JPH0135797B2 - - Google Patents
Info
- Publication number
- JPH0135797B2 JPH0135797B2 JP57063744A JP6374482A JPH0135797B2 JP H0135797 B2 JPH0135797 B2 JP H0135797B2 JP 57063744 A JP57063744 A JP 57063744A JP 6374482 A JP6374482 A JP 6374482A JP H0135797 B2 JPH0135797 B2 JP H0135797B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- outer packaging
- crystals
- crystal
- packaging material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 33
- 239000002994 raw material Substances 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000005022 packaging material Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 22
- 239000011521 glass Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000010979 ruby Substances 0.000 description 3
- 229910001750 ruby Inorganic materials 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000007716 flux method Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- PXLIDIMHPNPGMH-UHFFFAOYSA-N sodium chromate Chemical compound [Na+].[Na+].[O-][Cr]([O-])(=O)=O PXLIDIMHPNPGMH-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004857 zone melting Methods 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/121—Coherent waves, e.g. laser beams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
- C01B32/26—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/061—Graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明は結晶製造方法に関し、結晶体を人工的
に製造する場合に、超高温、高圧条件を必要とす
るような物質例えばダイヤモンド等の宝石や金属
結晶を低コストで製造する方法を提供するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal manufacturing method, and relates to a method for producing crystals at low cost, which requires ultra-high temperature and high pressure conditions, such as gemstones and metal crystals such as diamond. The present invention provides a method for manufacturing.
従来より単結晶の製造方法には、大きくわけて (1) 火炎溶融法、 (2) 水熱合成法、 (3) フラツクス法、 (4) チヨクラルスキー法、 (5) ゾーンメルテイング法、 等々が知られている。 Conventionally, there have been broadly divided methods for producing single crystals. (1) Flame melting method, (2) Hydrothermal synthesis method, (3) flux method, (4) Czyochralski method, (5) Zone melting method, etc. are known.
火炎溶融法とは、ガスバーナーの炎の中にサフ
アイヤとかルビーになるような組成の粉末を降ら
せガスバーナーで加熱して作る方法であるが、こ
の方法では、高純度の原材料を必要とするにもか
かわらず、あまり良質の結晶は得られなかつた。 The flame melting method is a method in which a powder with a composition similar to sapphire or ruby falls into the flame of a gas burner and is heated with a gas burner, but this method requires high-purity raw materials. However, very good quality crystals could not be obtained.
水熱合成法では、例えば、ルビーを作る場合、
およそ2000気圧の圧力の下で1〜2規定の
Na2CO3あるいは0.5規定のNaOH水溶液を80〜90
%、さらにa−アルミナ(0.18/クロム酸ソー
ダ)及びルビーの種結晶を充填し、約0.05〜0.25
mm/hrくらいの成長速度で結晶を育てる方法であ
るが、装置も大がかりになり製造効率も非常に悪
い。 In the hydrothermal synthesis method, for example, when making rubies,
1 to 2 regulated under a pressure of approximately 2000 atm.
80-90% Na 2 CO 3 or 0.5N NaOH aqueous solution
%, further filled with a-alumina (0.18/sodium chromate) and ruby seed crystals, approximately 0.05-0.25
This is a method of growing crystals at a growth rate of about mm/hr, but the equipment is large-scale and the manufacturing efficiency is very low.
フラツクス法では、例えば、フラツクスとして
酸化ナマリとフツ化ナマリを等量で入れ、その中
に酸化アルミニウムを入れて、約1250℃に加熱し
て溶融し、0.11〜1℃/分で冷却してアルミナの
結晶を析出させ、さらにクロム酸ソーダに浸析し
てピンク色のルビー結晶を製造する方法である。
しかしながら、この方法では、フラツクスが減少
して組成が変つたり、粘度が変化して組成変動が
激しい。 In the flux method, for example, equal amounts of raw oxide and raw aluminum fluoride are added as a flux, aluminum oxide is added therein, heated to approximately 1250°C to melt, and cooled at a rate of 0.11 to 1°C/min to form alumina. This is a method to produce pink ruby crystals by precipitating the crystals and further immersing them in sodium chromate.
However, in this method, the flux decreases and the composition changes, and the viscosity changes, resulting in severe composition fluctuations.
チヨクラルスキー法は、ルツボ中に原材料を溶
融させておき、種結晶につけて引上げる方法であ
り、ゾーンメルテイング法は、原材料をロツド状
に成形しておき、誘導加熱法で部分的に加熱、再
結晶させ、その溶融帯を移動させながら単結晶を
製造する方法であり、Siの単結晶製造には実用化
されているが、まだ、超高圧で製造する方法は開
発されてない。 The Czyochralski method is a method in which the raw material is melted in a crucible, dipped in a seed crystal and pulled up, and the zone melting method is a method in which the raw material is formed into a rod shape and partially heated using induction heating. , is a method of manufacturing single crystals by recrystallizing and moving the molten zone, and has been put into practical use for manufacturing Si single crystals, but a method for manufacturing at ultra-high pressure has not yet been developed.
従つて、いずれの方法も、ダイヤモンドのよう
な高温、高圧を必要とする結晶の製造には有用で
はなかつた。 Therefore, neither method is useful for producing crystals that require high temperature and high pressure, such as diamond.
例えば、ダイヤモンドの合成には、数万気圧、
2000℃以上の条件を必要とするが、この条件を一
定時間保持することは非常に難しい。そこで、従
来一部では、鉄・ニツケル、ゲルマニウム・ニツ
ケル、ニツケル・クロム等の触媒を用いる方法で
製造されているが、それでも、3〜5万気圧、
1000℃以上の条件を必要とし、高温、高圧に耐え
る製造装置は、1回10g程度の原材料の充填が限
界であり、1mm程度の結晶しか製造できていな
い。また、装置も非常に大がかりなものであつ
た。 For example, the synthesis of diamond requires tens of thousands of atmospheres of pressure.
Although a temperature of 2000°C or higher is required, it is extremely difficult to maintain this condition for a certain period of time. Therefore, some methods have conventionally used catalysts such as iron/nickel, germanium/nickel, or nickel/chromium, but even then, the
Manufacturing equipment that can withstand high temperatures and pressures requires conditions of 1000°C or higher, and is limited to filling about 10g of raw materials at a time, and can only produce crystals of about 1mm. The equipment was also very large-scale.
以上述べてきた従来法の欠点に鑑み、本発明
は、非常に簡単な方法で、しかも省エネルギーの
高圧高温結晶製造方法を提供することを目的とす
る。 In view of the above-mentioned drawbacks of the conventional methods, an object of the present invention is to provide a high-pressure, high-temperature crystal production method that is extremely simple and energy-saving.
以下、図面を用いて詳細に説明する。例えば、
第1図に示すごとく、結晶原材料1を包むように
外包材料2となる透明材料球体(例えば、石英や
ガラス等)に封入する。次に、外部より集光した
CO2レーザー、あるいはYAGレーザー3等で核
となつている結晶原材料1を加熱、溶融させる。
このとき、核となつている結晶原材料1は、加熱
膨張させられるが、一方、外包材料は、直接加熱
されず、熱伝導も悪いので、結晶材料に接してい
る近傍を除き、ほとんど昇温、膨張しない。つま
り、結晶材料1は高温、高圧状態で一定時間保持
されることになる。その後、レーザー3のパワー
を順次減少させてゆき徐冷すると、原材料1は高
温高圧下で徐冷されることになり、結晶が形成さ
れる。なお、このとき、外包材料2はほとんど加
熱されないので、溶融あるいは破壊されることは
ない。最後に、外包材料2を除去し、結晶を取り
出す。 Hereinafter, it will be explained in detail using the drawings. for example,
As shown in FIG. 1, a crystal raw material 1 is enclosed in a transparent material sphere (for example, quartz, glass, etc.) serving as an outer packaging material 2. As shown in FIG. Next, the light was focused from outside.
The crystalline raw material 1 serving as the core is heated and melted using a CO 2 laser, a YAG laser 3, or the like.
At this time, the crystal raw material 1 serving as the nucleus is heated and expanded, but on the other hand, the outer envelope material is not directly heated and has poor thermal conductivity, so the temperature is almost raised except in the vicinity where it is in contact with the crystal material. Does not expand. In other words, the crystal material 1 is maintained at high temperature and high pressure for a certain period of time. Thereafter, when the power of the laser 3 is gradually reduced and the material is slowly cooled, the raw material 1 is slowly cooled under high temperature and pressure, and crystals are formed. Note that at this time, since the outer packaging material 2 is hardly heated, it will not be melted or destroyed. Finally, the outer packaging material 2 is removed and the crystals are taken out.
例えば、ダイヤモンドを製造する場合には、30
万気圧、3000゜Kの条件を必要とするが、まず、
原材料1として球形に加圧成形したグラフアイト
10gを粉末ガラス例えばコーニンググラス社のパ
イレツクス7740で被覆し、全体を加熱して外包材
料2となる前記ガラス粉末を溶融、硬化して、内
部にグラフアイトを核とする透明ガラス球体を形
成する。あらかじめ溶融されたガラス中にグラフ
アイトを挿入して、冷却硬化させても良い。な
お、このとき、グラフアイトの直径は2cmとなる
ので透明ガラスよりなる外包体の直径を20cm以上
とする。この球体に、パワー10KWのYAGレー
ザー3を集光して、外部よりグラフアイト核を数
十ミリ秒から数百ミリ秒程度加熱すると、グラフ
アイトは、3000℃以上に加熱、溶融される。な
お、このとき、外包材料2はガラスでできている
ため、熱伝導が悪く、数秒のオーダでは球体外側
は熱膨張を生じない。また、グラフアイト直径2
cmに対し、ガラス直径を20cm以上(約10倍)にし
ておけば、内部圧が50万気圧となつても、ガラス
球表面のかかる圧力は、5000気圧程度となり、ガ
ラスのヤング率、6〜8×103Kg/cm2を考慮する
と破壊されることはない。次にパワーを順次減少
させてゆき2000℃程度に冷却し、その後自然放置
により急冷するとダイヤモンドが得られる。 For example, when manufacturing diamonds, 30
Conditions of 10,000 atmospheric pressure and 3000°K are required, but first,
Graphite pressure-molded into a spherical shape as raw material 1
10 g of the glass powder is coated with powdered glass, such as Pyrex 7740 manufactured by Corning Glass Co., and the whole is heated to melt and harden the glass powder, which becomes the outer packaging material 2, to form a transparent glass sphere with graphite as the core inside. Graphite may be inserted into pre-molten glass and then cooled and hardened. At this time, since the diameter of graphite is 2 cm, the diameter of the outer envelope made of transparent glass is set to be 20 cm or more. When a YAG laser 3 with a power of 10 KW is focused on this sphere and the graphite core is heated from the outside for several tens of milliseconds to several hundred milliseconds, the graphite is heated to over 3000°C and melted. At this time, since the outer packaging material 2 is made of glass, its thermal conductivity is poor, and the outside of the sphere does not undergo thermal expansion on the order of several seconds. Also, graphite diameter 2
cm, if the glass diameter is 20 cm or more (approximately 10 times), even if the internal pressure is 500,000 atm, the pressure on the surface of the glass bulb will be about 5,000 atm, and the Young's modulus of the glass is 6~ Considering 8×10 3 Kg/cm 2 , it will not be destroyed. Next, the power is gradually decreased to cool it to about 2000℃, and then it is left to cool naturally to obtain diamonds.
以上のようにして、粒径1μm程度の粉末晶が
得られた。この結晶がダイヤモンドであること
は、表面研磨されたサフアイア基板に押しつけて
こすると、サフアイア基板が傷つくことで確認さ
れた。 In the manner described above, powder crystals with a particle size of about 1 μm were obtained. The fact that this crystal was diamond was confirmed by the fact that when the crystal was pressed against a polished sapphire substrate and rubbed, the sapphire substrate was scratched.
以上述べて来たように本発明の方法は、結晶材
料のみを加熱溶融させるので、非常に省エネルギ
ーな結晶製造方法であり、しかも、外包材料はほ
とんど加熱されることがないので、あまり熱強度
を必要とする材料を用いる必要がなく、簡単に製
造することができる。また、結晶材料は、固体の
外包材料中で溶融加熱されるため、自己膨張によ
り比較的簡単に高温、高圧状態が得られる。なお
このとき、核となる結晶原材料を加圧成形する際
ある程度ポーラスにしておけば、圧力調整も容易
である。また結晶原材料中に触媒等を混入してお
けば、より低温で結晶が得られることも明らかで
ある。 As described above, the method of the present invention heats and melts only the crystal material, so it is a very energy-saving crystal manufacturing method.Moreover, the outer packaging material is hardly heated, so it does not require much heat intensity. It is not necessary to use necessary materials and can be easily manufactured. Further, since the crystalline material is melted and heated in the solid outer packaging material, a high temperature and high pressure state can be obtained relatively easily through self-expansion. At this time, if the crystal raw material serving as the core is made porous to some extent during pressure molding, the pressure can be easily adjusted. It is also clear that crystals can be obtained at lower temperatures if a catalyst or the like is mixed into the crystal raw material.
第1図は本発明の一実施例にかかるレーザーで
結晶原材料を加熱する方法を示す図である。
1……結晶原材料、2……外包材料、3……レ
ーザー。
FIG. 1 is a diagram showing a method of heating a crystal raw material with a laser according to an embodiment of the present invention. 1...Crystal raw material, 2...Outer packaging material, 3...Laser.
Claims (1)
な固体外包材料により包囲されてなる結晶原材料
を、前記外包材料の外側よりレーザ光を前記外包
材料にて集光して前記結晶原材料に照射して前記
結晶原材料を加熱、溶融させ前記原材料を自己膨
張させて高温、高圧状態とし、しかるのち冷却す
ることを特徴とする結晶製造方法。1. A crystalline raw material surrounded by a substantially spherical optically transparent solid outer packaging material having predetermined characteristics is irradiated with a laser beam from outside the outer packaging material by focusing the laser light on the outer packaging material. A method for producing crystals, which comprises heating and melting the crystal raw material, causing the raw material to self-expand to a high temperature and high pressure state, and then cooling.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57063744A JPS58181788A (en) | 1982-04-15 | 1982-04-15 | Manufacture of crystal |
EP83302154A EP0092405B1 (en) | 1982-04-15 | 1983-04-15 | Method for producing crystals |
DE8383302154T DE3364653D1 (en) | 1982-04-15 | 1983-04-15 | Method for producing crystals |
US06/485,506 US4522680A (en) | 1982-04-15 | 1983-04-15 | Method for producing crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57063744A JPS58181788A (en) | 1982-04-15 | 1982-04-15 | Manufacture of crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58181788A JPS58181788A (en) | 1983-10-24 |
JPH0135797B2 true JPH0135797B2 (en) | 1989-07-27 |
Family
ID=13238214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57063744A Granted JPS58181788A (en) | 1982-04-15 | 1982-04-15 | Manufacture of crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58181788A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511605A (en) * | 1978-07-11 | 1980-01-26 | Tamura Electric Works Ltd | Regeneration system for intermediate gradation |
-
1982
- 1982-04-15 JP JP57063744A patent/JPS58181788A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511605A (en) * | 1978-07-11 | 1980-01-26 | Tamura Electric Works Ltd | Regeneration system for intermediate gradation |
Also Published As
Publication number | Publication date |
---|---|
JPS58181788A (en) | 1983-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104570199A (en) | Selentellurium single crystal compound optical fiber and manufacturing method thereof | |
US5579427A (en) | Graded index single crystal optical fibers | |
EP0092405B1 (en) | Method for producing crystals | |
JPH0337182A (en) | Production of big magnetostrictive alloy rod | |
JPH0135797B2 (en) | ||
JPS62105936A (en) | Manufacturing method of flat quartz glass | |
JPS5854102B2 (en) | Doped silica glass | |
JP3758199B2 (en) | Crystal manufacturing method and manufacturing apparatus | |
WO2005098096A1 (en) | Self-coated single crystal, and production apparatus and process therefor | |
US2936216A (en) | Method of making monocrystalline calcium titanate | |
US7294198B2 (en) | Process for producing single-crystal gallium nitride | |
JPS61186408A (en) | Production of amalgam for fluorescent lamp | |
JPH1192271A (en) | Manufacturing method of bulk single crystal | |
JPS6042195B2 (en) | Chrysoberyl single crystal manufacturing method | |
JP2024147802A (en) | Single crystal sapphire seed, method for producing single crystal sapphire with desired crystal orientation, and external or functional parts for watches and jewelry | |
JPS6149280B2 (en) | ||
JP3649283B2 (en) | Manufacturing method of optical material for ultraviolet laser beam | |
JPS62148391A (en) | Production on high-melting point substance crystal and vessel of material used in said production | |
JPH0135798B2 (en) | ||
JP2982642B2 (en) | Infrared heating single crystal manufacturing equipment | |
Feigelson | Infrared fiber optic materials | |
JPH0859396A (en) | Reforming of beta-barium borate single crystal worked surface | |
JPS6213320B2 (en) | ||
JPS6296333A (en) | Silica glass manufacturing method | |
JP2005162609A (en) | Method for producing silicon sphere and its production apparatus |