[go: up one dir, main page]

JPH0134727B2 - - Google Patents

Info

Publication number
JPH0134727B2
JPH0134727B2 JP7688884A JP7688884A JPH0134727B2 JP H0134727 B2 JPH0134727 B2 JP H0134727B2 JP 7688884 A JP7688884 A JP 7688884A JP 7688884 A JP7688884 A JP 7688884A JP H0134727 B2 JPH0134727 B2 JP H0134727B2
Authority
JP
Japan
Prior art keywords
chamfer
cutting edge
drill
rake face
flank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7688884A
Other languages
Japanese (ja)
Other versions
JPS60221208A (en
Inventor
Susumu Mori
Hisao Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7688884A priority Critical patent/JPS60221208A/en
Publication of JPS60221208A publication Critical patent/JPS60221208A/en
Publication of JPH0134727B2 publication Critical patent/JPH0134727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/12Cross sectional views of the cutting edges
    • B23B2251/125Rounded cutting edges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は、主として金属加工に使用する超硬ド
リル、詳しくは、刃先強化のために切刃部に付す
チヤンフア(面取り面)の形状に工夫を凝らした
超硬ドリルとそのチヤンフア加工を容易かつ正確
に行うことのできる刃先強化法に関する。 (ロ) 従来技術とその問題点 超硬合金を切刃の材料とした超硬ドリルは、穿
孔作業の高能率化を可能にする反面、抗折力の低
さに起因する切刃の欠けを生じ易い。そこで、一
般には超硬合金のもろさを補うため、すくい面と
逃げ面の交差したエツヂ部にチヤンフアを付け、
その処理によつて刃先を強化することが行われ
る。 このチヤンフアは、切刃全域に渡つて付される
が、従来のそれは、第1図乃至第3図に示すよう
に、すくい面1と逃げ面2の斜交部に、基準線P
(この基準線は前切刃の場合回転軸と平行)に対
する傾斜角θが10〜45゜の範囲にあり、かつ、す
くい面に占める設置巾aが0.03〜0.3mm程度の平
担な面3やa寸と同程度の曲率半径をもつてすく
い面と逃げ面に連なる丸味のある面とされていた
ため、ドリルにおいては安定した性能の確保が困
難であつた。 即ち、第4図のa,bに超硬旋削工具による面
取りの角度、大きさを変えての靭性、耐摩耗性の
変化を示す。同図の数値は以下のテスト条件で求
められたものである。 Γ耐摩耗性 被削材:SCM435(Hs30) 工 具:FN11R−44A、チツプSNG432 材種T12A 切削条件:V(切削速度)=170m/min f(送り)=0.36mm/rev d(切込み)=2mm T(切削時間)=20min Γ破損率 被切削:SCM435溝入材 工 具:上に同じ 切削条件:V=80m/min f=0.172〜0.20mm/rev d=2 T=3min f=0.172 0.20mm/revで各々3回繰
返し、破損回数および破損までの時
間により破損率を求めた。 この図からわかるように、超硬切削工具におい
て切刃部の面取りの角度、大きさを均一にコント
ロールすることは安定した性能を得る上で非常に
重要なことである。 ところが、ドリルの場合、スローアウエイチツ
プなどと違つて切刃形状の複雑さから砥石による
研削は不可能に近く、このため、超硬ドリルのチ
ヤンフア付けは、ダイヤモンド砥粒を付着させた
ハンドラツパーを使用し、手作業で行つているの
が実情であり、その結果、チヤンフアの角度、大
きさに誤差(バラツキ)が生じ、ドリル性能が不
安定になつている。 また、第3図に示す如き平担なチヤンフアを付
したものは、すくい面及び逃げ面との交差部に鋭
利なエツヂが残るのでドリル寿命の低下につなが
る切刃のチツピングが生じている。 一方、すくい面1と逃げ面2をアール曲面でつ
ないだものは、チツピングは減るが切刃の被削材
に対する喰い付き性に優れない。 (ハ) 問題点を解決するための手段 本発明は、かゝる問題点を解決した超硬ドリル
とその刃先強化法を提供するもので、第1の目的
とするドリルは、切刃部に付すチヤンフアのすく
い面側における設置巾を逃げ面側のそれよりも大
きくし、さらに、このチヤンフアをすくい面と逃
げ面に対しそれぞれ微小の丸味をもつて連続さ
せ、かつその全体を凸方向の彎曲面としたところ
に特徴を有する。 第5図乃至第7図にそのチヤンフアを代表的な
超硬ドリルに付した実施例を示す。図に示すよう
に、超硬ドリル10の外観形状は従来のドリルと
殆んど変わらない。また、鋭角エツヂの除去のた
めにすくい面11と逃げ面12の斜交部に付され
たチヤンフア13の傾斜角も第3図に示したθの
値にほゞ近い角度である。即ち、チヤンフア13
のすくい面側における設置巾aを逃げ面側の設置
巾bよりも大きくして刃先の角度が極端に鈍くな
ることを避け、切れ味の低下を抑えている。但
し、チヤンフア13は従来の形状と異なり、全体
に緩やかな凸円弧面をなし、かつその両側部は更
に小さな丸味をもつてすくい面11と逃げ面12
につながつている。 なお、ドリルの前切刃部に設けるチヤンフア
は、その大きさを切刃の位置に合わせてコントロ
ールするのが望ましい。例えばドリル特有の問題
である中心切刃部の溶着欠損、及び外周切刃部の
摩耗は、チヤンフアの大きさを回転中心側で大き
く、外周に向かうに従つて暫次小さくすることに
よつて大巾に減少させることができる。このチヤ
ンフアの大きさ等の調整は後述する本発明の方法
によつて容易かつ正確に行える。 以下に、上述のチヤンフアを付した本発明のド
リルと従来ドリルの切削性能に関する比較試験の
結果を挙げる。 試験に用いたドリルは、第8図のA(従来ドリ
ル)、B(本発明ドリル)で共に10mm径である。ま
た、両者ともシンニング処理によりチゼル刃14
の巾を極く小さくし、かつ、前切刃15を端面視
において同じ方向に彎曲させた。Aドリルには第
3図の、一方Bドリルには第7図の刃先処理が施
されている。その処理部の諸寸法等は下表1の通
りである。
(a) Industrial application field The present invention relates to a carbide drill mainly used for metal processing, and more specifically, a carbide drill with a specially designed chamfer shape attached to the cutting edge to strengthen the cutting edge. This paper relates to a method for strengthening the cutting edge that enables easy and accurate chamfer processing. (b) Conventional technology and its problems Although carbide drills whose cutting blades are made of cemented carbide can improve the efficiency of drilling operations, they do not suffer from chipping of the cutting blades due to their low transverse rupture strength. Easy to occur. Therefore, in order to compensate for the brittleness of cemented carbide, a chamfer is generally added to the edge where the rake face and flank face intersect.
This treatment strengthens the cutting edge. This chamfer is attached over the entire cutting edge, but in the conventional one, as shown in Figs. 1 to 3, a reference line P
(This reference line is parallel to the rotation axis in the case of the front cutting edge) A flat surface 3 whose inclination angle θ is in the range of 10 to 45 degrees, and the installation width a occupying the rake face is about 0.03 to 0.3 mm. Since the rounded surface is connected to the rake face and flank face and has a radius of curvature comparable to the diameter and a dimension, it has been difficult to ensure stable performance in drills. That is, FIGS. 4a and 4b show changes in toughness and wear resistance by changing the angle and size of chamfering with a carbide turning tool. The numerical values in the figure were determined under the following test conditions. Γ Wear-resistant work material: SCM435 (H s 30) Tool: FN11R-44A, Chip SNG432 Grade T12A Cutting conditions: V (cutting speed) = 170 m/min f (feed) = 0.36 mm/rev d (depth of cut )=2mm T (cutting time)=20min Γ Breakage rate Workpiece: SCM435 grooving tool Tool: Same cutting conditions as above: V=80m/min f=0.172~0.20mm/rev d=2 T=3min f= Each test was repeated three times at 0.172 and 0.20 mm/rev, and the failure rate was determined based on the number of failures and the time until failure. As can be seen from this figure, it is very important to uniformly control the angle and size of the chamfer of the cutting edge of a carbide cutting tool in order to obtain stable performance. However, in the case of drills, unlike throw-away tips, it is nearly impossible to grind them with a whetstone due to the complexity of the cutting edge shape.For this reason, a handler with diamond abrasive particles attached is used to chamfer a carbide drill. However, the reality is that this is done manually, and as a result, errors (variations) occur in the angle and size of the chamfer, making drill performance unstable. Further, in the case of a drill with a flat chamfer as shown in FIG. 3, sharp edges remain at the intersection of the rake face and the flank face, resulting in chipping of the cutting edge, which reduces the life of the drill. On the other hand, when the rake face 1 and the flank face 2 are connected by a curved radius surface, chipping is reduced, but the cutting edge does not have excellent biting properties against the work material. (c) Means for solving the problem The present invention provides a carbide drill that solves the problem and a method for strengthening its cutting edge. The installation width on the rake face side of the attached chamfer is made larger than that on the flank face side, and furthermore, this chamfer is made continuous with a slight roundness to the rake face and flank face, respectively, and the entire chamfer is curved in a convex direction. It is characterized by its surface. 5 to 7 show examples in which the chamfer is attached to a typical carbide drill. As shown in the figure, the external shape of the carbide drill 10 is almost the same as that of a conventional drill. Furthermore, the angle of inclination of the chamfer 13 attached to the diagonal intersection of the rake face 11 and the flank face 12 in order to remove acute edges is also approximately the same as the value of θ shown in FIG. That is, Qianhua 13
The installed width a on the rake face side is made larger than the installed width b on the flank side to prevent the angle of the cutting edge from becoming extremely blunt, thereby suppressing deterioration in sharpness. However, unlike the conventional shape, the chamfer 13 has a gently convex arcuate surface as a whole, and its both sides have smaller roundness to form the rake face 11 and flank face 12.
connected to. Note that it is desirable that the size of the chamfer provided on the front cutting edge of the drill be controlled in accordance with the position of the cutting edge. For example, welding defects on the center cutting edge and wear on the outer cutting edge, which are problems specific to drills, can be alleviated by increasing the chamfer size toward the center of rotation and gradually decreasing it toward the outer periphery. can be reduced to width. Adjustment of the size of the chamfer, etc. can be easily and accurately performed by the method of the present invention, which will be described later. Below, the results of a comparative test regarding the cutting performance of the drill of the present invention with the above-mentioned chamfer and a conventional drill will be listed. The drills used in the test, A (conventional drill) and B (drill of the present invention) in Fig. 8, both have a diameter of 10 mm. In addition, the chisel blade 14 of both is thinned.
The width of the front cutting edge 15 is made extremely small, and the front cutting edge 15 is curved in the same direction when viewed from the end. The cutting edge treatment shown in FIG. 3 is applied to the A drill, while the cutting edge treatment shown in FIG. 7 is applied to the B drill. The dimensions of the processing section are shown in Table 1 below.

【表】 この2種のドリルを各4本用意し、被削材
S50C(HB250)にエマルジヨンタイプの水溶性切
削油を使つて穴加工を行つた。そのときの切削ト
ルク及びスラスト力の測定結果は表2の通りで両
者に大差はなかつた。
[Table] Prepare four of each of these two types of drills, and
Holes were drilled on S50C (HB250) using emulsion type water-soluble cutting oil. The measurement results of the cutting torque and thrust force at that time are shown in Table 2, and there was no significant difference between the two.

【表】 また、切削条件V=50m/min、f=0.3mm/
revで深さ30mmの穴を800穴あけたところ第8図に
示すように、Aドリルには4本とも図に示すよう
に切刃部に微小なチツピングCが認められたがB
ドリルには何ら異常が見られなかつた。これは、
Aドリルの場合、チヤンフアと逃げ面及びすくい
面の交差部が鋭利であるのに対し、Bドリルは当
該部に鋭利さが無くかつ切刃部の厚みが多少なり
ともAドリルよりも厚くなつていることによる結
果と考えてよい。 次に、同じドリルで更に試験を重ねたところ第
9図に示す結果を得た。即ち、Aドリルは1200穴
に達する前に4本のサンプルのうち3本が切損し
寿命に至つたが、Bドリルはいずれも1200穴加工
後も継続使用が可能であつた。これは、微小チツ
ピング及びa、b寸法のバラツキの有無による結
果と考えられる。 次に、本発明の第2の目的である方法は、ブラ
シ又は弾力性のあるバフ砥石に高硬度砥粒を付着
含浸、もしくは含有させ、これをドリル切刃に押
し当て、研削面を定められた方向に移動させるこ
とにより上述した形状のチヤンフアを付すところ
に特徴をもつ。 この方法の一例を示すのが10図及び第11図
である。図の符号20は材料に好ましくは耐摩耗
性のよい金属やナイロン等の化合物質を使用した
回転ブラシで、このブラシにはダイヤモンドやシ
リコンカーバイドの如き硬質砥粒21を付着させ
てある。このブラシを図のようにチヤツク30等
で保持したドリル10の切刃部に押し付け、研削
部即ちブラシの毛先部がすくい面11から逃げ面
12側に又はその反対方向に移動するようブラシ
を回転させると、毛先部の撓みにより第7図に示
した形のチヤンフアが形成される。 なお、ブラシの材質及び硬質砥粒の種類は、研
削時間と研削量を考慮して適宜選択すればよい。
また、ブラシは直線的に反復運動させるものを使
用してよく硬質砥粒もブラシに含有又は含浸させ
てよい。 さらに、ブラシに代え、弾力性のあるバフ砥石
に硬質砥粒を付着、又は含有させた研削具を使用
した場合にも同じ形状のチヤンフアを形成でき
る。 この方法によれば、複雑な形状の切刃に対して
もブラシ等を押し当てることができるのでブラシ
等の研削具とドリルを機械的に保持して双方の位
置や角度を制御しながら研削を行うことにより、
精度のよいチヤンフアを能率良く付すことができ
る。また、切刃の研削具に対する突込み角度や突
込み量を変えることによつて、切刃中心部と切刃
外周部におけるチヤンフアの大きさや基準線に対
する基本的角度等を変えることも可能である。 (ニ) 効 果 以上説明したように、本発明は、チヤンフア形
状の工夫によつて切れ味を低下させることなく切
刃のチツピングを減少させたので、寿命の長い高
性能の超硬ドリルを提供できる。 また、本発明の方法は、従来手作業に頼らざる
を得なかつたチヤンフア加工の機械化を可能に
し、従つてドリルのコスト引下げに大きく寄与
し、また、機械化によりチヤンフアの大きさ等の
バラツキを防止できるため、ドリル性能をより一
層高めると云う効果を有する。 なお、云う迄もなく、本発明の適用範囲には、
切刃の一部又は全体が超硬合金から成るドリルの
全てが含まれる。
[Table] Also, cutting conditions V = 50m/min, f = 0.3mm/
When 800 holes with a depth of 30 mm were drilled using rev, as shown in Figure 8, minute chipping C was observed on the cutting edge of all four A drills, but B
No abnormality was found in the drill. this is,
In the case of the A drill, the intersection of the chamfer, flank face, and rake face is sharp, whereas the B drill has no sharpness in this area and the thickness of the cutting edge is somewhat thicker than that of the A drill. This can be thought of as a result of the fact that Next, further tests were conducted using the same drill, and the results shown in FIG. 9 were obtained. That is, three of the four samples of drill A broke out and reached the end of its life before reaching 1200 holes, but drill B could continue to be used even after drilling 1200 holes. This is considered to be the result of minute chipping and the presence or absence of variations in dimensions a and b. Next, in the method which is the second object of the present invention, a brush or an elastic buffing wheel is impregnated with or contains high hardness abrasive grains, and this is pressed against a drill cutting edge to define a grinding surface. It is characterized in that a chamfer having the above-mentioned shape is attached by moving it in a different direction. An example of this method is shown in FIGS. 10 and 11. Reference numeral 20 in the figure is a rotating brush preferably made of a compound material such as a metal or nylon having good wear resistance, and hard abrasive grains 21 such as diamond or silicon carbide are attached to this brush. Press this brush against the cutting edge of the drill 10 held by a chuck 30 or the like as shown in the figure, and hold the brush so that the grinding part, that is, the bristles of the brush move from the rake face 11 to the flank face 12 side or in the opposite direction. When the bristles are rotated, a chamfer in the shape shown in FIG. 7 is formed due to the bending of the tips of the bristles. Note that the material of the brush and the type of hard abrasive grains may be appropriately selected in consideration of the grinding time and amount of grinding.
Further, the brush may be one that can be moved repeatedly in a linear manner, and the brush may also contain or be impregnated with hard abrasive grains. Furthermore, a chamfer having the same shape can be formed by using a grinding tool in which hard abrasive grains are attached to or contained in an elastic buffing stone instead of a brush. According to this method, a brush or the like can be pressed against a cutting edge with a complicated shape, so the grinding tool such as a brush and a drill are mechanically held and the positions and angles of both are controlled while grinding is carried out. By doing
A highly accurate chamfer can be applied efficiently. Furthermore, by changing the plunge angle and plunge amount of the cutting blade into the grinding tool, it is also possible to change the size of the chamfer at the center of the cutting blade and the outer periphery of the cutting blade, the basic angle with respect to the reference line, etc. (d) Effects As explained above, the present invention reduces chipping of the cutting edge without reducing sharpness by devising the chamfer shape, so it is possible to provide a high-performance carbide drill with a long life. . Furthermore, the method of the present invention makes it possible to mechanize chamfer machining, which conventionally had to be done manually, and thus greatly contributes to reducing the cost of drills.Mechanization also prevents variations in chamfer size, etc. This has the effect of further improving drill performance. It goes without saying that the scope of application of the present invention includes:
This includes all drills whose cutting edges are partially or entirely made of cemented carbide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の超硬ドリルの一例を示す側面
図、第2図はその正面図、第3図は第2図のX−
X線に沿つた拡大断面図、第4図のa,bは、旋
削工具における面取りの大きさと角度を変えて靭
性及び耐摩耗性の変化状況を示すグラフ、第5図
は本発明の超硬ドリルの一例を示す側面図、第6
図はその正面図、第7図は第6図のY−Y線に沿
つた拡大断面図、第8図は試験に用いた従来ドリ
ルAと本発明ドリルBの前切刃部の性状を示す斜
視図、第9図は同上のドリルの耐久性を示すグラ
フ、第10図は本発明の方法の一例を示す平面
図、第11図はその正面図である。 10……超硬ドリル、11……すくい面、12
……逃げ面、13……チヤンフア、14……チゼ
ル刃、15……前切刃、20……回転ブラシ、2
1……高質砥粒、30……チヤツク。
Fig. 1 is a side view showing an example of a conventional carbide drill, Fig. 2 is a front view thereof, and Fig. 3 is a side view showing an example of a conventional carbide drill.
An enlarged cross-sectional view taken along the X-ray, a and b in Fig. 4 are graphs showing changes in toughness and wear resistance by changing the size and angle of chamfer in a turning tool, and Fig. 5 is a graph showing changes in toughness and wear resistance of the carbide of the present invention Side view showing an example of a drill, No. 6
The figure shows its front view, Figure 7 is an enlarged sectional view taken along the Y-Y line in Figure 6, and Figure 8 shows the properties of the front cutting edge of conventional drill A and drill B of the present invention used in the test. FIG. 9 is a graph showing the durability of the same drill as above, FIG. 10 is a plan view showing an example of the method of the present invention, and FIG. 11 is a front view thereof. 10... Carbide drill, 11... Rake face, 12
... Flank surface, 13 ... Chisel blade, 15 ... Front cutting blade, 20 ... Rotating brush, 2
1...High quality abrasive grain, 30...Chick.

Claims (1)

【特許請求の範囲】 1 すくい面と逃げ面の斜交したエツヂを、双方
の面に交わる微小巾のチヤンフアの付設によつて
除去し刃先を強化した超硬ドリルにおいて、上記
チヤンフアのすくい面側における設置巾を逃げ面
側のそれよりも大きくし、さらにこのチヤンフア
をすくい面と逃げ面に対しそれぞれ微小の丸味を
もつて連続させ、かつその全体を凸方向の彎曲面
としたことを特徴とする超硬ドリル。 2 上記チヤンフアを回転中心側で大きく、外周
に向かうに従つて暫次小さくしたことを特徴とす
る特許請求の範囲第1項記載の超硬ドリル。 3 回転ブラシ、直線的に反復運動させるブラシ
又は弾力性のあるバフ砥石に高硬度砥粒を付着含
浸もしくは含有させ、これをドリル切刃に押し当
て、ブラシ又はバフ砥石の研削面を切刃のすくい
面側から逃げ面側に又はその反対方向に移動させ
ることによりすくい面と逃げ面の斜交するエツヂ
部に、すくい面側の設置巾が逃げ面側のそれより
も大きく、かつ微小の丸味をもつてすくい面と逃
げ面に連なる凸方向に彎曲したチヤンフアを付す
ことを特徴とする超硬ドリルの刃先強化法。 4 上記高硬度砥粒としてダイヤモンド又はシリ
コンカーバイトの砥粒を使用することを特徴とす
る特許請求の範囲第3項に記載の超硬ドリルの刃
先強化法。
[Scope of Claims] 1. A carbide drill in which the cutting edge is strengthened by removing the diagonal edges of the rake face and flank face by attaching a chamfer of a minute width that intersects both faces, the rake face side of the chamfer being The width of the chamfer is larger than that on the flank side, and the chamfer is continuous with a slight roundness to the rake face and the flank face, respectively, and the entire chamfer is curved in a convex direction. Carbide drill. 2. The carbide drill according to claim 1, wherein the chamfer is large on the rotation center side and gradually becomes smaller toward the outer periphery. 3 A rotary brush, a brush that moves linearly repeatedly, or an elastic buffing wheel is attached to and impregnated with or contains high-hardness abrasive grains, and is pressed against the drill cutting edge, so that the grinding surface of the brush or buffing wheel is pressed against the cutting edge. By moving from the rake face side to the flank face side or in the opposite direction, the installation width on the rake face side is larger than that on the flank face side and a minute roundness is created on the edge part where the rake face and flank face diagonally intersect. A method for strengthening the cutting edge of a carbide drill, which is characterized by attaching a chamfer that is curved in a convex direction and connected to the rake face and flank face. 4. The method for strengthening the cutting edge of a carbide drill according to claim 3, characterized in that diamond or silicon carbide abrasive grains are used as the high-hardness abrasive grains.
JP7688884A 1984-04-13 1984-04-13 Very hard drill and method of strengthening cutting edge thereof Granted JPS60221208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7688884A JPS60221208A (en) 1984-04-13 1984-04-13 Very hard drill and method of strengthening cutting edge thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7688884A JPS60221208A (en) 1984-04-13 1984-04-13 Very hard drill and method of strengthening cutting edge thereof

Publications (2)

Publication Number Publication Date
JPS60221208A JPS60221208A (en) 1985-11-05
JPH0134727B2 true JPH0134727B2 (en) 1989-07-20

Family

ID=13618174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7688884A Granted JPS60221208A (en) 1984-04-13 1984-04-13 Very hard drill and method of strengthening cutting edge thereof

Country Status (1)

Country Link
JP (1) JPS60221208A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531129Y2 (en) * 1989-12-05 1997-04-02 株式会社豊田自動織機製作所 Diamond sintered body drill
JP3030741U (en) * 1995-12-30 1996-11-05 日本セラテック株式会社 Drill blade
GB0907737D0 (en) * 2009-05-06 2009-06-10 Element Six Ltd An insert for a cutting tool
JP5846082B2 (en) * 2012-08-30 2016-01-20 アイシン精機株式会社 Grinding method for skiving cutter
JP6287197B2 (en) * 2013-12-26 2018-03-07 三菱マテリアル株式会社 Drill inserts and replaceable drill tips
CN106573317B (en) * 2014-09-19 2018-10-16 住友电工硬质合金株式会社 Drill bit
DE102019102334A1 (en) * 2019-01-30 2020-07-30 Kennametal Inc. Process for producing a cutting tool and cutting tool

Also Published As

Publication number Publication date
JPS60221208A (en) 1985-11-05

Similar Documents

Publication Publication Date Title
US4527643A (en) Rotary cutting member for drilling holes
JP2002301605A (en) Throwaway tip
CN1658992A (en) Milling cutter with wiper radius
KR20110003311A (en) Tool body of the cutter for plunge processing, cutter for plunge processing, and plunge processing method
JP2008264979A (en) Rotary cutting tool for drilling
KR960007687Y1 (en) End mill
JPH0134727B2 (en)
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JP4830552B2 (en) Face milling
JPWO2018074542A1 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JPH0319002B2 (en)
CN111421173B (en) Green body and cutting tool with spiral superhard material rake face
JPH07299634A (en) End mill
JPH0440122B2 (en)
JPH07204921A (en) End mill
US11491559B2 (en) End mill
JP3639227B2 (en) Drilling tools for brittle materials
JP2005246528A (en) Reamer
JP3657546B2 (en) drill
JPH039945Y2 (en)
JPH0523886B2 (en)
JPS6140434Y2 (en)
JP2632388B2 (en) Internal thread cutting tool
JPH01321108A (en) Machining tool with small relief
JPH0487718A (en) Reamer