルキル
ビニルエーテル共重合体、テトラフルオロエチレ
ン−ヘキサフルオロプロピレン共重合体、テトラ
フルオロエチレン−エチレン共重合体などのテト
ラフルオロエチレンを主体とした共重合体単独あ
るいはそれらの混合物である。
The polytetrafluoroethylene resin in the present invention includes a tetrafluoroethylene homopolymer,
A copolymer mainly composed of tetrafluoroethylene, such as a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-ethylene copolymer, or a mixture thereof. .

本発明におけるポリテトラフルオロエチレン系
樹脂は、水系または有機系分散液として使用され
るが、界面活性剤を含む水系媒体中で乳化重合に
よつて得られる水系分散液あるいはその濃縮液な
どが特に好ましく、さらにくわしくは、粒子径
1μ以下、より好ましくは0.8μ以下のポリテトラフ
ルオロエチレン系樹脂粒子の均一分散液が好まし
い。
The polytetrafluoroethylene resin in the present invention is used as an aqueous or organic dispersion, but particularly preferably an aqueous dispersion obtained by emulsion polymerization in an aqueous medium containing a surfactant or a concentrated solution thereof. , more specifically, the particle size
A uniform dispersion of polytetrafluoroethylene resin particles of 1 μm or less, more preferably 0.8 μm or less is preferred.

本発明における繊維形成性重合体とは、繊維化
可能でしかもポリテトラフルオロエチレン系樹脂
分散液と混合して成形可能な均一混合物をつくる
重合体であればすべてよいが、水系分散液の場合
にはセルロースキサントゲン酸ナトリウム系、ポ
リビニルアルコール系、アルギン酸ソーダ系の重
合体単独あるいはそれらの混合物が好ましい。
The fiber-forming polymer in the present invention may be any polymer that can be made into fibers and forms a homogeneous mixture that can be molded by mixing with a polytetrafluoroethylene resin dispersion, but in the case of an aqueous dispersion, is preferably a cellulose sodium xanthate-based, polyvinyl alcohol-based, or sodium alginate-based polymer alone or a mixture thereof.

本発明における繊維形成性重合体のポリテトラ
フルオロエチレン系樹脂に対する混合割合は、用
いた繊維形成性重合体の種類によつて異なるが、
好ましくは10〜200重量%、さらに好ましくは30
〜100重量%がよい。繊維形成性重合体の混合割
合が10重量%より少ないと平均孔径が0.01μ以上
の多孔性膜が得られず、200重量%より多いと膜
の機械的強度が低く実用的でない。
The mixing ratio of the fiber-forming polymer to the polytetrafluoroethylene resin in the present invention varies depending on the type of fiber-forming polymer used, but
Preferably 10-200% by weight, more preferably 30%
~100% by weight is good. If the mixing ratio of the fiber-forming polymer is less than 10% by weight, a porous membrane with an average pore diameter of 0.01 μm or more cannot be obtained, and if it is more than 200% by weight, the mechanical strength of the membrane is low and is not practical.

さらに、製膜原液には、原液の安定性向上ある
いは製膜、製糸性の改良の目的で市販されている
界面活性剤や消包剤などの添加剤を加えることも
できるが、その全量はポリテトラフルオロエチレ
ン系樹脂に対して50重量%以下、さらには30重量
%以下であることが好ましい。
Furthermore, commercially available additives such as surfactants and anti-packaging agents can be added to the film-forming stock solution for the purpose of improving the stability of the stock solution or improving film-forming and thread-spinning properties, but the total amount It is preferably 50% by weight or less, more preferably 30% by weight or less, based on the tetrafluoroethylene resin.

本発明における均一混合物とは、圧延成形、押
出し成形あるいは両者を組合わせた成形方法など
で成形物が得られるものならばすべてよいが、成
形温度で粘度が10〜10000ポイズの液体が好まし
くもちいられ、さらに好ましくは100〜5000ポイ
ズの液体がよい。
The homogeneous mixture in the present invention may be any mixture that can be formed into a molded product by rolling, extrusion, or a combination of the two, but a liquid having a viscosity of 10 to 10,000 poise at the molding temperature is preferably used. , more preferably a liquid of 100 to 5000 poise.

本発明における均一混合物中のポリテトラフル
オロエチレン系樹脂の濃度は、用いた繊維形成性
重合体の種類、成形方法などによつて異なるが、
通常2〜50重量%、好ましくは5〜30重量%の範
囲である。
The concentration of the polytetrafluoroethylene resin in the homogeneous mixture in the present invention varies depending on the type of fiber-forming polymer used, the molding method, etc.
It is usually in the range of 2 to 50% by weight, preferably 5 to 30% by weight.

本発明における成形物とは、圧延成形、押出し
成形あるいは両者を組合わせた成形方法で得られ
るもので、目的とする多孔性膜の形状にあわせて
シート状、中空糸状が選ばれるが、単位体積当り
の有効面積が大きくとれ、装置の小形化およびコ
ストダウンができて経済的であるという点から中
空糸の方が好ましい。
The molded product in the present invention is obtained by rolling molding, extrusion molding, or a molding method that combines both, and the shape of a sheet or hollow fiber is selected depending on the shape of the intended porous membrane. Hollow fibers are preferable because they have a large effective area and are economical because they can reduce the size and cost of the device.

本発明における成形とは、圧延成形、押出し成
形あるいは両者を組合わせた成形であり、目的と
する成形物の形状にあわせてシート状物の製造あ
るいは中空糸の紡糸が選ばれるが、種々の成形条
件がとれて成形物の構造が制御しやすいという点
から中空糸の紡糸の方が好ましい。
Molding in the present invention refers to rolling molding, extrusion molding, or a combination of both, and manufacturing of sheet-like products or spinning of hollow fibers is selected depending on the shape of the desired molded product, but various molding methods can be used. Hollow fiber spinning is preferable because the conditions can be met and the structure of the molded product can be easily controlled.

例えば、成形用混合物をガラス板、金属板など
の平板、あるいは、連続したベルトなどに流延し
た後、凝固液に浸漬して凝固させるか、成形用混
合物を平膜用スリツト口金から押出して、直接あ
るいはいつたん空気中を通して凝固液に導いて凝
固させるか、または中空糸用口金から、成形用混
合物と同時に芯に非凝固性あるいは凝固性の流体
を押出して、直接あるいはいつたん空気中を通つ
て凝固液中に導くか、あるいは、成形用混合物と
同時に芯に凝固液を押出して、直接あるいはいつ
たん空気中を通つて非凝固性の流体中に導いて凝
固させる方法で成形できる。ここでいう非凝固性
流体とは、凝固作用のないものならばすべてよい
が、用いた繊維形成性重合体の種類によつて異な
るため一概にはいえないが、例えば、水、グリセ
リン、エチレングリコール、ポリエチレングリコ
ール、流動パラフイン、イソプルピルミリステー
ト、フレオンなどや、それらの混合液体、空気、
窒素、不活性ガスなどの気体などから適宜選んで
用いられる。
For example, after casting the molding mixture onto a flat plate such as a glass plate or metal plate, or a continuous belt, the molding mixture may be immersed in a coagulating liquid to solidify, or the molding mixture may be extruded from a flat film slit die. Directly or once through the air to a coagulating liquid to solidify it, or extrude a non-coagulable or coagulable fluid through the core simultaneously with the molding mixture from the hollow fiber mouthpiece, and then directly or once through the air. Molding can be carried out either by extruding the coagulating liquid through the core at the same time as the molding mixture, and then directly or by passing through air and introducing it into a non-coagulating fluid for solidification. The non-coagulable fluid mentioned here may be any fluid as long as it does not have a coagulating effect, but it cannot be generalized because it depends on the type of fiber-forming polymer used, but examples include water, glycerin, and ethylene glycol. , polyethylene glycol, liquid paraffin, isopropyl myristate, freon, etc., liquid mixtures thereof, air,
The gas may be appropriately selected from gases such as nitrogen and inert gases.

口金温度は、原液の粘度との関係から製糸性に
大きく影響するため特定することはできないが、
通常20〜120℃の範囲の温度である。さらには凝
固液温度より20℃低い温度以上であることが好ま
しく、口金面と凝固液面の間の距離が短い時に顕
著になる口金面への蒸気の凝結による製糸性の悪
化を防ぐことができる。
The temperature of the spinneret cannot be determined because it greatly affects the spinning properties due to its relationship with the viscosity of the raw solution.
Temperatures typically range from 20 to 120°C. Furthermore, the temperature is preferably at least 20°C lower than the coagulating liquid temperature, which can prevent deterioration in spinning properties due to steam condensation on the die surface, which becomes noticeable when the distance between the die surface and the coagulating liquid surface is short. .

押出した成形用混合物をいつたん空気中を通つ
て凝固液中に導く場合の、空気走行中の条件は、
成形物の寸法、成形速度などによつてかわるもの
であり、一般的に規定することはできないが、口
金面から凝固液に導入されるまでの距離は、通常
0.2〜200cmの範囲が成形の安定性の点から好まし
い。雰囲気温度は、通常、大気温度もしくは室内
温度であるが、場合によつては、冷却して行うこ
ともできる。
When introducing the extruded molding mixture through the air into the coagulation liquid, the conditions during air travel are as follows:
It depends on the dimensions of the molded product, molding speed, etc., and cannot be generally specified, but the distance from the mouth surface to the point where it is introduced into the coagulating liquid is usually
A range of 0.2 to 200 cm is preferable from the viewpoint of molding stability. The ambient temperature is usually atmospheric temperature or room temperature, but depending on the case, it may be cooled.

凝固液としては、本発明の繊維形成性重合体の
非溶媒であつて、かつ成形用混合物の溶媒と親和
性があつて相溶しうるものならばすべてよいが、
用いた繊維形成性重合体の種類によつて異なり、
例えば、硫酸ナトリウム、硫酸アンモニウム、硫
酸亜鉛、硫酸カリウム、硫酸亜鉛、硫酸銅、硫酸
マグネシウム、硫酸アルミニウム、塩化カルシウ
ム、塩化マグネシウム、塩化亜鉛などの無機塩水
溶液、硫酸、塩酸、硝酸、酢酸、しゆう酸、ほう
酸などの酸、あるいはこれらの混合物などから適
宜選んでもちいられる。また、凝固液の温度は、
成形性に大きな影響を与えるが、通常、0〜98℃
付近で実施される。
Any coagulating liquid may be used as long as it is a non-solvent for the fiber-forming polymer of the present invention and has an affinity with and is compatible with the solvent of the molding mixture.
Depending on the type of fiber-forming polymer used,
For example, aqueous solutions of inorganic salts such as sodium sulfate, ammonium sulfate, zinc sulfate, potassium sulfate, zinc sulfate, copper sulfate, magnesium sulfate, aluminum sulfate, calcium chloride, magnesium chloride, zinc chloride, sulfuric acid, hydrochloric acid, nitric acid, acetic acid, oxalic acid. , an acid such as boric acid, or a mixture thereof. In addition, the temperature of the coagulating liquid is
Although it has a large effect on moldability, it is usually between 0 and 98℃.
It will be held nearby.

本発明における熱処理は、ポリテトラフルオロ
エチレン系樹脂粒子を互いに融着させることがで
きる条件であればすべてよく、真空中、空気中、
窒素中、酸素中、硫黄ガス中、ヘリウムガス中、
シリコンオイル中などの種々の雰囲気下、ポリテ
トラフルオロエチレン系樹脂の融点以上の温度で
実施できる。また成形物を張力下または無張力下
で熱処理を行なうことができ、さらにバツチ処理
あるいは連続処理の選択もできる。さらにくわし
くは固定しないで自由の状態で処理する方法、熱
処理前に延伸して処理枠に固定するか、定長ある
いは収縮率をきめた条件で処理枠に固定して処理
する方法は、あるいは延伸、定長、収縮のいずれ
かまたはそれらの組合わせの条件で連続的に処理
する方法も適宜採用できる。
The heat treatment in the present invention may be performed under any conditions as long as the polytetrafluoroethylene resin particles can be fused together, such as in a vacuum, in the air,
In nitrogen, oxygen, sulfur gas, helium gas,
It can be carried out in various atmospheres such as in silicone oil at a temperature higher than the melting point of the polytetrafluoroethylene resin. Furthermore, the molded product can be heat treated under tension or without tension, and batch treatment or continuous treatment can also be selected. In more detail, there are two methods: processing in a free state without fixing, stretching before heat treatment and fixing to a processing frame, fixing to a processing frame under conditions with a fixed length or shrinkage rate, or stretching. A method of continuous processing under the conditions of , constant length, shrinkage, or a combination thereof can also be appropriately adopted.

また、延伸は熱処理の前、後、熱処理中に行な
うことができ、また組合わせて行なうこともでき
るが、あまり延伸倍率が高すぎると膜面に平行な
面でみた孔の形状に実質的な配向のない膜が得ら
れないか、孔径の制御が不可能で透過性能の信頼
性の低い膜しか得られない。通常延伸倍率は1.1
〜3倍、延伸温度は室温から熱処理温度の範囲で
適宜選択でき、また延伸を2方向に行なうことも
できる。
In addition, stretching can be performed before, after, or during heat treatment, or can be performed in combination, but if the stretching ratio is too high, the shape of the pores as seen in a plane parallel to the membrane surface will be affected. Either it is impossible to obtain a membrane without orientation, or it is impossible to control the pore size, resulting in a membrane with low reliability in permeation performance. Normal stretching ratio is 1.1
~3 times. The stretching temperature can be selected as appropriate within the range from room temperature to the heat treatment temperature, and stretching can also be carried out in two directions.

本発明は熱処理後の成形物から繊維形成性重合
体を除去することに特徴があるが、ここでいう繊
維形成性重合体は熱処理によつて当初のものとは
異なつていることもある。
The present invention is characterized in that the fiber-forming polymer is removed from the molded article after heat treatment, but the fiber-forming polymer referred to here may differ from the original polymer depending on the heat treatment.

本発明における熱処理後の成形物から繊維形成
性重合体を除去する方法は液体、ガス、熱、放射
線などを使つて行なう、溶解法、分解法、あるい
はこれらを組合わせた方法が採用でき、バツチ
式、連続的に実施できる。用いた繊維形成性重合
体の種類によつて異なるので一概にはいえない
が、通常、硫酸、硝酸、塩酸、過塩素酸、フツ酸
などの酸の単独もしくはそれらの混合物を主成分
とした液体を室温から200℃の範囲の温度に加熱
した中に熱処理後の成形物を浸漬する方法が簡便
に用いられる。
The method for removing the fiber-forming polymer from the heat-treated molded article in the present invention can be a dissolution method, a decomposition method, or a combination of these using liquid, gas, heat, radiation, etc. formula, can be performed continuously. Although it cannot be generalized because it varies depending on the type of fiber-forming polymer used, it is usually a liquid whose main component is an acid such as sulfuric acid, nitric acid, hydrochloric acid, perchloric acid, or hydrofluoric acid, or a mixture thereof. A convenient method is to immerse the heat-treated molded product in a solution heated to a temperature ranging from room temperature to 200°C.

また、このようにして製膜した膜にさらに延伸
処理を行なつて、膜の透過性能や機械的強度、寸
法安定性などを変えることもできる。延伸倍率は
1.1〜3倍程度で、温度は通常室温からポリテト
ラフルオロエチレン系樹脂の融点の範囲である
が、延伸後に温度をかけて熱固定することもでき
る。
Further, the membrane thus formed can be further subjected to a stretching treatment to change its permeability, mechanical strength, dimensional stability, etc. The stretching ratio is
The temperature is usually in the range from room temperature to the melting point of the polytetrafluoroethylene resin, but it is also possible to heat set by applying a temperature after stretching.

本発明の膜は乾燥状態で用いることもできる
が、ポリテトラフルオロエチレン系樹脂の疎水性
のために水系で用いる場合は膜の多孔をいつたん
親水化処理することが必要であるが、この処理を
した湿潤状態で保管することもできる。湿潤状態
を保持するには、含水グリセリン、エチレングリ
コール、ポリエチレングリコール、各種の界面活
性剤などの適切な湿潤剤を付着させておけば十分
である。
The membrane of the present invention can be used in a dry state, but due to the hydrophobicity of the polytetrafluoroethylene resin, when used in an aqueous system, it is necessary to hydrophilize the pores of the membrane. It can also be stored in a moist state. In order to maintain the wet state, it is sufficient to attach a suitable wetting agent such as hydrous glycerin, ethylene glycol, polyethylene glycol, various surfactants, etc.

本発明に係るポリテトラフルオロエチレン系樹
脂多孔性膜は、海水の淡水化、脱塩、工業排水中
の塩基、酸などの除去、電子工業用などの超純
水、高純度薬品の製造、脱脂実液、電着塗装液な
どの回収、紙パルプ廃液処理、油水分離、油エマ
ルジヨン分離などの工業排水処理、醗酵生産物の
分離精製、果汁、野菜ジユースの濃縮、大豆処
理、製糖工業などの食品工業における濃縮、分
離、精製、人工腎臓、血液成分の分離、菌分離用
ミクロフイルター、医薬品の分離、精製などの医
療用途、バイオリアクターなどのバイオテクノロ
ジー分野などに広く用いられる。
The polytetrafluoroethylene resin porous membrane according to the present invention can be used for desalination of seawater, desalination, removal of bases, acids, etc. from industrial wastewater, ultrapure water for use in the electronics industry, production of high purity chemicals, degreasing, etc. Collection of actual liquids, electrodeposition coating liquids, etc., paper pulp waste liquid treatment, oil/water separation, industrial wastewater treatment such as oil emulsion separation, separation and purification of fermentation products, concentration of fruit juice and vegetable juice, soybean processing, food products such as sugar manufacturing industry. It is widely used in industrial applications such as concentration, separation, and purification, artificial kidneys, blood component separation, microfilters for bacterial isolation, medical applications such as pharmaceutical separation and purification, and biotechnology fields such as bioreactors.

以下に実施例を示すが、これに限定されるもの
ではない。
Examples are shown below, but the invention is not limited thereto.

(1) 膜の寸法 光学顕微鏡を使用して測定した。(1) Membrane dimensions Measured using an optical microscope.

(2) 膜の孔径 走査型電子顕微鏡(明石製作所α−9)写真
観察によつて行なつた。
(2) Pore diameter of membrane This was determined by photographic observation using a scanning electron microscope (Akashi Seisakusho α-9).

(3) 空孔率 エタノール置換法を使つて空孔に純水を充填
した膜の重量Wと絶乾重量Woおよびその体積
Vを測定し、次式を使つて算出した。
(3) Porosity The weight W, absolute dry weight Wo, and volume V of a membrane whose pores were filled with pure water using the ethanol substitution method were measured, and calculated using the following formula.

(W−Wo)×100/V(%) (3) 透水性 平膜は市販のカートリツジに組込んで37℃に
保ちながら水圧をかけ、一定時間に膜を透過す
る水の量と有効膜面積および膜間圧力差から透
水性を算出した。
(W-Wo) x 100/V (%) (3) Water permeability The flat membrane is assembled into a commercially available cartridge and water pressure is applied while keeping it at 37℃, and the amount of water that permeates through the membrane in a certain period of time and the effective membrane area are measured. and the water permeability was calculated from the transmembrane pressure difference.

中空糸膜は小型モジユールにして37℃に保ち
ながら中空糸内側に水圧をかけ、一定時間に膜
を透過する水の量と有効膜面積および膜間圧力
差から透水性を算出した。
The hollow fiber membrane was made into a small module, and water pressure was applied to the inside of the hollow fiber while maintaining the temperature at 37°C, and the water permeability was calculated from the amount of water permeating through the membrane in a certain period of time, the effective membrane area, and the pressure difference between the membranes.

(4) 5%アルブミン水溶液の濾過性能 市販の牛血清アルブミン(FractionV)の水
溶液を使つて、前記(3)の方法で透水性を測定し
た。
(4) Filtration performance of 5% albumin aqueous solution Using a commercially available aqueous solution of bovine serum albumin (Fraction V), water permeability was measured by the method described in (3) above.

アルブミン阻止率は、原液濃度Coと透過液
濃度Cを測定して次式で算出した。
The albumin rejection rate was calculated by measuring the concentration Co of the stock solution and the concentration C of the permeated solution using the following formula.

(Co−C)×100/Co(%) (実施例) 実施例 1 アルギン酸ソーダ(半井化学社製、300cps)50
部を精製水950部に70℃で溶解して均一な原液を
得た。この原液にポリテトラフルオロエチレンの
水系分散液(ダイキン社製D−2、固形分61重量
%、界面活性剤5.7重量%)200部とシリコーンオ
イル(トーレ・シリコーン社製SH−200)13部を
添加し、70℃で撹拌して均一な原液を得た。この
原液の粘度は40℃で約290ポイズであつた。この
原液を40℃でガラス板上に流延し、ただちに40℃
に加熱した40重量%塩化カルシウム水溶液に5分
間浸漬し、その後室温の水中に移しかえて平膜を
作製した。この膜を熱風乾燥器にいれて昇温し、
340℃で30分間熱処理した後、硫酸約70重量%、
硝酸約30重量%からなる室温の混合液に一晩浸漬
放置してアルギン酸ソーダおよびシリコーンオイ
ルあるいはこれ等の熱処理変性物を除去し、次い
で水洗して多孔性膜を得た。この膜の構造を第1
図、第2図、第3図に示す。図にみられるように
膜表面および内部に0.5〜1.0μの均一な細孔がみ
られる網目状組織からなつており、膜表面に緻密
層の形成は認められない。
(Co-C) x 100/Co (%) (Example) Example 1 Sodium alginate (manufactured by Hanui Chemical Co., Ltd., 300 cps) 50
1 part was dissolved in 950 parts of purified water at 70°C to obtain a homogeneous stock solution. To this stock solution, 200 parts of an aqueous dispersion of polytetrafluoroethylene (D-2 manufactured by Daikin, solid content 61% by weight, surfactant 5.7% by weight) and 13 parts of silicone oil (SH-200 manufactured by Toray Silicone) were added. and stirred at 70°C to obtain a homogeneous stock solution. The viscosity of this stock solution was approximately 290 poise at 40°C. This stock solution was cast onto a glass plate at 40°C, and immediately poured at 40°C.
A flat membrane was prepared by immersing the membrane in a 40% by weight aqueous calcium chloride solution heated to 100 mL for 5 minutes, and then transferring it to water at room temperature. This film is placed in a hot air dryer and the temperature is raised.
After heat treatment at 340℃ for 30 minutes, about 70% by weight of sulfuric acid,
The membrane was immersed overnight in a room temperature mixture containing about 30% by weight of nitric acid to remove sodium alginate and silicone oil or their heat-treated modified products, and then washed with water to obtain a porous membrane. The structure of this film is
2 and 3. As shown in the figure, the membrane consists of a network structure with uniform pores of 0.5 to 1.0μ on the surface and inside, and no dense layer is observed on the membrane surface.

この膜の空孔率は約20%で、得られた湿潤膜の
膜厚は約110μで、純水の透水性:310ml/m2
hr・mmHg、5%アルブミン水溶液での透過性能
は、透水性:24ml/m2・hr・mmHg、アルブミン
阻止率:66%であつた。
The porosity of this membrane is approximately 20%, the thickness of the obtained wet membrane is approximately 110μ, and the permeability of pure water is 310ml/ m2 .
The permeation performance with a 5% albumin aqueous solution was 24 ml/m 2 ·hr·mmHg, and albumin rejection rate was 66%.

実施例 2 実施例1の原液を中空糸用口金から口金温度40
℃で、約10重量%塩化カルシウム水溶液の芯液と
ともに押出し、空気中を5cm走行させた後、約40
重量%塩化カルシウム水溶液からなる約50℃の凝
固液に導いて凝固させた後、水洗して、20m/
minで中空糸を巻きとつた。この中空糸膜を熱風
乾燥器にいれて昇温し、340℃で30分間熱処理し
た後、硫酸約70重量%、硝酸約30重量%からなる
室温の混合液に一晩浸漬放置してアルギン酸ソー
ダおよびシリコーンオイルあるいはこれ等の熱処
理変性物を除去し、次いで水洗して多孔性中空糸
膜をえた。この膜の構造を第4図、第5図、第6
図に示す。図にみられるように膜表面および内部
に0.5〜1.0μの均一な細孔がみられる網目状組織
からなつており、膜表面に緻密層の形成は認めら
れない。
Example 2 The stock solution of Example 1 was transferred from the hollow fiber nozzle to a nozzle temperature of 40°C.
℃, extruded with a core liquid of approximately 10% by weight calcium chloride aqueous solution, and after traveling 5cm in the air, approximately 40%
After coagulating in a coagulating solution of approximately 50°C consisting of a wt% calcium chloride aqueous solution, the
The hollow fiber was wound at min. This hollow fiber membrane was heated in a hot air dryer, heat-treated at 340°C for 30 minutes, and then immersed overnight in a room temperature mixture of about 70% by weight sulfuric acid and about 30% by weight nitric acid, followed by sodium alginate. and silicone oil or heat-treated modified products thereof were removed, and then washed with water to obtain a porous hollow fiber membrane. The structure of this film is shown in Figures 4, 5, and 6.
As shown in the figure. As shown in the figure, the membrane consists of a network structure with uniform pores of 0.5 to 1.0μ on the surface and inside, and no dense layer is observed on the membrane surface.

この中空糸膜の空孔率は約22%で、得られた湿
潤中空糸膜の寸法は内径:約360μ膜厚:約70μ
で、純水の透水性:36ml/m2・hr・mmHg、5%
アルブミン水溶液での透過性能は、透水性:7.4
ml/m2・hr・mmHg、アルブミン阻止率は約46%
であつた。
The porosity of this hollow fiber membrane is approximately 22%, and the dimensions of the obtained wet hollow fiber membrane are: inner diameter: approximately 360μ membrane thickness: approximately 70μ
So, pure water permeability: 36ml/ m2・hr・mmHg, 5%
Permeation performance in albumin aqueous solution: Water permeability: 7.4
ml/m 2・hr・mmHg, albumin inhibition rate is approximately 46%
It was hot.

実施例 3 実施例2の水洗後の多孔性中空糸膜を湿潤状態
で1.5倍延伸した。この膜の構造を第7図、第8
図、第9図に示す。図にみられるように膜外表面
に孔径0.5〜1.0μの微孔からなる緻密層の形成が
認められ、膜内表面および内部は孔径0.3〜2.0μ
の微孔の網目状組織からなつている。
Example 3 The porous hollow fiber membrane of Example 2 after washing with water was stretched 1.5 times in a wet state. The structure of this film is shown in Figures 7 and 8.
As shown in Fig. 9. As seen in the figure, a dense layer consisting of micropores with a pore size of 0.5 to 1.0 μm was observed on the outer surface of the membrane, and the inner surface and inside of the membrane had a pore size of 0.3 to 2.0 μm.
It consists of a network of micropores.

この中空糸膜の空孔率は約40%で、得られた湿
潤中空糸膜の寸法は内径:約330μ膜厚:約67μ
で、純水の透水性:259ml/m2・hr・mmHg、5%
アルブミン水溶液での透過性能は、透水性:50
ml/m2・hr・mmHg、アルブミン阻止率は約38%
であつた。
The porosity of this hollow fiber membrane is approximately 40%, and the dimensions of the obtained wet hollow fiber membrane are: inner diameter: approximately 330μ membrane thickness: approximately 67μ
So, pure water permeability: 259ml/ m2・hr・mmHg, 5%
Permeation performance in albumin aqueous solution: Water permeability: 50
ml/m 2・hr・mmHg, albumin inhibition rate is approximately 38%
It was hot.

比較例 1 熱処理温度を310℃にしたことを除いて、その
他は実施例1、実施例2と同様にして平膜、中空
糸膜を作つたところ、硫酸約70重量%、硝酸約30
重量%からなる室温の混合液に一晩浸漬放置して
アルギン酸ソーダおよびシリコーンオイルあるい
はこれ等の熱処理変性物を除去すると、くずれて
平膜、中空糸膜の形態を保持できなかつた。
Comparative Example 1 Flat membranes and hollow fiber membranes were made in the same manner as in Examples 1 and 2 except that the heat treatment temperature was 310°C.
When sodium alginate and silicone oil or their heat-treated modified products were removed by immersing the membrane overnight in a mixed solution containing % by weight at room temperature, the membrane collapsed and could not retain its flat or hollow fiber membrane shape.

(発明の効果) 本発明のポリテトラフルオロエチレン系樹脂多
孔性膜は、平均孔径が0.01〜2μの微多孔からな
り、膜面に平行な面でみた孔の形状には実質的な
配向がないため、透過性が高く、しかもシヤープ
な分画特性が得られる。また、逆洗性にも優れて
おり、しかも、機械的強度も高い、耐熱性、耐薬
品性に優れた膜である。さらに、ポリテトラフル
オロエチレン系樹脂分散液と繊維形成性重合体の
均一混合物を成形し、その成形物をポリテトラフ
ルオロエチレン系樹脂の融点以上の温度で熱処理
した後繊維形成性重合体を除去して製膜している
ため、膜厚の薄いものも容易に製膜でき、しかも
均一混合物の組成を変えることによつて幅広い細
孔径の分離膜を容易に得ることができる。
(Effects of the invention) The polytetrafluoroethylene resin porous membrane of the present invention consists of micropores with an average pore diameter of 0.01 to 2μ, and the shape of the pores when viewed in a plane parallel to the membrane surface has no substantial orientation. Therefore, high permeability and sharp fractionation characteristics can be obtained. The membrane also has excellent backwashing properties, high mechanical strength, and excellent heat resistance and chemical resistance. Furthermore, a homogeneous mixture of the polytetrafluoroethylene resin dispersion and the fiber-forming polymer is molded, and the molded product is heat-treated at a temperature higher than the melting point of the polytetrafluoroethylene resin, and then the fiber-forming polymer is removed. Since membranes are formed using the same method, even thin membranes can be easily formed, and separation membranes with a wide range of pore sizes can be easily obtained by changing the composition of the homogeneous mixture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1で得られたポリテ
トラフルオロエチレン系樹脂多孔性膜のガラス面
に接触していた面の繊維の形状をあらわす走査型
電子顕微鏡写真(倍率1600倍)を示す。第2図
は、本発明の実施例1で得られたポリテトラフル
オロエチレン系樹脂多孔性膜の断面の繊維の形状
をあらわす走査型電子顕微鏡写真(倍率560倍)
を示す。第3図は、本発明の実施例1で得られ
た、ポリテトラフルオロエチレン系樹脂多孔性膜
の直接凝固液に接触していた面に繊維の形状をあ
らわす走査型電子顕微鏡写真(倍率1600倍)を示
す。第4図は、本発明の実施例2で得られた、ポ
リテトラフルオロエチレン系樹脂多孔性中空糸膜
の外表面の繊維の形状をあらわす走査型電子顕微
鏡写真(倍率4000倍)を示す。第5図は、本発明
の実施例2で得られた、ポリテトラフルオロエチ
レン系樹脂多孔性中空糸膜の断面の繊維の形状を
あらわす走査型電子顕微鏡写真(倍率800倍)を
示す。第6図は、本発明の実施例2で得られた、
ポリテトラフルオロエチレン系樹脂多孔性中空糸
膜の内表面の繊維の形状をあらわす走査型電子顕
微鏡写真(倍率1600倍)を示す。第7図は、本発
明の実施例3で得られた、ポリテトラフルオロエ
チレン系樹脂多孔性中空糸膜の外表面の繊維の形
状をあらわす走査型電子顕微鏡写真(倍率1600
倍)を示す。第8図は、本発明の実施例3で得ら
れた、ポリテトラフルオロエチレン系樹脂性多孔
中空糸膜の断面の繊維の形状をあらわす走査型電
子顕微鏡写真(倍率800倍)を示す。第9図は、
本発明の実施例3で得られた、ポリテトラフルオ
ロエチレン系樹脂多孔性中空糸膜の内表面の繊維
の形状をあらわす走査型電子顕微鏡写真(倍率
1600倍)を示す。
Figure 1 is a scanning electron micrograph (1600x magnification) showing the shape of the fibers on the surface that was in contact with the glass surface of the polytetrafluoroethylene resin porous membrane obtained in Example 1 of the present invention. show. Figure 2 is a scanning electron micrograph (560x magnification) showing the shape of fibers in the cross section of the polytetrafluoroethylene resin porous membrane obtained in Example 1 of the present invention.
shows. FIG. 3 is a scanning electron micrograph showing the shape of fibers on the surface of the polytetrafluoroethylene resin porous membrane obtained in Example 1 of the present invention that was in direct contact with the coagulation liquid (magnification: 160x). ) is shown. FIG. 4 shows a scanning electron micrograph (4000x magnification) showing the shape of the fibers on the outer surface of the polytetrafluoroethylene resin porous hollow fiber membrane obtained in Example 2 of the present invention. FIG. 5 shows a scanning electron micrograph (magnification: 800 times) showing the shape of the fibers in the cross section of the polytetrafluoroethylene resin porous hollow fiber membrane obtained in Example 2 of the present invention. FIG. 6 shows the results obtained in Example 2 of the present invention.
A scanning electron micrograph (1600x magnification) showing the shape of the fibers on the inner surface of a polytetrafluoroethylene resin porous hollow fiber membrane is shown. FIG. 7 is a scanning electron micrograph (magnification: 1600) showing the shape of the fibers on the outer surface of the polytetrafluoroethylene resin porous hollow fiber membrane obtained in Example 3 of the present invention.
times). FIG. 8 shows a scanning electron micrograph (magnification: 800 times) showing the shape of the fibers in the cross section of the polytetrafluoroethylene resin porous hollow fiber membrane obtained in Example 3 of the present invention. Figure 9 shows
A scanning electron micrograph (magnification:
1600x).

Claims (1)

【特許請求の範囲】 1 平均孔径が0.01〜2μで、樹脂粒子が互いに融
着した微多孔網目状組織からなるポリテトラフル
オロエチレン系樹脂多孔性膜。 2 ポリテトラフルオロエチレン系樹脂分散液と
繊維形成性重合体の均一混合物を成形し、得られ
た成形物を樹脂の融点以上の温度で熱処理した後
繊維形成性重合体を除去することを特徴とするポ
リテトラフルオロエチレン系樹脂多孔性膜の製造
方法。
[Scope of Claims] 1. A porous polytetrafluoroethylene resin membrane having an average pore diameter of 0.01 to 2μ and consisting of a microporous network structure in which resin particles are fused together. 2 A homogeneous mixture of a polytetrafluoroethylene resin dispersion and a fiber-forming polymer is molded, and the resulting molded product is heat-treated at a temperature equal to or higher than the melting point of the resin, and then the fiber-forming polymer is removed. A method for producing a polytetrafluoroethylene resin porous membrane.
JP62193322A 1987-07-30 1987-07-30 Porous membrane of polytetrafluoroethylene-base resin and production thereof Granted JPS6434407A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62193322A JPS6434407A (en) 1987-07-30 1987-07-30 Porous membrane of polytetrafluoroethylene-base resin and production thereof
PCT/JP1988/000755 WO1989000879A1 (en) 1987-07-30 1988-07-28 Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
DE8888906883T DE3878899T2 (en) 1987-07-30 1988-07-28 POROESE POLYTETRAFLUORAETHYLENE MEMBRANE, SEPARATING DEVICE USING THIS MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF.
EP88906883A EP0343247B1 (en) 1987-07-30 1988-07-28 Porous polytetrafluoroethylene membrane, separating apparatus using same, and process for their production
US07/358,205 US5158680A (en) 1987-07-30 1989-05-30 Polytetrafluoroethylene resin porous membrane, separator making use of the porous membrane and methods of producing the porous membrane and the separator
US07/918,060 US5286324A (en) 1987-07-30 1992-07-24 Polytetrafluoroethylene resin porous membrane, separator making use of the porous membrane and methods of producing the porous membrane and the separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62193322A JPS6434407A (en) 1987-07-30 1987-07-30 Porous membrane of polytetrafluoroethylene-base resin and production thereof

Publications (2)

Publication Number Publication Date
JPS6434407A JPS6434407A (en) 1989-02-03
JPH0468010B2 true JPH0468010B2 (en) 1992-10-30

Family

ID=16305977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62193322A Granted JPS6434407A (en) 1987-07-30 1987-07-30 Porous membrane of polytetrafluoroethylene-base resin and production thereof

Country Status (1)

Country Link
JP (1) JPS6434407A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734854B2 (en) * 1989-04-26 1995-04-19 東レ株式会社 Method for producing porous polytetrafluoroethylene resin membrane and method for producing a membrane separation apparatus using the membrane
US5242468A (en) 1991-03-19 1993-09-07 Startec Ventures, Inc. Manufacture of high precision electronic components with ultra-high purity liquids
US5217666A (en) * 1991-05-29 1993-06-08 Daikin Industries Ltd. Process for producing porous polytetrafluoroethylene film
US6214173B1 (en) 1996-06-05 2001-04-10 Air Liquide Electronics Chemicals & Services, Inc. On-site manufacture of ultra-high-purity nitric acid
US20110036314A1 (en) 2008-03-24 2011-02-17 Makoto Yasui Lash adjuster
CN102471103A (en) * 2009-08-06 2012-05-23 住友电气工业株式会社 Water treatment device and water treatment method
JP2011127533A (en) 2009-12-18 2011-06-30 Ntn Corp Arm type valve gear

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071759A (en) * 1973-10-26 1975-06-13
JPS5140902A (en) * 1974-10-04 1976-04-06 Fujitsu Ltd JIKIKIROKUBAITAINOHOGOMAKU
JPS5910500B2 (en) * 1976-09-29 1984-03-09 住友金属工業株式会社 Internal flaw detection type magnetic flaw detection device
FR2374153A1 (en) * 1976-12-20 1978-07-13 Ici Ltd Porous PTFE articles esp. bands prodn. - by sintering particulate PTFE and rotationally machining a band off
JPS56159128A (en) * 1980-05-15 1981-12-08 Asahi Chem Ind Co Ltd Thermoplastic resin porous film and production thereof
JPS5898105A (en) * 1981-12-07 1983-06-10 Toray Ind Inc Fluoride type wet separation membrane and preparation thereof
JPS59178228A (en) * 1983-03-28 1984-10-09 Sumitomo Electric Ind Ltd Manufacturing method and manufacturing device for tetrafluoroethylene resin porous body
JPH023865Y2 (en) * 1985-04-08 1990-01-30
JPH0693983B2 (en) * 1985-11-01 1994-11-24 旭化成工業株式会社 Ethylene-tetrafluoroethylene copolymer porous membrane

Also Published As

Publication number Publication date
JPS6434407A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US5013339A (en) Compositions useful for making microporous polyvinylidene fluoride membranes, and process
US4612119A (en) Hollow fiber filter medium and process for preparing the same
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
JPH05212255A (en) Hollow fiber membrane
JPH0122003B2 (en)
TW201622805A (en) Microporous polyvinylidene fluoride flat membrane
JPS6356802B2 (en)
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH0468010B2 (en)
JP2542572B2 (en) Hollow fiber
JPH0569571B2 (en)
JPS6138208B2 (en)
JPS5916503A (en) Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH0468011B2 (en)
JPH03258330A (en) Porous hollow fiber membrane
JPS6138207B2 (en)
JPH0929078A (en) Hollow fiber membrane manufacturing method
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPH01129043A (en) Production of porous polytetrafluoroethylene resin film
JPH06128406A (en) Production of porous membrane of polytetrafluoroethylene-based resin
US4409162A (en) Process for producing acrylonitrile separation membranes in fibrous form
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPH02284633A (en) Production of polytetrafluoroethylene-based resin porous membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees